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Abstract

This paper is concerned with the global relative controllability of fractional stochastic dynamical systems with

multiple delays in control for finite dimensional spaces. Sufficient conditions for controllability results are obtained

using Banach fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler

matrix function. An example is provided to illustrate the theory.
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1 Introduction

Control theory is an important area of application oriented mathematics which deals with the design and
analysis of control systems. In particular, the concept of controllability plays an important role in both the
deterministic and the stochastic control theory. In recent years, controllability problems for various types of
nonlinear dynamical systems in infinite dimensional spaces by using different kinds of approaches have been
considered in many publications. An extensive list of these publications can be found (see [2, 3, 6, 17] and
the references therein). Moreover, the exact controllability enables to steer the system to arbitrary final state
while approximate controllability means that the system can be steered to arbitrary small neighborhood of
final state. Klamka [8] derived a set of sufficient conditions for the exact controllability of semilinear systems.
Further, approximate controllable systems are more prevalent and very often approximate controllability is
completely adequate in applications. The approximate controllability of systems represented by nonlinear
evolution equations has been investigated by several authors [9, 13, 14, 18], in which the authors effectively
used the fixed point approach. Fu and Mei [6] studied the approximate controllability of semilinear neutral
functional differential systems with finite delay. The conditions are established with the help of semigroup
theory and fixed point technique under the assumption that the linear part of the associated nonlinear system
is approximately controllable.

Stochastic differential equations have many applications in economics, ecology and finance. In recent years,
the controllability problems for stochastic differential equations have become a field of increasing interest, (see
[10, 11, 19] and references therein). The extensions of deterministic controllability concepts to stochastic control
systems have been discussed only in a limited number of publications.

We would like to mention that controllability and approximate controllability of fractional dynamical systems
with or without delay in control have been considered by a few authors (see, for instance [1, 5, 20]). As for the
stochastic systems, there are less number of papers on the controllability and the approximate controllability of
fractional stochastic dynamical systems with delay in control. Recently, Sakthivel et al. [16] established a set of
sufficient conditions for obtaining the approximate controllability of semilinear fractional differential systems in
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Hilbert spaces. The same author in [15] prove the approximate controllability of nonlinear fractional stochastic
control system under the assumptions that the corresponding linear system is approximately controllable.
More recently, the approximate controllability of neutral stochastic fractional integro-differential equation with
infinite delay in a Hilbert space by using Krasnoselskii’s fixed point theorem and stochastic analysis theory has
been discussed in [18]. The authors derived a new set of sufficient conditions for the approximate controllability
of nonlinear fractional stochastic system under the assumption the corresponding linear system is approximately
controllable. Shen [21] studied the relative controllability of stochastic nonlinear systems with delay in control.
However, to the best of our knowledge, there are no relevant reports on the relative controllability of fractional
stochastic dynamical systems with multiple delay in control as treated in the current paper. Motivated by this
consideration, in this article we will study the global relative controllability problem for fractional stochastic
dynamical systems with multiple delays in control variables for finite dimensional spaces. Sufficient conditions
for the controllability results are obtained by using the Banach fixed point theorem and fractional calculus. The
paper is organized as follows: In Section 2, some well known fractional operators and special functions, along
with a set of properties are defined and the solution representation of linear fractional stochastic differential
equations are derived using Laplace transform for further discussion. In Section 3, the linear and nonlinear
stochastic fractional dynamical systems with multiple delays in control are proposed and the controllability
condition is established using the controllability Grammian matrix which is defined by means of the Mittag-
Leffler matrix function. In Section 4, example is discussed to illustrate the effectiveness of our results. Finally,
concluding remarks are given in Section 5.

2 Preliminaries

Let (Ω,F , IP) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.
right continuous and F0 containing all IP-null sets). Let α, β > 0, with n − 1 < α < n, n − 1 < β < n and
n ∈ IN, D is the usual differential operator. Let IRm be the m-dimensional Euclidean space, IR+ = [0,∞), and
suppose f ∈ L1(IR+). The following definitions and properties are well known, for α, β > 0 and f as a suitable
function (see, for instance, [7]):

(a) Riemann-Liouville fractional operators:

(Iα
0+f)(x) =

1
Γ(α)

∫ x

0

(x− t)α−1f(t)dt,

(Dα
0+f)(x) = Dn(In−α

a+ f)(x).

(b) Caputo fractional derivative:
(cDα

0+f)(x) = (In−α
0+ Dnf)(x),

in particular Iα
0+

cDα
0+f(t) = f(t)− f(0), (0 < α < 1).

The following is a well known relation, for finite interval [a, b] ∈ IR+

(Dα
a+f)(x) = (cDα

a+f)(x) +
n−1∑
k=0

f (k)(a)
Γ(1 + k − α)

(x− a)k−α, n = R(α) + 1.

The Laplace transform of the Caputo fractional derivative is

L{cDα
0+f(t)} = sαF (s)−

n−1∑
k=0

f (k)(0+)sα−1−k.

