

On Quasi-weak Commutative Boolean-like Near-Rings

G. Gopalakrishnamoorthy ${ }^{a, *}$ S.Geetha ${ }^{b}$ and S. Anitha ${ }^{c}$
${ }^{a}$ Department of Mathematics, PSNL College of Education, Sattur-626 203, Tamil Nadu, India.
${ }^{b}$ Department of Mathematics, Pannai College of Engineering and Technology, Sivaganga-630 561, Tamil Nadu, India.
${ }^{c}$ Department of Mathematics, Raja Doraisingam Government Arts College, Sivaganga-630 561, Tamil Nadu, India.

Abstract

In this paper we establish a result that every quasi-weak commutative Boolean-like near-ring can be imbedded into a quasi-weak commutative Boolean-like commutative semi-ring with identity. Key words: Quasi-weak commutative near-ring, Boolean-like near-ring.

Keywords: Quasi-weak commutative near-ring, Boolean-like near-ring.

1 Introduction

The concept of Boolean-like ring was coined by A.L.Foster[1]. Foster proved that if R is a Boolean ring with identity then $\mathrm{ab}(1-\mathrm{a})(1-\mathrm{b})=0$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. He generalized the concept of Boolean ring as Boolean-like ring as a ring R with identity satisfying (i) $\mathrm{ab}(1-\mathrm{a})(1-\mathrm{b})=0$ and (ii) $2 \mathrm{a}=0$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. He also observed that the equation $a b(1-a)(1-b)=0$ can be re-written as $(a b)^{2}-a b^{2} a^{2} b+a b=0$. He re-defined a Boolean-like ring as a commutative ring with identity satisfying (i) $(a b)^{2}-a^{2} a^{2} b+a b=0$ and (ii) $2 a=0$ for all $a, b \in$ R. In 1962 Adil Yaqub [8] proved that the condition 'commutativity 'is not necessary in the definition of Boolean-like rings. He proved that any ring R with the conditions (i) $(a b)^{2}-a b^{2} a^{2} b+a b=0$ and (ii) $2 a=0$ for all $a, b \in R$ is necessarily commutative.

Ketsela Hailu and others [4] have constructed the Boolean-like semi-ring of fractions of a weak commutative Boolean-like semi-ring. We have coined and studied the concept of quasi-weak commutative near-ring in [2]. In this paper we define Boolean-like near ring (right) and prove that every quasi-weak commutative. Boolean-like near ring can be imbedded into a quasi weak commutative semi ring with identity.

2 Preliminaries

In this section we recal some definitions and results which we use in the sequal.

[^0]
2.1. Definition

A non empty set R together with two binary operations + and \cdot satisfying the following axioms is called a right near-ring
(i) $(R,+)$ is a group
(ii) - is associative
(iii) • is right distributive w.r.to +
(ie) $(\mathrm{a}+\mathrm{b}) \mathrm{c}=\mathrm{a} \cdot \mathrm{c}+\mathrm{b} \cdot \mathrm{c} \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$

2.2. Note

In a right near-ring $R, 0 a=0 \forall a \in R$.
If $(R,+)$ is an abelian group, then $(R,+, \cdot)$ is called a semi-ring.

2.3. Definition

A right near-ring $(R,+, \cdot)$ is called a Boolean-like near ring if
(i) $2 a=0 \forall a \in R$ and
(ii) $(\mathrm{a}+\mathrm{b}-\mathrm{ab}) \mathrm{ab}=\mathrm{ab} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$

2.4.Remark

If $(R,+, \cdot)$ is a Boolean-like near ring,then ($R,+$) is always an abelian group for $2 x=0 \forall x \in R$ implies $x=-x \forall x$ $\epsilon \mathrm{R}$. We know, a group in which every element is its own inverse is always commutative.

2.5. Definition [5]

A right near ring R is said to be weak commutative if $x y z=x z y \forall x, y, z \in R$

2.6. Definition [8]

A right near ring R is said to be pseudo commutative if $x y z=z y x \forall x, y, z \in R$

2.7. Definition [2]

A right near ring R is said to be quasi-weak commutative if $x y z=y x z \forall x, y, z \in R$

2.8. Definition

Let R be a right near ring. A subset $B R$ is said to be multiplicatively closed if $a, b \in B$ implies $a b \in B$.

3.Main results

3.1. Lemma

In a Boolean-like near ring (right) R a $0=0 \forall \mathrm{a} \epsilon \mathrm{R}$

Proof:

Since R is Boolean-like near ring, ($a+b-a b$) $a b=a b \forall a, b \in R$
Taking $\mathrm{a}=0$, we get
$(0+b-0 b) 0 b=0 b$
(ie) $b \cdot 0=0$
Thus a. $0=0 \forall \mathrm{a} \in \mathrm{R}$.

3.2. Lemma

Let R be a quasi-weak commutative right near ring R. Then $(a b)^{n}=a^{n} b^{n} \forall a, b \in R$ and for all $n \geq 1$.

