Malaya
Journal ofMJM
an international journal of mathematical sciences with
computer applications...

www.malayajournal.org

On Quasi-weak Commutative Boolean-like Near-Rings

G. Gopalakrishnamoorth $y^{a,*}$ S.Geetha^b and S. Anitha^c

^a Department of Mathematics, PSNL College of Education, Sattur-626 203, Tamil Nadu, India.

^b Department of Mathematics, Pannai College of Engineering and Technology, Sivaganga-630 561, Tamil Nadu, India.

^cDepartment of Mathematics, Raja Doraisingam Government Arts College, Sivaganga-630 561, Tamil Nadu, India.

Abstract

In this paper we establish a result that every quasi-weak commutative Boolean-like near-ring can be imbedded into a quasi-weak commutative Boolean-like commutative semi-ring with identity. Key words: Quasi-weak commutative near-ring, Boolean-like near-ring.

Keywords: Quasi-weak commutative near-ring, Boolean-like near-ring.

2010 MSC: 16Y30, 16Y60.

©2012 MJM. All rights reserved.

1 Introduction

The concept of Boolean-like ring was coined by A.L.Foster[1]. Foster proved that if R is a Boolean ring with identity then ab(1-a)(1-b) = 0 for all $a, b \in R$. He generalized the concept of Boolean ring as Boolean-like ring as a ring R with identity satisfying (i) ab(1-a)(1-b) = 0 and (ii) 2a = 0 for all $a, b \in R$. He also observed that the equation ab(1-a)(1-b) = 0 can be re-written as $(ab)^2 - ab^2 a^2b + ab = 0$. He re-defined a Boolean-like ring as a commutative ring with identity satisfying (i) $(ab)^2 - ab^2 a^2b + ab = 0$ and (ii) 2a = 0 for all $a, b \in R$. In 1962 Adil Yaqub [8] proved that the condition 'commutativity 'is not necessary in the definition of Boolean-like rings. He proved that any ring R with the conditions (i) $(ab)^2 - ab^2 a^2b + ab = 0$ and (ii) 2a = 0 for all $a, b \in R$ is necessarily commutative.

Ketsela Hailu and others [4] have constructed the Boolean-like semi-ring of fractions of a weak commutative Boolean-like semi-ring. We have coined and studied the concept of quasi-weak commutative near-ring in [2]. In this paper we define Boolean-like near ring (right) and prove that every quasi-weak commutative. Boolean-like near ring can be imbedded into a quasi weak commutative semi ring with identity.

2 Preliminaries

In this section we recal some definitions and results which we use in the sequal.

^{*}Corresponding author.

E-mail address: ggrmoorthy@gmail.com (G. Gopalakrishnamoorthy), amrishhanda83@gmail.com(S.Geetha).

2.1. Definition

A non empty set R together with two binary operations + and \cdot satisfying the following axioms is called a right near-ring

(i) (R,+) is a group
(ii) · is associative
(iii) · is right distributive w.r.to +
(ie) (a+b) c = a · c + b · c ∀ a,b,c ∈ R

2.2. Note

In a right near-ring R, 0 a = 0 \forall a ϵ R. If (R,+) is an abelian group, then (R,+, \cdot) is called a semi-ring.

2.3. Definition

A right near-ring (R,+, \cdot) is called a Boolean-like near ring if (i) 2a = 0 \forall a ϵ R and (ii) (a+b-ab)ab = ab \forall a,b ϵ R

2.4.Remark

If $(R,+, \cdot)$ is a Boolean-like near ring, then (R,+) is always an abelian group for $2x = 0 \forall x \in R$ implies $x = -x \forall x \in R$. We know, a group in which every element is its own inverse is always commutative.

2.5. Definition [5]

A right near ring R is said to be weak commutative if $xyz = xzy \forall x,y,z \in R$

2.6. Definition [8]

A right near ring R is said to be pseudo commutative if $xyz = zyx \forall x,y,z \in R$

2.7. Definition [2]

A right near ring R is said to be quasi-weak commutative if $xyz = yxz \forall x,y,z \in R$

2.8. Definition

Let R be a right near ring. A subset B R is said to be multiplicatively closed if a, b c B implies ab c B.