The Riemann-Liouville fractional derivatives have singularity at zero and the fractional differential equations
in the Riemann-Liouville sense require initial conditions of special form lacking physical interpretation. To
overcome this difficulty Caputo introduced a new definition of fractional derivative but in general, both the
Riemann-Liouville and the Caputo fractional operators possess neither semigroup nor commutative properties,
which are inherent to the derivatives on integer order. Due to this fact, the concept of sequential fractional
differential equations are discussed in [7].
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(c) Linear Sequential Derivative:
For n ∈ IN the sequential fractional derivative for suitable function f is defined by

f (kα) := (Dkαf)(x) = (DαD(k−1)αf)(x),

where k = 1, . . . , n, (Dαf)(x) = f(x), and Dα is any fractional differential operator, here we mention it as cDα
0+.

(d) Mittag-Leffler Function

Eα,β(y) =
∞∑

k=0

yk

Γ(kα+ β)
, α, β > 0.

The general Mittag-Leffler function satisfies∫ ∞

0

e−ttβ−1Eα,β(tαy)dt =
1

1− y
, |y| < 1.

The Laplace transform of Eα,β(y) follows from the integral∫ ∞

0

e−sttβ−1Eα,β(±atα)dt =
sα−β

(s∓ a)
.

That is

L{tβ−1Eα,β(±atα)} =
sα−β

(s∓ a)
,

for R(s) > |a|1/α and R(β) > 0. In particular, for β = 1,

Eα,1(λyα) = Eα(λyα) =
∞∑

k=0

λkykα

Γ(αk + 1)
, λ, y ∈ C

have the interesting property cDαEα(λtα) = λEα(λtα) and

L{Eα(±atα)} =
sα−1

(s∓ a)
, for β = 1.

For brevity of notation let us take Iq
0+ as Iq and cDq

0+ as cDq and the fractional derivative is taken as Caputo
sense.

Let us consider the linear fractional stochastic differential equation of the form

cDqx(t) = Ax(t) + σ(t)
dw(t)
dt

, t ∈ [0, T ],

x(0) = x0,
(2.1)

where 0 < q < 1, x(t) ∈ IRn, A is an n × n matrix, w(t) is a given l-dimensional Wiener process with the
filtration Ft generated by w(s), 0 ≤ s ≤ t and σ : [0, T ] → IRn×l is appropriate function. In order to find the
solution, apply Laplace transform on both sides and use the Laplace transform of Caputo derivative, we get

sqX(s)− sq−1x(0) = AX(s) + Σ(s)
dw(s)
ds

.

Apply inverse Laplace transform on both sides (see [4]) we have
L−1{X(s)} = L−1{sq−1(sqI −A)−1}x0 + L−1{Σ(s)dw(s)

ds } ∗ L−1{(sqI −A)−1}.
Finally, substituting Laplace transformation of the Mittag-Leffler function, we get the solution of the given
system

x(t) = Eq(Atq)x0 +
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds

where Eq(Atq) is the matrix extension of the mentioned Mittag-Leffler functions with the following represen-
tation:

Eq(Atq) =
∞∑

k=0

Aktkq

Γ(1 + kq)
with the property cDqEq(Atq) = AEq(Atq).
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3 Controllability results

Let L2
Ft

(J × Ω, IRn) be the Banach space of all Ft-measurable square integrable processes x(t) with
norm ‖x‖2L2 = sup

t∈J
IE‖x(t)‖2, where IE(.) denotes the expectation with respect to the measure IP. Let

C = C([0, T ];L2
Ft

) be the Banach space of continuous maps from [0, T ] into L2
Ft

(J × Ω, IRn) satisfying
sup
t∈J

IE‖x(t)‖2 <∞. Consider the linear fractional stochastic dynamical system with multiple delays in control

represented by the fractional stochastic differential equation of the form

cDqx(t) = Ax(t) +
M∑

k=1

Bku(hk(t)) + σ(t)
dw(t)
dt

, t ∈ J := [0, T ]

x(0) = x0,

(3.1)

where 0 < q < 1, x(t) ∈ IRn, u ∈ IRl, A is an n× n matrix, Bk are n× l matrices, for k = 0, 1, . . . ,M , w(t) is a
given l-dimensional Wiener process with the filtration Ft generated by w(s), 0 ≤ s ≤ t and σ : [0, T ] → IRn×l

is appropriate function.
Let us assume the following assumptions:

(i) Assume the function hk : J → IR, k = 0, 1, . . . ,M are twice continuously differentiable and strictly in-
creasing in J . Moreover,

hk(t) ≤ t for t ∈ J, i = 0, 1, . . . ,M. (3.2)

(ii) Introduce the time lead functions rk(t) : [hk(0), hk(T )] → J , k = 0, 1, . . . ,M such that rk(hk(t)) = t for
t ∈ J . Further assume that h0(t) = t and for t = T , the following inequalities hold

hM (T ) ≤ hM1(T ) ≤ . . . hMm+1(T ) ≤ 0 = hm(T ) < hm−1(T ) = . . . h1(T ) = h0(T ) = T. (3.3)

(iii) let h > 0 be given. For functions u : [−h, T ] → IRl and t ∈ J , we use the symbol ut to denote the function
on [−h, 0], defined by ut(s) = u(t+ s) for s ∈ [−h, 0).