Proof:

Let $a, b \in R$.
Then $(a b)^{2}=(a b)(a b)=a(b a b)$

$$
\begin{aligned}
& =a(a b b)(\text { quasi weak }) \\
(a b)^{2} & =a^{2} b^{2}
\end{aligned}
$$

Assume (ab) $=\mathrm{a}^{m} \mathbf{b}^{m}$
Now $(\mathrm{ab})^{(m+1)}=(\mathrm{ab})^{m} \mathrm{ab}$

$$
=\mathrm{a}^{m} \mathbf{b}^{m} \mathrm{ab}
$$

$=\mathrm{a}^{m}\left(\mathrm{ab}^{m} \mathrm{~b}\right)$
$=\mathrm{a}^{m+1} \mathrm{~b}^{m+1}$
Thus $(\mathrm{ab})^{m}=\mathrm{a}^{m} \mathrm{~b}^{m} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$ and for all integer $\mathrm{m} \geq 1$.

3.3 lemma

Let R be a quasi-weak commutative Boolean like near-ring.Then $\mathrm{a}^{2} \mathrm{~b}+\mathrm{ab}^{2}=\mathrm{ab}+(\mathrm{ab})^{2} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.

Proof:

$$
\begin{aligned}
a^{2} b+a b^{2}= & a a b+a b b \\
& =a a b+b a b \\
& =(a+b) a b \\
& =(a+b a b+a b) a b \\
& =(a+b a b) a b+(a b)^{2} \\
a^{2} b+a b^{2}=a b & +(a b)^{2}(R \text { is Boolean-like near-ring })
\end{aligned}
$$

3.4 Lemma

In a quasi-weak commutative Boolean like near ring $(R,+,$.$) ,$
$\left(a+a^{2}\right)\left(b+b^{2}\right) c=0 \forall a, b, c \in R$.

Proof:

$$
\begin{aligned}
\left(a+a^{2}\right)\left(b+b^{2}\right) c= & \left\{a\left(b+b^{2}\right)+a^{2}\left(b+b^{2}\right)\right\} c \\
& =a\left(b+b^{2}\right) c+a^{2}\left(b+b^{2}\right) c
\end{aligned}
$$

```
\(=\left(\mathrm{b}+\mathrm{b}^{2}\right) \mathrm{ac}+\left(\mathrm{b}+\mathrm{b}^{2}\right) \mathrm{a}^{2} \mathrm{c}(\mathrm{R}\) is quasi-weak commutative \()\)
\(=\left\{\left(b+b^{2}\right) a+\left(b+b^{2}\right) a^{2}\right\} c\)
\(=\left\{b a+b^{2} a+b a^{2}+b^{2} a^{2}\right\} c\)
\(=\left\{b a+b a+(b a)^{2}+b^{2} a^{2}\right\}\) (using Lemma 3.3)
\(=\left\{b a+b a+b^{2} a^{2}+b^{2} a^{2}\right\}\) (using Lemma 3.2)
\(=\left\{2 b a+2 b^{2} a^{2}\right\}\)
\(=0(\mathrm{R}\) is Boolean-like near-ring).
```


3.5 Lemma

In a quasi-weak commutative Boolean like near ring $R,\left(a-a^{2}\right)\left(b-b^{2}\right) c=0 \forall a, b, c \in R$.

Proof:

$$
\begin{aligned}
\left(\mathrm{a}-\mathrm{a}^{2}\right)\left(\mathrm{b}-\mathrm{b}^{2}\right) \mathrm{c}=\{ & \left.a\left(b-b^{2}\right)-a^{2}\left(b-b^{2}\right)\right\} \mathrm{c} \\
& =\mathrm{a}\left(\mathrm{~b}-\mathrm{b}^{2}\right) \mathrm{c}-\mathrm{a}^{2}\left(\mathrm{~b}-\mathrm{b}^{2}\right) \mathrm{c} \\
& =\left(\mathrm{b}-\mathrm{b}^{2}\right) \mathrm{ac}-\left(\mathrm{b}-\mathrm{b}^{2}\right) \mathrm{a}^{2} \mathrm{c}(\text { quasi-weak commutative) } \\
& =\left\{\left(b-b^{2}\right) a-\left(b-b^{2}\right) a^{2}\right\} \mathrm{c} \\
& =\left\{b a-b^{2} a-b a^{2}-b^{2} a^{2}\right\} \mathrm{c} \\
& =\left\{b a-b a-(b a)^{2}-b^{2} a^{2}\right\} \\
& =\left\{b a-b a-b^{2} a^{2}-b^{2} a^{2}\right\} \text { (using Lemma 3.3) } \\
& =0
\end{aligned}
$$

3.6 Lemma

Let R be a quasi commutative Boolean like near-ring. Let S be a commutative subset of R which is multiplicatively closed.Define a relation N on $R \times S$ by $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ if and only if there exists an element s ϵS such that $\left(r_{1} s_{2}-r_{2} s_{1}\right) s=0$.Then N is an equivalence relation.

Proof:

(i) $\operatorname{Let}(r, s) \in R \times S$. Since rs-rs $=0$,
we get (rs-rs) $\mathrm{t}=0$ for all $\mathrm{t} \epsilon \mathrm{S}$.
Hence \sim is reflexive.
(ii) Let $\left(\mathrm{r}_{1}, \mathrm{~s}_{1}\right) \sim\left(\mathrm{r}_{2}, \mathrm{~s}_{2}\right)$.Then there exists an element $\mathrm{s} \in \mathrm{S}$ such that
$\left(\mathrm{r}_{1}, \mathrm{~s}_{1}-\mathrm{r}_{2}, \mathrm{~s}_{1}\right) \mathrm{s}=0$. So $\left(\mathrm{r}_{2}, \mathrm{~s}_{1}-\mathrm{r}_{1}, \mathrm{~s}_{2}\right) \mathrm{s}=0$.
This proves \sim is symmetric.
(iii) Let $\left(\mathrm{r}_{1}, \mathrm{~s}_{1}\right) \sim\left(\mathrm{r}_{2}, \mathrm{~s}_{2}\right)$ and $\left(\mathrm{r}_{2}, \mathrm{~s}_{2}\right) \sim\left(\mathrm{r}_{3}, \mathrm{~s}_{3}\right)$.