3.Main results

3.1. Lemma

In a Boolean-like near ring (right) R a \cdot 0 = 0 \forall a ϵ R

Proof:

Since R is Boolean-like near ring, $(a+b-ab)ab = ab \forall a, b \in R$ Taking a=0, we get (0 + b - 0b) 0b = 0b(ie) $b \cdot 0 = 0$ Thus $a \cdot 0 = 0 \forall a \in R$.

3.2. Lemma

Let R be a quasi-weak commutative right near ring R. Then $(ab)^n = a^n b^n \forall a, b \in \mathbb{R}$ and for all $n \ge 1$.

Proof:

```
Let a, b \in \mathbb{R}.

Then (ab)^2 = (ab) (ab) = a (bab)

= a (abb) (quasi weak)

(ab)^2 = a^2b^2

Assume (ab)^m = a^m b^m

Now (ab)^{(m+1)} = (ab)^m ab

= a^m b^m ab

= a^m (ab^mb)

= a^{m+1}b^{m+1}

Thus (ab)^m = a^m b^m \forall a, b \in \mathbb{R} and for all integer m \ge 1.
```

3.3 lemma

Let R be a quasi-weak commutative Boolean like near-ring. Then $a^2b + ab^2 = ab + (ab)^2 \forall a, b \in \mathbb{R}$.

Proof:

 $a^{2}b + ab^{2} = aab + abb$ = aab + bab = (a + b)ab = (a + b ab + ab)ab = (a + b ab)ab + (ab)^{2} a^{2}b + ab^{2} = ab + (ab)^{2} (R is Boolean-like near-ring)

3.4 Lemma

In a quasi-weak commutative Boolean like near ring (R,+, .), $(a + a^2)(b + b^2)c = 0 \forall a,b,c \in \mathbb{R}.$

Proof:

$$(a + a^2)(b + b^2)c = \{a(b + b^2) + a^2(b + b^2)\}c$$

= $a(b + b^2)c + a^2(b + b^2)c$

= $(b + b^2)a + (b + b^2)a^2c$ (R is quasi-weak commutative) = $\{(b + b^2)a + (b + b^2)a^2\}c$ = $\{ba + b^2a + ba^2 + b^2a^2\}c$ = $\{ba + ba + (ba)^2 + b^2a^2\}$ (using Lemma 3.3) = $\{ba + ba + b^2a^2 + b^2a^2\}$ (using Lemma 3.2) = $\{2ba + 2b^2a^2\}$ = 0 (R is Boolean-like near-ring).

3.5 Lemma

In a quasi-weak commutative Boolean like near ring R, (a - a²) (b - b²)c = 0 \forall a,b,c ϵ R.

Proof:

$$(a - a^{2})(b - b^{2})c = \{a(b - b^{2}) - a^{2}(b - b^{2})\}c$$

= a(b - b^{2})c - a^{2}(b - b^{2})c
= (b - b^{2})ac - (b - b^{2})a^{2}c (quasi-weak commutative)
= {(b - b^{2})a - (b - b^{2})a^{2}}c
= {ba - b^{2}a - ba^{2} - b^{2}a^{2}}c
= {ba - ba - (ba)^{2} - b^{2}a^{2}}
= {ba - ba - b^{2}a^{2} - b^{2}a^{2}} (using Lemma 3.3)
= 0

3.6 Lemma

Let R be a quasi commutative Boolean like near-ring.Let S be a commutative subset of R which is multiplicatively closed.Define a relation N on $R \times S$ by $(r_1, s_1) \sim (r_2, s_2)$ if and only if there exists an element s ϵ S such that $(r_1s_2 - r_2s_1)s = 0$.Then N is an equivalence relation.

Proof:

- Let (r,s) ∈ R× S. Since rs-rs = 0, we get (rs-rs)t=0 for all t ∈ S. Hence ~ is reflexive.
- (ii) Let $(r_1,s_1) \sim (r_2,s_2)$. Then there exists an element $s \in S$ such that $(r_1,s_1-r_2,s_1)s=0$. So $(r_2,s_1-r_1,s_2)s=0$. This proves \sim is symmetric.
- (iii) Let $(r_1,s_1) \sim (r_2,s_2)$ and $(r_2,s_2) \sim (r_3,s_3)$. Then there exists $p,q\epsilon$ S such that
 - $(r_1s_2-r_2s_1)p=0$ and $(r_2s_3-r_3s_2)q=0$.
 - So $s_3(r_1s_2-r_2s_1)p=0=s_1(r_2s_3-r_3s_2)q$ (By Lemma 3.1)
 - \implies (r₁s₂-r₂s₁)s₃p=0=(r₂s₃-r₃s₂)s₁q(R is quasi-weak commutative)

