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Abstract

In this paper, we study three-dimensional Kudryashov-Sinelshchikov (K-S) equation, which describes
long nonlinear pressure waves in a liquid containing gas bubbles. Firstly, We find the symmetry groups
of the K-S equation. Secondly, using the symmetry groups, exact solutions which are invariant under a three-
dimensional subalgebra of the symmetry Lie algebra are derived. Finally, by adding Bluman-Anco homotopy
formula to the direct method local conservation laws of the K-S equation are obtained.
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1 Introduction

A liquid with gas bubbles has many applications in nature, technology and medicine. An extended
equation for the description of nonlinear waves in a liquid with gas bubbles was introduced in [1]. Extended
models of nonlinear waves in bubbly liquid were considered in [2]. In this study we consider the following
equation

utx + u2
x + uuxx − λuxxx + uxxxx +

1
2
(uyy + uzz) = 0, (1.1)

where λ is parameter. This equation was introduced by Kudryashov-Sinelshchikov in [3]. This nonlinear
equation is for a description of long nonlinear pressure waves. By using Painlevé test, it is shown that the K-S
equation is not Painlevé integrable. Bifurcations and phase portraits for the equation were discussed in [4].

To find solutions to nonlinear partial differential equations, the study of their symmetry groups is one
of the powerful methods in the theory of nonlinear partial differential equations. Then, the corresponding
symmetry groups will be used in construction of exact solutions and mapping solutions to other solutions.

In the study of partial differential equations, the concept of a conservation law plays a very important role
in the analyze of essential properties of the solutions, particularly, investigation of existence, uniqueness and
stability of the solutions.

This work is organized as follows. In Section 2, we present group classification of the K-S equation. Section
3 is devoted to reductions to ordinary differential equations and exact solutions. In Section 4, the conservation
laws associated to the equation are obtained via direct method. The conclusions are presented in Section 5.

∗Corresponding author.
E-mail address: r.dastranj@kiau.ac.ir (Reza Dastranj), m nadjafikhah@iust.ac.ir (Mehdi Nadjafikhah),
toomanian@tabrizu.ac.ir(Megerdich Toomanian).



Reza Dastranj et al. / Invariant solutions and conservation laws... 297

2 Group classification of the K-S equation

In this section we completely classify the Lie point symmetries of the K-S equation in terms of λ. For the
non-extended transformations group of equation (1.1) the infinitesimal generator X is given by

X = ξt(t, x, y, z, u)∂t + ξx(t, x, y, z, u)∂x + ξy(t, x, y, z, u)∂y + ξz(t, x, y, z, u)∂z + η(t, x, y, z, u)∂u. (2.2)

The fourth prolongation of X is

X(4) = X + η
(1)
i ∂ui + · · ·+ η

(4)
i1i2i3i4

∂ui1i2i3i4 , (2.3)

where

η
(1)
i = Diη − (Diξ j)uj, i, j = 1, ..., 4 (2.4)

and for l = 1, 2, · · · , k with k ≥ 2, il = 1, 2, · · · , 4

η
(k)
i1i2···ik

= Dik η
(k−1)
i1i2···ik−1

− (Dik ξ j)ui1i2···ik−1 j, (2.5)

where Di is the total derivative operator defined by

Di = ∂xi + ui∂u + uij∂uj + ..., i = 1, ..., 4 (2.6)

with summation over a repeated index.
The vector field X generates a one parameter symmetry group of K-S equation if and only if

(
X(4)[utx + u2

x + uuxx − λuxxx + uxxxx +
1
2
(uyy + uzz)]

)∣∣∣
(1.1)

=(
ηuxx + 2uxη

(1)
x + η

(2)
tx + uη

(2)
xx +

1
2
(η

(2)
yy + η

(2)
zz )− λη

(3)
xxx + η

(4)
xxxx

)∣∣∣
(1.1)

= 0. (2.7)

For more details see [5], [6].
Calculating the needed terms in (2.7) and spliting with respect to partial derivatives with respect to t, x, y,

and z and various power of u, we can find the determining equations for the symmetry group of the equation
(1.1). We study two cases: λ = 0, λ 6= 0.