Then there exists $\mathrm{p}, \mathrm{q} \in \mathrm{S}$ such that
$\left(\mathrm{r}_{1} \mathrm{~s}_{2}-\mathrm{r}_{2} \mathrm{~s}_{1}\right) \mathrm{p}=0$ and $\left(\mathrm{r}_{2} \mathrm{~s}_{3}-\mathrm{r}_{3} \mathrm{~s}_{2}\right) \mathrm{q}=0$.
So $\mathrm{s}_{3}\left(\mathrm{r}_{1} \mathrm{~s}_{2}-\mathrm{r}_{2} \mathrm{~s}_{1}\right) \mathrm{p}=0=\mathrm{s}_{1}\left(\mathrm{r}_{2} \mathrm{~s}_{3}-\mathrm{r}_{3} \mathrm{~s}_{2}\right) \mathrm{q}$ (By Lemma 3.1)
$\Longrightarrow\left(r_{1} s_{2}-r_{2} s_{1}\right) s_{3} p=0=\left(r_{2} s_{3}-r_{3} s_{2}\right) s_{1} q$ (R is quasi-weak commutative)
$\Longrightarrow\left(r_{1} s_{2}-r_{2} s_{1}\right) s_{3} p q=0=p\left(r_{2} s_{3}-r_{3} s_{2}\right) s_{1} q$
$\Longrightarrow\left(r_{1} s_{2}-r_{2} s_{1}\right) s_{3} p q=0=\left(r_{2} s_{3}-r_{3} s_{2}\right) p s_{1} q(R$ is quasi-weak commutative $)$
$\Longrightarrow\left(r_{1} s_{2}-r_{2} s_{1}\right) s_{3} \mathrm{pq}=0=\left(\mathrm{r}_{2} \mathrm{~s}_{3}-\mathrm{r}_{3} \mathrm{~s}_{2}\right) \mathrm{s}_{1} \mathrm{pq}$ (R is quasi-weak commutative)
$\Longrightarrow\left(\mathrm{r}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3}-\mathrm{r}_{2} \mathrm{~s}_{1} \mathrm{~s}_{3}\right) \mathrm{pq}=0=\left(\mathrm{r}_{2} \mathrm{~s}_{3} \mathrm{~s}_{1}-\mathrm{r}_{3} \mathrm{~s}_{2} \mathrm{~s}_{1}\right) \mathrm{pq}$
$\Longrightarrow\left(r_{1} s_{2} s_{3}-r_{2} s_{1} s_{3}+r_{2} s_{3} s_{1}-r_{3} s_{2} s_{1}\right) p q=0$.
$\Longrightarrow\left(r_{1} s_{3} s_{2}-r_{2} s_{1} s_{3}+r_{2} s_{1} s_{3}-r_{3} s_{1} s_{2}\right) p q=0$.(S is commutative)
$\Longrightarrow\left(\mathrm{r}_{1} \mathrm{~s}_{3}-\mathrm{r}_{3} \mathrm{~s}_{1}\right) \mathrm{s}_{2} \mathrm{pq}=0$
$\Longrightarrow\left(r_{1} s_{3}-r_{3} s_{1}\right) r=0$ where $r=s_{2} p q \in S$.
This implies $\left(\mathrm{r}_{1}, \mathrm{~s}_{1}\right) \sim\left(\mathrm{r}_{3}, \mathrm{~s}_{3}\right)$.
Hence \sim is transitive.
Hence the Lemma.

3.6 Remark

We denote the equivalence class containing (r, s) $\mathrm{R} \times \mathrm{S}$ by $\frac{r}{s}$ and the set of all equivalence classes by $\mathrm{S}^{-1} \mathrm{R}$.

3.8 Lemma

Let R be a quasi weak commutative Boolean like near-ring. Let S be a commutative subset of R which is also multiplicatively closed. If $0 \notin S$ and R has no zero divisors, then
$\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ if and only if $r_{1} s_{2}=r_{2} s_{1}$.

Proof:

Assume $\left(\mathrm{r}_{1}, \mathrm{~s}_{1}\right) \sim\left(\mathrm{r}_{2}, \mathrm{~s}_{2}\right)$.Then there exists an element $\mathrm{s} \in \mathrm{S}$ such that $\left(\mathrm{r}_{1} \mathrm{~s}_{2}-\mathrm{r}_{2} \mathrm{~s}_{1}\right) \mathrm{s}=0$.
Since $0 \notin S$ and R has zero divisors, we get $\left(r_{1} s_{2}-r_{2} s_{1}\right)=0$.
(i.e) $\mathrm{r}_{1} \mathrm{~s}_{2}=\mathrm{r}_{2} \mathrm{~s}_{1}$

Conversely assume $r_{1} s_{2}=r_{2} s_{1}$.
Then $r_{1} s_{2}-r_{2} s_{1}=0$ and so $\left(r_{1} s_{2}-r_{2} s_{1}\right) s=0$ for all $s \in S$.
Hence $\left(r_{1} s_{1}\right) \notin\left(r_{2} s_{2}\right)$.