 $\implies (r_1s_2\text{-} r_2s_1)s_3pq\text{=}0\text{=}p(r_2s_3\text{-}r_3s_2)s_1q$

- \implies (r₁s₂-r₂s₁)s₃pq=0=(r₂s₃-r₃s₂)ps₁q(R is quasi-weak commutative)
- \implies (r₁s₂-r₂s₁)s₃pq=0=(r₂s₃-r₃s₂)s₁pq(R is quasi-weak commutative)
- \implies (r₁s₂s₃-r₂s₁s₃)pq=0=(r₂s₃s₁-r₃s₂s₁)pq
- $\implies (r_1s_2s_3\text{-} r_2s_1s_3 + r_2s_3s_1\text{-} r_3s_2s_1) \ pq = 0.$

 $\implies (r_1s_3 s_2 - r_2s_1s_3 + r_2s_1s_3 - r_3s_1s_2)pq=0.(S \text{ is commutative})$ $\implies (r_1s_3 - r_3s_1)s_2pq=0$ $\implies (r_1s_3 - r_3s_1)r=0 \text{ where } r = s_2 pq \in S.$ This implies $(r_1, s_1) \sim (r_3, s_3).$ Hence \sim is transitive. Hence the Lemma.

3.6 Remark

We denote the equivalence class containing $(r,s)\epsilon R \times S$ by $\frac{r}{s}$ and the set of all equivalence classes by $S^{-1}R$.

3.8 Lemma

Let R be a quasi weak commutative Boolean like near-ring. Let S be a commutative subset of R which is also multiplicatively closed. If $0 \notin S$ and R has no zero divisors, then $(r_1,s_1) \sim (r_2,s_2)$ if and only if $r_1s_2=r_2s_1$.

Proof:

Assume $(r_1,s_1) \sim (r_2,s_2)$. Then there exists an element $s \in S$ such that $(r_1s_2-r_2s_1)s=0$. Since $0 \notin S$ and R has zero divisors, we get $(r_1s_2-r_2s_1)=0$. (i.e) $r_1s_2 = r_2s_1$ Conversely assume $r_1s_2 = r_2s_1$. Then $r_1s_2 - r_2s_1 = 0$ and so $(r_1s_2-r_2s_1) = 0$ for all $s \in S$. Hence $(r_1s_1) \notin (r_2s_2)$.

3.9 Lemma:

Let R be a quasi weak commutative Boolean like near-ring. Let S be a commutative subset of R,which is also multiplicatively closed.

Then (i) $\frac{r}{s} = \frac{rt}{st} = \frac{tr}{st} = \frac{tr}{ts}$ for all $r \in \mathbb{R}$ and for all $s, t \in \mathbb{S}$. (ii) $\frac{rs}{s} = \frac{rs'}{s'}$ for all $r \in \mathbb{R}$ and for all $s, s' \in \mathbb{S}$. (iii) $\frac{s}{s} = \frac{s'}{s'}$ for all $s, s' \in \mathbb{S}$. (iv) If $0 \in \mathbb{S}$, then $\mathbb{S}^{-1}\mathbb{R}$ contains exactly one element.

Proof:

The proof of (i),(ii) and (iii) are routine. (iv) Since $0\epsilon S$, $(r_1s_2 - r_2s_1)0 = 0 \forall \frac{r_1}{s_1}, \frac{r_2}{s_2} \epsilon S^{-1}R$. and so $\frac{r_1}{s_1} = \frac{r_2}{s_2}$. Then $S^{-1}R$ contains exactly one-element.

3.10 Theorem:

Let R be a quasi weak commutative Boolean like near ring.Let S be a commutative subset of R which is also multiplicatively closed. Define binary operation + and on $S^{-1}R$ as follows :

 $\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}$ and

 $\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2}$ Then S⁻¹R is a commutative Boolean like semi-ring with identity.