Case A. λ 6= 0

Here, we find the following determining equations:

ξt
t = ξt

x = ξt
y = ξt

z = ξt
u = ξx

x = ξx
yy = ξx

zy = ξx
zz = ξx

u = ξ
y
x = ξ

y
y = ξ

y
zz = ξ

y
u = 0,

ξz
x = ξz

z = ξz
u = ηx = ηyy = ηzy = ηzz = ηu = 0, ξx

t = η, ξ
y
t = −ξx

y, ξz
t = −ξx

z , ξz
y = −ξ

y
z . (2.8)

So we have

ξt = c1, ξx = − f
′
1(t)y − f

′
2(t)z + f3(t), ξy = f1(t) + c2z,

ξz = f2(t)− c2y, η = − f
′′
1 (t)y − f

′′
2 (t)z + f

′
3(t), (2.9)

with f1(t), f2(t), f3(t) arbitrary functions and c1, c2 arbitrary constants. Thus the K-S equation admits an
infinite-dimensional symmetry Lie algebra spanned by

X1 = ∂t, X2 = −y∂z + z∂y, X∞ = f
′
3(t)∂u + f3(t)∂x,

X∞ = −y f
′′
1 (t)∂u − y f

′
1(t)∂x + f1(t)∂y, X∞ = −z f

′′
2 (t)∂u − z f

′
2(t)∂x + f2(t)∂z, (2.10)

where f1(t), f2(t), f3(t) are arbitrary functions.
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Case B. λ = 0

Here, we find the following determining equations:

ξt
x = ξt

y = ξt
z = ξt

u = ξx
yy = ξx

zy = ξx
zz = ξx

u = 0,

ξ
y
x = ξ

y
zz = ξ

y
u = ξz

x = ξz
u = ηx = ηtu = ηyy = ηyu = ηzy = ηzz = ηzu = ηuu = 0,

ξt
t = −3

2
ηu, ξx

t = −ηuu + η, ξx
x = −1

2
ηu, ξ

y
t = −ξx

y, ξ
y
y = ξz

z = −ηu, ξz
t = −ξx

z , ξz
y = −ξ

y
z . (2.11)

So we have

ξt = c1t + c2, ξx =
c1

3
x − f

′
1(t)y − f

′
2(t)z + f3(t), ξy =

2c1

3
y + c3z + f1(t),

ξz = −c3y +
2c1

3
z + f2(t), η = − f

′′
1 (t)y − f

′′
2 (t)z − 2c1

3
u + f

′
3(t), (2.12)

with f1(t), f2(t), f3(t) arbitrary functions and c1, c2, c3 arbitrary constants. Thus the K-S equation admits an
infinite-dimensional symmetry Lie algebra spanned by

X1 = ∂t, X∞ = −z f
′′
2 (t)∂u − z f

′
2(t)∂x + f2(t)∂z, X∞ = u∂u − 3t

2
∂t − x

2
∂x − y∂y − z∂z,

X2 = −y∂z + z∂y, X∞ = f
′
3(t)∂u + f3(t)∂x, X∞ = −y f

′′
1 (t)∂u − y f

′
1(t)∂x + f1(t)∂y, (2.13)

where f1(t), f2(t), f3(t) are arbitrary functions.

3 Invariant solutions

Here, we use the results of the group classification in the previous section for the construction of exact
solutions of the K-S equation. We search for solutions invariant under a three-dimensional subalgebra of the
Lie algebra (2.13). Then equation (1.1) is reduced to a fourth-order ordinary differential equation. Solving this
equation we find exact solution for the K-S equation[6, 7, 8, 9]. We choose the following three vector fields:

X1 = 2y∂u + 2ty∂x − t2∂y, X2 = 2z∂u + 2tz∂x − t2∂z,

X3 = u∂u − 3t
2

∂t − x
2

∂x − y∂y − z∂z. (3.14)

These vector fields generate a three-dimensional subalgebra of the symmetry Lie algebra (2.13). We construct
an exact solution of equation (1) which is invariant under these three vector fields: X1(I) = X2(I) = X3(I) = 0.
From X1(I) = 0, we obtain four invariants J1 = t, J2 = z, J3 = u − x/t, J4 = y2 + tx. Now, we rewrite X2 and
X3 in terms of J1,J2,J3 and J4:

X2 = −J2
1 ∂J2 + 2J2

1 J2∂J4, X3 = −3
2

J1∂J1 − J2∂J2 + J3∂J3 − 2J4∂J4. (3.15)