3.9 Lemma:

Let R be a quasi weak commutative Boolean like near-ring. Let S be a commutative subset of R, which is also multiplicatively closed.
Then (i) $\frac{r}{s}=\frac{r t}{s t}=\frac{t r}{s t}=\frac{t r}{t s}$ for all $r \in R$ and for all $s, t e S$.
(ii) $\frac{r s}{s}=\frac{r s^{\prime}}{s^{\prime}}$ for all $\mathrm{r} \in \mathrm{R}$ and for all $\mathrm{s}, s^{\prime} \in \mathrm{S}$.
(iii) $\frac{s}{s}=\frac{s^{\prime}}{s^{\prime}}$ for all $\mathrm{s}, \mathrm{s}^{\prime} \in \mathrm{S}$.
(iv) If $0 \epsilon S$,then $\mathrm{S}^{-1} \mathrm{R}$ contains exactly one element.

Proof:

The proof of (i),(ii) and (iii) are routine.
(iv) Since $0 \epsilon S,\left(\mathrm{r}_{1} \mathrm{~s}_{2}-\mathrm{r}_{2} \mathrm{~s}_{1}\right) 0=0 \forall \frac{r_{1}}{s_{1}, \frac{r_{2}}{s_{2}}} \epsilon \mathrm{~S}^{-1} \mathrm{R}$. and so $\frac{r_{1}}{s_{1}} \frac{r_{2}}{s_{2}}$.
Then $\mathrm{S}^{-1} \mathrm{R}$ contains exactly one-element.

3.10 Theorem:

Let R be a quasi weak commutative Boolean like near ring. Let S be a commutative subset of R which is also multiplicatively closed. Define binary operation + and on $\mathrm{S}^{-1} \mathrm{R}$ as follows :
$\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}}$ and
$\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}$
Then $\mathrm{S}^{-1} \mathrm{R}$ is a commutative Boolean like semi-ring with identity.

Proof:

Let us first prove that + and • are well defined. Let $\frac{r_{1}}{s_{1}}=\frac{r_{1}^{\prime}}{r_{1}^{\prime}}$ and $\frac{r_{2}}{s_{2}}=\frac{r_{2}^{\prime}}{r_{2}^{\prime}}$ Then there exists $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{~S}$ such that $\left(\mathrm{r}_{1} \mathrm{~s}_{1}^{\prime}-\mathrm{r}_{1}^{\prime} \mathrm{s}_{1}\right) \mathrm{t}=0$. \qquad
and $\left(\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2}\right) \mathrm{t}=0$.
$\operatorname{Now}\left[\left(r_{1} s_{2}+r_{2} s_{1}\right) s_{1}^{\prime} s_{2}^{\prime}-\left(r_{1}^{\prime} s_{2}^{\prime}+r_{2}^{\prime} s_{1}^{\prime}\right) s_{1} s_{2}\right] t_{1} t_{2}$
$=\left[r_{1} s_{2} s_{1}^{\prime} s_{2}^{\prime}+r_{2} s_{1} s_{1}^{\prime} s_{2}^{\prime}-r_{1}^{\prime} s_{2}^{\prime} s_{1} s_{2}-r_{2}^{\prime} s_{1}^{\prime} s_{1} s_{2}\right] t_{1} t_{2}$
$=\left[r_{1} s_{1}^{\prime} s_{2} s_{2}^{\prime}-r_{1}^{\prime} s_{1} s_{2} s_{2}^{\prime}+r_{2} s_{2}^{\prime} s_{1} s_{1}^{\prime}-r_{2}^{\prime} s_{2} s_{1} s_{1}^{\prime}\right] \mathrm{t}_{1} \mathrm{t}_{2}$
$=\left[\left(r_{1} s_{1}^{\prime}-\mathrm{r}_{1}^{\prime} \mathrm{s}_{1}\right) \mathrm{s}_{2} \mathrm{~s}_{2}^{\prime}+\left(\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2}\right) \mathrm{s}_{1} \mathrm{~s}_{1}^{\prime}\right] \mathrm{t}_{1} \mathrm{t}_{2}$
$=\left(\mathrm{r}_{1} \mathrm{~s}_{1}^{\prime} \mathrm{r}_{1}^{\prime} \mathrm{s}_{1}\right) \mathrm{t}_{1} \mathrm{~s}_{2} \mathrm{~s}_{2}^{\prime} \mathrm{t}_{2}+\left(\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2}\right) \mathrm{t}_{2} \mathrm{~s}_{1} \mathrm{~s}_{1}^{\prime} \mathrm{t}_{1}$
$=0 \cdot s_{2} s_{2}^{\prime} t_{2}+0 \cdot s_{1} s_{1}^{\prime} t_{1}$
$=0$
Hence $\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}}=\frac{r_{1}^{\prime} s_{2}^{\prime}+r_{2}^{\prime} s_{1}^{\prime}}{s_{1}^{\prime} s_{2}^{\prime}}$
(i.e) $\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1}^{\prime}}{s_{1}^{\prime}}+\frac{r_{2}^{\prime}}{s_{2}^{\prime}}$