Proof:

```
Let us first prove that + and \cdot are well defined. Let \frac{r_1}{s_1} = \frac{r'_1}{r'_1} and \frac{r_2}{s_2} = \frac{r'_2}{r'_2} Then there exists t_1, t_2 \in S such that
(r_1s'_1-r'_1s_1)t=0....(1)
and (r_2s'_2-r'_2s_2)t=0....(2)
Now[(r_1s_2+r_2s_1)s'_1s'_2-(r'_1s'_2+r'_2s'_1)s_1s_2]t_1t_2
=[r_1s_2s'_1s'_2+r_2s_1s'_1s'_2-r'_1s'_2s_1s_2-r'_2s'_1s_1s_2] t_1t_2
= [r_1s_1's_2s_2'-r_1's_1s_2s_2'+r_2s_2's_1s_1'-r_2's_2s_1s_1']t_1t_2
=[(r_1s'_1-r'_1s_1)s_2s'_2+(r_2s'_2-r'_2s_2)s_1s'_1]t_1t_2
=(r_1s_1'-r_1's_1)t_1s_2s_2't_2+(r_2s_2'-r_2's_2)t_2s_1s_1't_1
=0 \cdot s_2 s'_2 t_2 + 0 \cdot s_1 s'_1 t_1
=0
Hence \frac{r_1s_2+r_2s_1}{s_1s_2} = \frac{r'_1s'_2+r'_2s'_1}{s'_1s'_2}
(i.e) \frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r'_1}{s'_1} + \frac{r'_2}{s'_2}
Hence + is well defined.
From (1) we get
(r_1s'_1-r'_1s_1)t_1t_2r_2s'_2=0
t_1t_2(r_1s'_1-r'_1s_1)r_2s'_2=0 (quasi weak commutative)
t_1t_2(r_1s_1'r_2-r_1's_1r_2)s_2'=0
(r_1s'_1r_2-r'_1s_1r_2)s'_2t_1t_2=0 (S is commutative subset)
(r_1s'_1r_2s'_2-r'_1s_1r_2s'_2)t_1t_2=0
(r_1r_2s'_1s'_2-r'_1r_2s_1s'_2)t_1t_2=0
r_1r_2s'_1s'_2t_1t_2-r'_1r_2s_1s'_2t_1t_2=0.....(3)
From (2) we get
(r_2s'_2-r'_2s_2)t_2t_1r'_1s_1=0
(r_2s'_2-r'_2s_2)t_1t_2r'_1s_1=0 (S is commutative subset)
t_1t_2(r_2s'_2-r'_2s_2)r'_1s_1=0 (quasi weak commutative)
t_1t_2(r_2s_2'r_1'-r_2's_2r_1')s_1=0
(r_2s'_2r'_1-r'_2s_2r'_1)t_1t_2s_1=0 (quasi weak commutative)
(r_2s'_2r'_1-r'_2s_2r'_1)s_1t_1t_2=0 (S is commutative subset)
(r_2s_2'r_1's_1-r_2's_2r_1's_1)t_1t_2=0
(r_2r'_1s'_2s_1-r'_2r'_1s_2s_1)t_1t_2=0 (quasi weak commutative)
(r'_1r_2s'_2s_1-r'_1r'_2s_2s_1)t_1t_2=0 (quasi weak commutative)
r'_1r_2s_1s'_2t_1t_2-r'_1r'_2s_1s_2t_1t_2=0(S is commutative subset).....(4)
(3) + (4) gives
r_1r_2s_1's_2't_1t_2-r_1'r_2's_1s_2t_1t_2=0
(r_1r_2s_1's_2'-r_1'r_2's_1s_2)t_1t_2=0
This means \frac{r_1r_2}{s_1s_2} = \frac{r'_1r'_2}{s'_1s'_2}
Hence is well-defined.
We note that \frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2} = \frac{(r_1 + r_3)s}{s^2} = \frac{r_1 + r_2}{s} (by lemma 3.9).....(5)
Hence is well-defined.
Claim:1(S^{-1}R,+)is an abelian group.
Let \frac{r_1}{s_1}, \frac{r_2}{s_2}, \frac{r_3}{s_3} \in S^{-1}R.
Then
```