Since the common solution I(t, x, y, z, u) is defined as a function of the invariants J1,J2,J3 and J4 of X1, it must
be a solution to the differential equations

X2(I) = −J2
1

∂I
∂J2

+ 2J2
1 J2

∂I
∂J4

= 0, X3(I) = −3
2

J1
∂I
∂J1

− J2
∂I
∂J2

− J3
∂I
∂J3

− 2J4
∂I
∂J4

= 0. (3.16)

The equation X2(I) = 0 gives the three invariants K1 = J1, K2 = J3, K3 = J4 + J2
2 . Again we express these

invariants as new variables. Writing X3 in terms of K1, K2, and K3, we obtain

X3 = −3
2

K1∂K1 + K2∂K2 − 2K3∂K3. (3.17)

From X3(I) = 0 two invariants I1 = K2/3
1 K2, I2 = K−4/3

1 K3 are found.
The invariant solution is given by I1 = Φ(I2), where Φ is a function to be determined [7], [8]. Thus

t
2
3 (u − x

t
) = Φ(

y2 + tx + z2

t
4
3

). (3.18)
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From (3.18) we have
u = t

−2
3 Φ(δ) +

x
t

, (3.19)

where δ =
y2 + tx + z2

t4/3 . Substituting u in the K-S equation (with λ = 0) we obtain

Φ
′′′′

+ Φ
′′
(Φ +

2
3

δ) + Φ
′2 + 3Φ

′
= 0. (3.20)

A solution which arises from the above equation is

Φ = −3δ = −3(
y2 + tx + z2

t
4
3

). (3.21)

Therefore the exact solution

u =
−3(y2 + z2 + 2

3 tx)
t2 , (3.22)

for the K-S equation is obtained.

4 Conservation laws

There are many methods to investigate conservation laws, such as Noether’s method, the direct method,
etc. Here, we present the direct method [10, 11, 12, 13].

Consider a differential equation P{x; u} of order k with n independent variables x = (x1, . . . , xn) and one
dependent variable u, given by

P[u] = P(x, u, ∂u, . . . , ∂ku) = 0. (4.23)

A multiplier Λ(x, u, ∂u, . . . , ∂lu) provides a conservation law Λ[u]P[u] = Diφ
i[u] = 0 for the differential

equation P{x; u} if and only if

EU

(
Λ(x, U, ∂U, . . . , ∂lU)P(x, U, ∂U, . . . , ∂kU)

)
≡ 0, (4.24)

for arbitrary functions U(x), where EU is the Euler operator with respect to U defined as

EU = ∂U − Di∂U + . . . + (−1)sDi1 . . . Dis ∂Ui1 ...is . (4.25)

Since the K-S equation is of Cauchy-Kovalevskaya form with respect to x, y, and z, it follows that multipliers
providing local conservation laws for equation (1.1) are in the form Λ = ξ(t, x, y, z, U, ∂tU, . . . , ∂l

tU),l =
1, 2, . . . and we can obtain all of its nontrivial local conservation laws from multipliers. Consequently, Λ =
ξ(t, x, y, z, U, ∂tU, . . . , ∂l

tU) is a conservation law multiplier for the equation(1.1) if and only if

EU

[
ξ
(
t, x, y, z, U, ∂tU, . . . , ∂l

tU
)(

Utx + U2
x + UUxx − λUxxx + Uxxxx +

1
2
(Uyy + Uzz)

)]
≡ 0 (4.26)

for an arbitrary function U(t, x, y, z).
We look for all multipliers in the form Λ = ξ(t, x, y, z, U, ∂Ut, ∂Utt, ∂Uttt, ∂Utttt) for the equation(1). Thus,

the Euler operator is taken to be

EU = ∂U − Di∂Ui + . . . + (−1)4Di1 . . . Di4 ∂Ui1 ...i4 , (4.27)

and the determining equations become

EU [ξ(t, x, y, z, U, ∂Ut, . . . , ∂Utttt)(Utx + U2
x + UUxx − λUxxx + Uxxxx +

1
2
(Uyy + Uzz))] ≡ 0 (4.28)

where U(t, x, y, z) is arbitrary function. Equation (4.28) split with respect to Ux, Utx, . . . , Uxxxx to provide the
over-determined equations:

ξyyyy = −(2ξzyyz + ξzzzz), ξyxy = −ξzxz, ξtx = −
ξyy + ξzz

2
, ξxx = ξU = ξUt = ξUtt = ξUttt = ξUtttt = 0.