Hence + is well defined.
From (1) we get
$\left(\mathrm{r}_{1} \mathrm{~s}_{1}^{\prime}-\mathrm{r}_{1}^{\prime} \mathrm{s}_{1}\right) \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}=0$
$\mathrm{t}_{1} \mathrm{t}_{2}\left(\mathrm{r}_{1} \mathrm{~s}_{1}^{\prime}-\mathrm{r}_{1}^{\prime} \mathrm{s}_{1}\right) \mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}=0$ (quasi weak commutative)
$\mathrm{t}_{1} \mathrm{t}_{2}\left(\mathrm{r}_{1} \mathrm{~s}_{1}^{\prime} \mathrm{r}_{2}-\mathrm{r}_{1}^{\prime} \mathrm{s}_{1} \mathrm{r}_{2}\right) \mathrm{s}_{2}^{\prime}=0$
$\left(r_{1} s_{1}^{\prime} r_{2}-r_{1}^{\prime} s_{1} r_{2}\right) s_{2}^{\prime} t_{1} t_{2}=0$ (S is commutative subset)
$\left(\mathrm{r}_{1} \mathrm{~s}_{1}^{\prime} \mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}-\mathrm{r}_{1}^{\prime} \mathrm{s}_{1} \mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}\right) \mathrm{t}_{1} \mathrm{t}_{2}=0$
$\left(\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{~s}_{1}^{\prime} \mathrm{s}_{2}^{\prime}-\mathrm{r}_{1}^{\prime} \mathrm{r}_{2} \mathrm{~s}_{1} \mathrm{~s}_{2}^{\prime}\right) \mathrm{t}_{1} \mathrm{t}_{2}=0$
$\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{~s}_{1}^{\prime} \mathrm{s}_{2}^{\prime} \mathrm{t}_{1} \mathrm{t}_{2}-\mathrm{r}_{1}^{\prime} \mathrm{r}_{2} \mathrm{~s}_{1} \mathrm{~s}_{2}^{\prime} \mathrm{t}_{1} \mathrm{t}_{2}=0$
From (2) we get
$\left(\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2}\right) \mathrm{t}_{2} \mathrm{t}_{1} \mathrm{r}_{1}^{\prime} \mathrm{s}_{1}=0$
$\left(\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2}\right) \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{r}_{1}^{\prime} \mathrm{s}_{1}=0$ (S is commutative subset)
$\mathrm{t}_{1} \mathrm{t}_{2}\left(\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2}\right) \mathrm{r}_{1}^{\prime} \mathrm{s}_{1}=0$ (quasi weak commutative)
$\mathrm{t}_{1} \mathrm{t}_{2}\left(\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime} \mathrm{r}_{1}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2} \mathrm{r}_{1}^{\prime}\right) \mathrm{s}_{1}=0$
($\left.\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime} \mathrm{r}_{1}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2} \mathrm{r}_{1}^{\prime}\right) \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{~s}_{1}=0$ (quasi weak commutative)
$\left(\mathrm{r}_{2} \mathrm{~s}_{2}^{\prime} \mathrm{r}_{1}^{\prime}-\mathrm{r}_{2}^{\prime} \mathrm{s}_{2} \mathrm{r}_{1}^{\prime}\right) \mathrm{s}_{1} \mathrm{t}_{1} \mathrm{t}_{2}=0$ (S is commutative subset)
$\left(r_{2} s_{2}^{\prime} r_{1}^{\prime} s_{1}-r_{2}^{\prime} s_{2} r_{1}^{\prime} s_{1}\right) t_{1} t_{2}=0$
($\left.\mathrm{r}_{2} \mathrm{r}_{1}^{\prime} \mathrm{s}_{2}^{\prime} \mathrm{s}_{1}-\mathrm{r}_{2}^{\prime} \mathrm{r}_{1}^{\prime} \mathrm{s}_{2} \mathrm{~s}_{1}\right) \mathrm{t}_{1} \mathrm{t}_{2}=0$ (quasi weak commutative)
($\left.r_{1}^{\prime} r_{2} s_{2}^{\prime} s_{1}-r_{1}^{\prime} r_{2}^{\prime} s_{2} s_{1}\right) t_{1} t_{2}=0$ (quasi weak commutative)
$r_{1}^{\prime} \mathrm{r}_{2} \mathrm{~s}_{1} \mathrm{~s}_{2}^{\prime} \mathrm{t}_{1} \mathrm{t}_{2}-\mathrm{r}_{1}^{\prime} \mathrm{r}_{2}^{\prime} \mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{t}_{1} \mathrm{t}_{2}=0$ (S is commutative subset).
(3) + (4) gives
$\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{~s}_{1}^{\prime} \mathrm{s}_{2}^{\prime} \mathrm{t}_{1} \mathrm{t}_{2}-\mathrm{r}_{1}^{\prime} \mathrm{r}_{2}^{\prime} \mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{t}_{1} \mathrm{t}_{2}=0$
$\left(\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{~s}_{1}^{\prime} \mathrm{s}_{2}^{\prime}-\mathrm{r}_{1}^{\prime} \mathrm{r}_{2}^{\prime} \mathrm{s}_{1} \mathrm{~s}_{2}\right) \mathrm{t}_{1} \mathrm{t}_{2}=0$
This means $\frac{r_{1} r_{2}}{s_{1} s_{2}}=\frac{r_{1}^{\prime} r_{2}^{\prime}}{s_{1}^{\prime} s_{2}^{2}}$
Hence is well-defined.
We note that $\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}}=\frac{\left(r_{1}+r_{3}\right) s}{s^{2}}$

$$
\begin{equation*}
=\frac{r_{1}+r_{2}}{s} \text { (by lemma 3.9). } \tag{5}
\end{equation*}
$$