 $\frac{r_1}{s_1} + \left(\frac{r_2}{s_2} + \frac{r_3}{s_3}\right) = \frac{r_1}{s_1} + \left(\frac{r_2s_3 + r_3s_2}{s_2s_3}\right)$ $= \frac{r_{152}s_3 + (r_{253} + r_{352})s_1}{s_{12}s_{$ $=\frac{r_{1}s_{2}s_{3}}{r_{1}s_{2}s_{3}+r_{2}s_{3}s_{1}+r_{3}s_{2}s_{1}}$ $=\frac{s_{1}s_{2}s_{3}}{s_{1}s_{2}s_{3}}$ Also $(\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}})+\frac{r_{3}}{s_{3}}=(\frac{r_{1}s_{2}+r_{2}s_{1}}{s_{1}s_{2}})+\frac{r_{3}}{s_{3}}$ $(r_1s_2+r_2s_1)s_3+r_3s_1s_2$ $=\frac{s_{1}s_{2}s_{3}}{s_{1}s_{2}s_{3}}$ $=\frac{r_{1}s_{2}s_{3}+r_{2}s_{3}s_{1}+r_{3}s_{1}s_{2}}{s_{1}s_{2}s_{3}s_{1}+r_{3}s_{1}s_{2}}$ s1s2s3 $\frac{r_1}{s_1} + \left(\frac{r_2}{s_2} + \frac{r_3}{s_3}\right) = \left(\frac{r_1}{s_1} + \frac{r_2}{s_2}\right) + \frac{r_3}{s_3}$ So + is associative. For any $\frac{r}{s} \in R$, we have $\frac{r}{s} + \frac{0}{s} = \frac{r+0}{s} = \frac{r}{s}$ Also $\frac{0}{s} + \frac{r}{s} = \frac{0+r}{s} = \frac{r}{s}$ Hence $\frac{0}{s}$ is the additive identity of $\frac{r}{s} \epsilon S^{-1}R$ for all $r \epsilon R$ Clearly + is commutative. Thus (R,+) is an abelian group. Claim:2 · is associative. Now $\frac{r_1}{s_1} \cdot (\frac{r_2}{s_2} \cdot \frac{r_3}{s_3}) = \frac{r_1}{s_1} \cdot (\frac{r_2 r_3}{s_2 s_3}) = \frac{r_1(r_2 r_3)}{s_1(s_2 s_3)}$ $=\frac{(r_1r_2)r_3}{(s_1s_2)s_3} \\ = (\frac{r_1}{s_1} \cdot \frac{r_2}{s_2}) \cdot \frac{r_3}{s_3}$ So · is associative. Claim:3 · is right distributive with respect to +. Let $\frac{r_1}{s_1}, \frac{r_2}{s_2}, \frac{r_3}{s_3} \in S^{-1}R$. Now $\left(\frac{r_1}{s_1} + \frac{r_2}{s_2}\right) \cdot \frac{r_3}{s_3} = \left(\frac{r_1 s_2 + r_2 s_1}{s_1 s_2}\right) \cdot \frac{r_3}{s_3} = \frac{r_1 s_2 r_3 + r_2 s_1 r_3}{s_1 s_2 s_3}$ $\frac{\frac{1}{s_1s_2s_3}}{\frac{s_2r_1r_3+s_1r_2r_3}{s_2r_1s_3+s_1r_2r_3}}$ (quasi weak commutative) $\frac{s_1r_2r_3}{s_1s_2s_3}$ (using (5)) S1S2S3 r_2r_3 . <u>s</u>3 This proves right - distributive law. **Claim:4** $S^{-1}R$ is a Boolean-like ring. It is already proved in **claim 1** that $2(\frac{r}{s}) = 0$ for all $\frac{r}{s} \epsilon S^{-1}R$ Let $a = \frac{r_1}{s_1}$ and $b = \frac{r_2}{s_2}$ be any two elements of $S^{-1}R$ Let t ϵ S be any element. Now by Lemma 3.5 $(a - a^2)(b - b^2) t = 0$ $\Rightarrow \left(\frac{r_1}{s_1} - \frac{r_1^2}{s_1^2}\right) \left(\frac{r_2}{s_2} - \frac{r_2^2}{s_2^2}\right) t = 0$ $\left[\frac{r_1}{s_1}\left(\frac{r_2}{s_2} - \frac{r_2^2}{s_2^2}\right) - \frac{r_1^2}{s_1^2}\left(\frac{r_2}{s_2} - \frac{r_2^2}{s_2^2}\right)\right]t = 0$ $\frac{r_1}{s_1} \left(\frac{r_2}{s_2} - \frac{r_2^2}{s_2^2}\right) t - \frac{r_1^2}{s_1^2} \left(\frac{r_2}{s_2} \frac{r_2^2}{s_2^2}\right) t = 0$ $\begin{bmatrix} (\frac{r_2}{s_2} - \frac{r_2^2}{s_2^2})\frac{r_1}{s_1} \mathbf{t} - (\frac{r_2}{s_2} - \frac{r_2^2}{s_2^2})\frac{r_1^2}{s_1^2} \mathbf{t} = 0 \text{ (quasi weak commutative)} \\ \begin{bmatrix} (\frac{r_2}{s_2} - \frac{r_2^2}{s_2^2})\frac{r_1}{s_1} - (\frac{r_2}{s_2} - \frac{r_2^2}{s_2^2})\frac{r_1^2}{s_1^2} \end{bmatrix} \mathbf{t} = 0$ $[(\frac{r_{2}s_{2}-r_{2}^{2}}{s_{2}^{2}})\frac{r_{1}}{s_{1}}-(\frac{r_{2}s_{2}-r_{2}^{2}}{s_{2}^{2}})\frac{r_{1}}{s_{1}^{2}}]t=0$ $[(\frac{r_{2}s_{2}-r_{2}^{2}}{s_{2}^{2}})\frac{r_{1}s_{1}}{s_{1}^{2}}-(\frac{r_{2}s_{2}-r_{2}^{2}}{s_{2}^{2}})\frac{r_{1}^{2}}{s_{1}^{2}}]t=0 \text{ (using Lemma 3.9)}$ $[(\frac{r_{2}s_{2}r_{1}s_{1}-r_{2}^{2}r_{1}s_{1}}{s_{2}^{2}s_{1}^{2}})-\frac{r_{2}s_{2}r_{1}^{2}-r_{2}^{2}r_{1}^{2}}{s_{2}^{2}s_{1}^{2}}]t=0$