(4.29)
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Solving the equations (4.29), we find the infinite set of local multipliers

ξ = ( f1(t, z − iy) + f2(t, z + iy))x + f3(t, z − iy) + f4(t, z + iy)−

2
∫ y ∫ b

(D1( f1)(t,−2ib + iy + z) + D1( f2)(t, 2ia − 2ib + iy + z))dadb, (4.30)

where f1, f2, f3 and f4 are arbitrary functions. We study two cases: f1(r, s) = f2(r, s) = f3(r, s) = f4(r, s) = r + s
and f1(r, s) = f2(r, s) = f3(r, s) = f4(r, s) = exp(r + s).

Case A

By setting f1(r, s) = f2(r, s) = f3(r, s) = f4(r, s) = r + s into (4.30), we have ξ = 2(t + z)(x + 1)− 2y2. Applying
Bluman-Anco homotopy formula [10, 11, 12], we find conserved components Φt, Φx, Φy, and Φz with respect to
multiplier ξ:

Φt = 2
[
(t + z)(x + 1)− y2

]
ux,

Φx = 3
[
(t + z)(x + 1)− y2

]
uux −

[
(t + z)u + ((t + z)(x + 1)− y2)ux

]
u − 2

[
x + 1

]
u −

2
[
(t + z)(x + 1)− y2

]
λuxx + 2

[
(t + z)(x + 1)− y2

]
uxxx + 2

[
t + z

]
λux − 2

[
t + z

]
uxx,

Φy = 2
[
y
]
u +

[
(t + z)(x + 1)− y2

]
uy,

Φz = −
[

x + 1
]
u +

[
(t + z)(x + 1)− y2

]
uz. (4.31)

So we obtain the following local conservation law of the K-S equation:

Dt

(
2[(t + z)(x + 1)− y2]ux

)
+ Dx

(
3[(t + z)(x + 1)− y2]uux − 2[(t + z)(x + 1)− y2]λuxx −

[(t + z)u + ((t + z)(x + 1)− y2)ux]u − 2[x + 1]u + 2[(t + z)(x + 1)− y2]uxxx +

2[t + z]λux − 2[t + z]uxx

)
+ Dy

(
2[y]u + [(t + z)(x + 1)− y2]uy

)
+

Dz

(
− [x + 1]u + [(t + z)(x + 1)− y2]uz

)
= 0. (4.32)

Case B

By setting f1(r, s) = f2(r, s) = f3(r, s) = f4(r, s) = exp(r + s) into (4.30), we have:

ξ = (x − iy +
1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy), (4.33)
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Applying Bluman-Anco homotopy formula, we find conserved components Φt, Φx, Φy, and Φz with respect to
multiplier ξ:

Φt =
[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
ux,

Φx =
[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
uux −

1
2

[
exp(t + z − iy) + exp(t + z + iy)

]
u2 + λ

[
exp(t + z − iy) + exp(t + z + iy)

]
ux −[

(x − iy +
1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
u −[

(λx − λiy +
λ

2
+ 1) exp(t + z − iy) + (λx + λiy + λ + 1) exp(t + z + iy)

]
uxx +[

(x − iy +
1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
uxxx,

Φy =
i
2

[
(x − iy +

3
2
) exp(t + z − iy)− (x + iy + 2) exp(t + z + iy)

]
u +

1
2

[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
uy,

Φz = −1
2

[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
u +

1
2

[
(x − iy +

1
2
) exp(t + z − iy) + (x + iy + 1) exp(t + z + iy)

]
uz. (4.34)

So we find the following local conservation law of the equation (1.1):

DtΦt + DxΦx + DyΦy + DzΦz = 0. (4.35)

5 Conclusions

In the present paper, we investigated the Lie point symmetries, exact solutions and conservation laws of
the K-S equation. We derived exact solutions which are invariant under a three-dimensional subalgebra of
the symmetry Lie algebra. We obtained the conservation laws of the K-S equation by adding Bluman-Anco
homotopy formula to the direct method.
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