Claim: $1\left(S^{-1} R,+\right.$ is an abelian group.
Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}, \frac{r_{3}}{s_{3}} \in \mathrm{~S}^{-1} \mathrm{R}$.
Then

$$
\begin{aligned}
& \frac{r_{1}}{s_{1}}+\left(\frac{r_{2}}{s_{2}}+\frac{r_{3}}{s_{3}}\right)=\frac{r_{1}}{s_{1}}+\left(\frac{r_{2} s_{3}+r_{3} s_{2}}{s_{2} s_{3}}\right) \\
& =\frac{r_{1} s_{2} s_{3}+\left(r_{2} s_{2}+r_{3}+r_{3} s_{2}\right) s_{1}}{r_{1} r_{1} s_{2} s_{2} s_{3}+r_{2} s_{3} s_{3}+r_{3} s_{2} s_{1}}
\end{aligned}
$$

Also $\left(\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}\right)+\frac{r_{3}}{s_{3}}=\left(\frac{r_{1} s_{1}+s_{1}+s_{2} s_{3} s_{1}}{s_{1} s_{2}}\right)+\frac{r_{3}}{s_{3}}$

$$
\begin{aligned}
& =\frac{\left(r_{1} s_{2}+r_{2} s_{1}\right) s_{3}+r_{3} s_{1} s_{2}}{s_{1} s_{2} s_{3}} \\
& =\frac{r 1 s_{2} s_{3}+r_{2} s_{3} s_{1} s_{1}+r_{3} s_{1} s_{2}}{s_{1} s_{2} s_{3}}
\end{aligned}
$$

$\frac{r_{1}}{s_{1}}+\left(\frac{r_{2}}{s_{2}}+\frac{r_{3}}{s_{3}}\right)=\left(\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}\right)+\frac{r_{3}}{s_{3}}$
So + is associative.
For any $\frac{r}{s} \in$ R,we have
$\frac{r}{s}+\frac{0}{s}=\frac{r+0}{s}=\frac{r}{s}$
Also $\frac{0}{s}+\frac{r}{s}=\frac{0+r}{s}=\frac{r}{s}$
Hence $\frac{0}{s}$ is the additive identity of $\frac{r}{s} \epsilon S^{-1} \mathrm{R}$ for all $\mathrm{r} \epsilon \mathrm{R}$
Clearly + is commutative.
Thus ($\mathrm{R},+$) is an abelian group.
Claim:2 is associative.
Now $\frac{r_{1}}{s_{1}} \cdot\left(\frac{r_{2}}{s_{2}} \cdot \frac{r_{3}}{s_{3}}\right)=\frac{r_{1}}{s_{1}} \cdot\left(\frac{r_{2} r_{3}}{s_{2} s_{3}}\right)=\frac{r_{1}\left(r_{2} r_{3}\right)}{s_{1}\left(s_{2} s_{3}\right)}$

$$
\begin{aligned}
& =\frac{\left.r_{1} r_{2}\right) r_{3}}{\left(s_{1} s_{2}\right) l_{3}} \\
& =\left(\frac{r_{2}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}\right) \cdot \frac{y_{3}}{s_{3}}
\end{aligned}
$$

So \cdot is associative.
Claim:3 - is right distributive with respect to + .
Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}, \frac{r_{3}}{s_{3}} \in S^{-1} R$.

$$
\begin{aligned}
& \operatorname{Now}\left(\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}\right) \cdot \frac{r_{3}}{s_{3}}=\left(\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}}\right) \cdot \frac{r_{3}}{s_{3}} \\
& =\frac{r_{1} s_{2} r_{3}+r_{2} s_{1} r_{3}}{s_{1} s_{2} s_{3}} \\
& =\frac{s_{2} r_{1} r_{3}+s_{1} r_{2} r_{3}}{s_{1} s_{2} s_{3}} \text { (quasi weak commutative) } \\
& =\frac{s_{2} r_{1} r_{3}}{s_{1} s_{2} s_{3}}+\frac{s_{1} r_{2} r_{3}}{s_{1} s_{2} s_{3}} \text { (using (5)) } \\
& =\frac{s_{2} r_{1} r_{3}}{s_{2} s_{1} s_{3} s_{3}}+\frac{s_{1} r_{2} r_{2} r_{3}}{s_{1} s_{2} s_{3}} \\
& =\frac{r_{1} r_{3}}{s_{1} s_{3}}+\frac{r_{2} r_{3}}{s_{2} s_{3}} \\
& =\frac{r_{1}}{s_{1}} \cdot \frac{r_{3}}{s_{3}}+\frac{r_{2}}{s_{2}} \cdot \frac{r_{3}}{s_{3}}
\end{aligned}
$$