$$\begin{split} [(\frac{r_2r_1s_2s_1-r_2^2r_1s_1}{s_2^2s_1^2}) - \frac{s_2r_2r_1^2-r_2^2r_1^2}{s_2^2s_1^2}]t=0 (\text{quasi weak commutative}) \\ [(\frac{r_2r_1s_2s_1}{s_2^2s_1^2} - \frac{r_2^2r_1s_1}{s_2^2s_1^2} - \frac{s_2r_2r_1^2}{s_2^2s_1^2} + \frac{r_2^2r_1^2}{s_2^2s_1^2}]t=0 \\ [\frac{r_2r_1}{s_2s_1} - \frac{r_2}{s_2} \frac{r_1}{s_1} - \frac{r_2}{s_2} \frac{r_1^2}{s_1^2} + \frac{r_2^2r_1^2}{s_2^2s_1^2}]t=0 \\ [ba - b^2a - ba^2 + b^2a^2]t=0 \\ \Rightarrow ba = b^2a - ba^2 + b^2a^2 \\ = b^2a + ba^2 - (ba)^2 \text{ (using Lemma 3.2)} \\ ba = ba(b+a-ba) \\ This proves S^{-1}R is Boolean-like near ring. \\ \textbf{Claim :5 multiplication in S^{-1}R is commutative} \\ Let \frac{r_1}{s_1}, \frac{r_2}{s_2} = \frac{r_1r_2}{s_1s_2} = \frac{r_1r_2s}{s_1s_2s} \forall scS \frac{r_2r_1s}{s_1s_2s} (\text{quasi weak commutative}) \\ = \frac{r_2r_1s}{s_2s_1}(\text{scing Lemma 3.2 }) \\ Hence multiplication in S^{-1}R is commutative subset) \\ = \frac{r_2r_1s}{s_2s_1}(s \text{ commutative subset}) \\ = \frac{r_2r_1s}{s_2}(r_1s_1) (s \text{ commutative subset}) \\ = \frac{r_2r_1s}{s_2}(r_1$$

3.11 Theorem

 $S^{-1}R$ is quasi-weak commutative near-ring.

Proof:

Let $a = \frac{r_1}{s_1}$, $b = \frac{r_2}{s_2}$, $c = \frac{r_3}{s_3}$ be any three elements of S⁻¹R Now $abc = \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} \cdot \frac{r_3}{s_3} = \frac{r_1 r_2 r_3}{s_1 s_2 s_3}$ $= \frac{r_2 r_1 r_3}{s_1 s_2 s_3}$ (R is quasi-weak commutative) $= \frac{r_2 r_1 r_3}{s_2 s_1 s_3}$ (S is commutative) $= \frac{r_2 r_1 r_3}{s_2}$ Then $abc = bac \forall a, b, c \in S^{-1}R$.