This proves right - distributive law.
Claim:4 $\mathrm{S}^{-1} \mathrm{R}$ is a Boolean-like ring.
It is already proved in claim 1 that
$2\left(\frac{r}{s}\right)=0$ for all $\frac{r}{s} \epsilon \mathrm{~S}^{-1} \mathrm{R}$
Let $\mathrm{a}=\frac{r_{1}}{s_{1}}$ and $\mathrm{b}=\frac{r_{2}}{s_{2}}$ be any two elements of S^{-1} R Let $\mathrm{t} \epsilon \mathrm{S}$ be any element.
Now by Lemma 3.5
$\left(a-a^{2}\right)\left(b-b^{2}\right) t=0$
$\Rightarrow\left(\frac{r_{1}}{s_{1}}-\frac{r_{1}^{2}}{s_{1}^{2}}\right)\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right) \mathbf{t}=0$
$\left[\frac{r_{1}}{s_{1}}\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right)-\frac{r_{1}^{2}}{s_{1}^{2}}\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right)\right] \mathrm{t}=0$
$\frac{r_{1}}{s_{1}}\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right) \mathrm{t}-\frac{r_{1}^{2}}{s_{1}^{2}}\left(\frac{r_{2}}{s_{2}} \frac{r_{2}^{2}}{s_{2}^{2}}\right) \mathrm{t}=0$
$\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}} \frac{r_{1}}{s_{1}} \mathrm{t}-\left(\frac{r_{2}}{s_{2}} \frac{-}{s_{2}^{2}} \frac{r_{2}^{2}}{s_{2}^{2}} \frac{r_{1}^{2}}{s_{1}^{2}} \mathrm{t}=0\right.\right.$ (quasi weak commutative)
$\left[\left(\frac{r_{2}}{s_{2}} \frac{r_{2}^{2}}{s_{2}^{2}} \frac{r_{1}}{r_{1}}\left(\frac{r_{2}}{s_{1}}-\frac{r_{2}}{s_{2}} \frac{r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}^{2}}{s_{1}^{2}}\right] \mathrm{t}=0\right.$
$\left[\left(\frac{r_{2} s_{2}-r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}}{s_{1}}\left(\frac{r_{2} s_{2}-r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}^{2}}{s_{1}^{2}}\right] \mathrm{t}=0$
$\left[\left(\frac{r_{2} s_{2}-r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1} s_{1}}{s_{1}^{2}}-\left(\frac{r_{2} s_{2}-r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}^{2}}{s_{1}^{2}}\right] t=0$ (using Lemma 3.9)
$\left[\left(\frac{r_{2} s_{2} r_{1} s_{1}-r_{2}^{2} r_{1} s_{1}}{s_{2}^{2} s_{1}^{2}}\right)-\frac{r_{2} s_{2} r_{1}^{2}-r_{2}^{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}\right] \mathbf{t}=0$

```
\(\left[\left(\frac{r_{2} r_{1} s_{2} s_{1}-r_{2}^{2} r_{1} s_{1} s_{1}}{s_{2}^{2} s_{1}^{2}}\right)-\frac{s_{2} r_{2} r_{1}^{2}-r_{2}^{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}\right] \mathbf{t}=0\) (quasi weak commutative)
\(\left[\frac{r_{2} r_{1} s_{2} s_{1} s_{1}^{2}}{\left.s_{2}^{2} s_{1}^{2}-\frac{r_{2}^{2} r_{1} s_{1}}{s_{1}^{2} s_{1}^{2}}-\frac{s_{2} r_{2} r_{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}+\frac{r_{2}^{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}\right] \mathrm{t}=0}\right.\)
```



```
\(\left[b a-b^{2} a-b a^{2}+b^{2} a^{2}\right] \mathbf{t}=0\)
\(\Rightarrow \mathrm{ba}=\mathrm{b}^{2} \mathrm{a}-\mathrm{ba}^{2}+\mathrm{b}^{2} \mathrm{a}^{2}\)
        \(=b^{2} a+b a^{2}-(b a)^{2}\) (using Lemma 3.2)
    \(\mathrm{ba}=\mathrm{ba}(\mathrm{b}+\mathrm{a}-\mathrm{ba})\)
This proves \(\mathrm{S}^{-1} \mathrm{R}\) is Boolean-like near ring.
```

Claim :5 multiplication in $\mathrm{S}^{-1} \mathrm{R}$ is commutative
Let $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}$ be any two elements of S^{-1} R.
Then $\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}=\frac{r_{1} r_{2} s}{s_{1} s_{2} s} \forall s \in S \frac{r_{2} r_{1} s}{s_{1} s_{2} s}$ (quasi weak commutative)
$=\frac{r_{2}}{s_{2}} \frac{r_{1}}{s_{1}}$ (using Lemma 3.9)
Hence multiplication in $\mathrm{S}^{-1} \mathrm{R}$ is commutative.
Claim: 6 Existence of multiplicative identity in $\mathrm{S}^{-1} \mathrm{R}$
Let $\frac{r}{s} \mathrm{~S}^{-1} \mathrm{R}$ be any element.
Then $\frac{r}{s} \cdot \frac{s}{s}=\frac{r s}{s s}=\frac{r}{s}$
Also $\frac{s}{s} \cdot \frac{r}{s}=\frac{s r}{s s}=\frac{r}{s}$
Hence $\frac{s}{s} \epsilon S^{-1} R$ is the multiplicative identity of $S^{-1} R$
Thus $\mathrm{S}^{-1} \mathrm{R}$ is a commutative Boolean-like near-ring with identity.

3.11 Theorem

$\mathrm{S}^{-1} \mathrm{R}$ is quasi-weak commutative near-ring.

Proof:

Let $\mathrm{a}=\frac{r_{1}}{s_{1}}, \mathrm{~b}=\frac{r_{2}}{s_{2}}, \mathrm{c}=\frac{r_{3}}{s_{3}}$ be any three elements of $\mathrm{S}^{-1} \mathrm{R}$
Now abc $=\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}} \cdot \frac{r_{3}}{s_{3}}=\frac{r_{1} 1_{2} r_{3}}{s_{1} s_{2} s_{3}}$
$=\frac{r_{2} r_{1} r_{3}}{S_{1} z_{3} s_{3}}(\mathrm{R}$ is quasi-weak commutative)
$=\frac{r_{2} r_{1} r_{3}}{S_{2} s_{1} s_{3}}(\mathrm{~S}$ is commutative)
$=\frac{r_{2}}{s_{2}} \frac{r_{1}}{s_{1}} \frac{r_{3}}{s_{3}}$
Then abc $=b a c \forall a, b, c \in S^{-1} R$.
This proves $\mathrm{S}^{-1} \mathrm{R}$ is quasi-weak commutative near-ring.

3.12 Theorem

Let R be a quasi-weak commutative Boolean-like near ring.Let S be a commutative subset of R which is multiplicatively closed. Let $0 \neq \mathrm{s} \epsilon \mathrm{S}$. Define a map $\mathrm{f}_{s}: \mathrm{R} \rightarrow \mathrm{S}^{-1} \mathrm{R}$ as $\mathrm{f}_{s}(\mathrm{r})=\frac{r_{s}}{s} \forall \mathrm{r} \in \mathrm{R}$. Then f_{s} is a near-ring monomorphism.

Proof:

Let $\mathrm{r}_{1}, \mathrm{r}_{2} \in \mathrm{R}$.
Then $\mathrm{f}_{s}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)=\frac{\left(r_{1}+r_{2}\right) s}{s}=\frac{r_{1} s+r_{2} s}{s}$

$$
\begin{aligned}
& =\frac{r_{1} s}{s}+\frac{r_{2} s}{s}(B y(5) \text { of Theorem 3.11 }) \\
& =f\left(r_{1}\right)+f\left(r_{2}\right)
\end{aligned}
$$

Also $f_{s}\left(r_{1} \cdot r_{2}\right)=\frac{\left(r_{1} r_{2}\right) s}{s}$

$$
\begin{aligned}
& =\frac{r_{1} r_{2} s^{2}}{s^{2}} \\
& =\frac{r_{1} r_{2 s s}}{s^{2}}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{r_{1}\left(s r_{2} s\right)}{s_{2}} \\
&=\frac{r_{1} s}{s} \cdot \frac{r_{2 s} s}{s}(q u a s i \text { weak commutative }) \\
&=\mathrm{f}_{s}\left(\mathrm{r}_{1}\right) \cdot \mathrm{f}_{s}\left(\mathrm{r}_{2}\right) \\
& \text { Also } \mathrm{f}_{s}\left(\mathrm{r}_{1}\right)=\mathrm{f}_{s}\left(\mathrm{r}_{2}\right) \Rightarrow \frac{r_{1} s}{s} s=\frac{r_{2} s}{s} \\
& \Rightarrow \frac{r_{1} s}{s}-\frac{r_{2} s}{s}=0 \\
& \Rightarrow \frac{\left(r_{1} s-r_{2} s\right)}{s}=0 \\
& \Rightarrow \frac{\left(r_{1}-r_{2}\right) s}{s}=0 \\
& \Rightarrow\left(\frac{r_{1}}{s}-\frac{r_{2}}{s}\right)=0 \\
& \Rightarrow \frac{r_{1}}{s}=\frac{r_{2}}{s}
\end{aligned}
$$

Hence f_{s} is a monomorphism

3.13 Theorem

Let R be a quasi-weak commutative Boolean-like near-ring. Then R be embedded into a quasi-weak commutative. Boolean like commutative semi ring with identity.

Proof:

Follows from Theorem 3.11 and 3.12.

References

[1] Foster.A.L, The theory of Boolean like rings, Trans. Amer. Math. Soc, Vol. 59, 1946.
[2] Gopalakrishnamoorthy.G, Kamaraj.M and Geetha.S, On Quasi weak commutative near-ring, Int.Jour. of Math. Research,Vol.5, No 5, 2013, 431-440.
[3] Gopalakrishnamoorthy.G and Anitha.S, On Commutativity Property of $\mathrm{Q}_{k, n}, \mathrm{Q}_{k, \infty}, \mathrm{P}_{k, n}, \mathrm{P}_{\infty}$ and $\mathrm{Q} \infty$ Rings, Jour. Of Inst. Of Mathematics and Computer Sciences, Vol. 23, No. 2 (2010) 63-70.
[4] Ketsela Hailu, Berhanu Bekele Belayneh, Zelabesm Teshome and K.Venkateswarlu, Boolean like semi ring of fractions, Inter. Jour of Math. Archive, Vol 3 No 4, 2012, 1554-1560.
[5] Pliz. Gunter, Near-Rings, The theory and its applications, North Holland, 1983.
[6] Swaminathan.V, Boolean-like rings, Ph.D. dissertation, Andhra University, India, 1982.
[7] Swaminathan.V, On Fosters Boolean-like rings, Math. Seminar Notes, Kobe University, Japan, Vol 8, 1980, 347-367.
[8] Uma.S, Balakrishnan.R and Tamizh Chelvam.T, Pseudo Commutative near-rins, Scientia Magna, Vol 6, No 2, 2010, 75-85.
[9] Yaqub.A, A generalization of certain Rings of A.L. Foster, University of California, 1962.

Received: October 10, 2014; Accepted: March 23, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail address: ggrmoorthy@gmail.com (G. Gopalakrishnamoorthy), amrishhanda83@gmail.com(S.Geetha).