This proves S⁻¹R is quasi-weak commutative near-ring.

3.12 Theorem

Let R be a quasi-weak commutative Boolean-like near ring.Let S be a commutative subset of R which is multiplicatively closed. Let $0 \neq s \epsilon S$. Define a map $f_s: \mathbb{R} \to S^{-1} \mathbb{R}$ as $f_s(\mathbf{r}) = \frac{rs}{s} \forall \mathbf{r} \epsilon \mathbb{R}$. Then f_s is a near-ring monomorphism.

Proof:

Let
$$r_1, r_2 \in \mathbb{R}$$
.
Then $f_s (r_1+r_2) = \frac{(r_1+r_2)s}{s} = \frac{r_1s+r_2s}{s}$
 $= \frac{r_1s}{s} + \frac{r_2s}{s}$ (By (5) of Theorem 3.11)
 $= f(r_1) + f(r_2)$
Also $f_s (r_1 \cdot r_2) = \frac{(r_1r_2)s}{s}$
 $= \frac{r_1r_2s^2}{s^2}$
 $= \frac{r_1r_2ss}{s^2}$

$$=\frac{r_{1}(sr_{2}s)}{s^{2}}$$

$$=\frac{r_{1}s}{s} \cdot \frac{r_{2}s}{s} \text{(quasi weak commutative)}$$

$$=f_{s}(\mathbf{r}_{1}) \cdot f_{s}(\mathbf{r}_{2})$$
Also $f_{s}(\mathbf{r}_{1}) = f_{s}(\mathbf{r}_{2}) \Rightarrow \frac{r_{1}s}{s} = \frac{r_{2}s}{s}$

$$\Rightarrow \frac{r_{1}s}{s} - \frac{r_{2}s}{s} = 0$$

$$\Rightarrow \frac{(r_{1}s - r_{2}s)}{s} = 0$$

$$\Rightarrow \frac{(r_{1} - r_{2})s}{s} = 0$$

$$\Rightarrow (\frac{r_{1}}{s} - \frac{r_{2}}{s}) = 0$$

$$\Rightarrow \frac{r_{1}s}{s} = \frac{r_{2}s}{s}$$

Hence f_s is a monomorphism

3.13 Theorem

Let R be a quasi-weak commutative Boolean-like near-ring. Then R be embedded into a quasi-weak commutative. Boolean like commutative semi ring with identity.

Proof:

Follows from Theorem 3.11 and 3.12.

References

- [1] Foster.A.L, The theory of Boolean like rings, Trans. Amer. Math. Soc, Vol. 59, 1946.
- [2] Gopalakrishnamoorthy.G, Kamaraj.M and Geetha.S, On Quasi weak commutative near-ring, Int.Jour. of Math. Research, Vol.5, No 5, 2013, 431-440.
- [3] Gopalakrishnamoorthy.G and Anitha.S, On Commutativity Property of $Q_{k,n}, Q_{k,\infty}, P_{k,n}, P_{\infty}$ and Q_{∞} Rings, Jour. Of Inst. Of Mathematics and Computer Sciences, Vol. 23, No. 2 (2010) 63-70.
- [4] Ketsela Hailu, Berhanu Bekele Belayneh, Zelabesm Teshome and K.Venkateswarlu, Boolean like semi ring of fractions, Inter. Jour of Math. Archive, Vol 3 No 4, 2012, 1554-1560.
- [5] Pliz. Gunter, Near-Rings, The theory and its applications, North Holland, 1983.
- [6] Swaminathan.V, Boolean-like rings, Ph.D. dissertation, Andhra University, India, 1982.
- [7] Swaminathan. V, On Fosters Boolean-like rings, Math. Seminar Notes, Kobe University, Japan, Vol 8, 1980, 347-367.
- [8] Uma.S, Balakrishnan.R and Tamizh Chelvam.T, Pseudo Commutative near-rins, Scientia Magna, Vol 6, No 2, 2010, 75-85.
- [9] Yaqub.A, A generalization of certain Rings of A.L. Foster, University of California, 1962.

Received: October 10, 2014; Accepted: March 23, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/