The following definitions of complete state of the system (2) at time t and relative controllability are assumed.

Definition 3.1. The set φ(t) = {x(t), ut} is the complete state of the system (2) at time t.

Definition 3.2. System (2) is said to be globally relatively controllable on J if for every complete state φ(0)
and every vector x1 ∈ IRn there exists a control u(t) defined on J such that the corresponding trajectory of the
system (2) satisfies x(T ) = x1.

Note that the solution of system (2) ca be expressed in the following form

x(t) = Eq(A(t)q)x0 +
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
M∑

k=0

Bku(hk(s))ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

Taking into account the time lead functions rk(t), this solution can be further changed into

x(t) = Eq(A(t)q)x0 +
M∑

k=0

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u(s)ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

(3.4)
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Using the inequalities (4), the above equation becomes,

x(t) = Eq(Atq)x0 +
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

(3.5)

For brevity, let us introduce the following notation:

ϕ(t) =
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

(3.6)

and

χ(t) =
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

Recall the controllability Grammian matrix

ψT
0 =

m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)][Eq,q(A(T − rk(s))q)Bkr

′
k(s)]?ds

where the complete state φ(0) and the vector x1 ∈ IRn are chosen arbitrarily and the ? denotes the matrix
transpose.

Theorem 3.3. The linear stochastic control system (2) is relatively controllable on [0, T ] if and only if the
controllability Grammian matrix ψT

0 is positive definite for some T > 0.

Proof. Since ψ is positive definite, it is non-singular and therefore its inverse is well defined. Define the control
function as,

u(t) = [B?
kEq,q(A?(T − rk(t))q)r′k(t)]ψ−1[x1 − Eq(Atq)x0 − ϕ(T )− χ(T )], k = 0, 1, . . . ,m (3.7)

where the complete state φ(0) and the vector x1 ∈ IRn are chosen arbitrarily. Inserting (8) in (6) and using (7)
we get

x(T ) = Eq(Atq)x0 + ϕ(T ) +
m∑

k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)]

× [B?
kEq,q(A?(T − rk(s))q)r′k(s)]ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= x1.

Thus the control u(t) transfers the initial state φ(0) to the desired vector x1 ∈ IRn at time T . Hence the
system (2) is controllable.

On the other hand, if it is not positive definite, there exists a nonzero φ such that φ?ψφ = 0, that is

φ?

m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)][Eq,q(A(T − rk(s))q)Bkr

′
k(s)]?φds = 0

φ?

m∑
k=0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)] = 0,
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on [0, T ]. Let x0 = [Eq(AT q)]−1φ. By assumption, there exists a control u such that it steers the complete
initial state φ(0) = {x(0), u0(s)} to the origin in the interval [0, T ]. It follows that

x(T ) = Eq(Atq)x0 + ϕ(T ) +
m∑

k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)]

× [B?
kEq,q(A?(T − rk(s))q)r′k(s)]ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= φ+ ϕ(T ) +
m∑

k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)]

× [B?
kEq,q(A?(T − rk(s))q)r′k(s)]ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= 0.

Thus,

0 = φ?φ+
m∑

k=0

∫ T

0

φ?(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)]u(s)ds+ φ?(ϕ(T ) + χ(T )).

But the second and third term are zero leading to the conclusion φ?φ = 0. This is a contradiction to φ 6= 0.
Thus ψ is positive definite. Hence the desired result.

Consider a nonlinear fractional stochastic dynamical system with multiple delays in control represented by
the fractional stochastic differential equation of the form

cDqx(t) = Ax(t) +
M∑

k=1

Bku(hk(t)) + f(t, x(t)) + σ(t, x(t))
dw(t)
dt

, t ∈ J := [0, T ]

x(0) = x0,

(3.8)

where 0 < q < 1, x(t) ∈ IRn, u ∈ IRl, A,Bk are defined as above and f : J × IRn → IRn, σ : J × IRn → IRn×l

are appropriate functions. Then the solution of the system (9) ca be expressed in the following form

x(t) = Eq(A(t)q)x0 +
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
M∑

k=0

Bku(hk(s))ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

Using the time lead functions rk(t) the solution becomes,

x(t) = Eq(A(t)q)x0 +
M∑

k=0

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

(3.9)
Now using the inequalities (4), the above equation for t = T can be expressed as

x(T ) = Eq(A(T )q)x0 +
m∑

k=0

∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ T

0

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

+
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(T − s)q)ds.

(3.10)
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For brevity, let us introduce the following notation using (7)

Υ(φ(0), x1;x) = x1 − Eq(A(T )q)x0 − ϕ(T )−
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(T − s)q)ds.

(3.11)

Now let us define the controllability Grammian matrix and the control function

ψT
0 =

m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)][Eq,q(A(T − rk(s))q)Bkr

′
k(s)]?ds (3.12)

u(t) = [B?
kEq,q(A?(T − rk(t))q)r′k(s)]ψ−1Υ(φ(0), x1;x), for k = 0, 1, . . . ,m (3.13)

where the complete state φ(0) and the vector x1 ∈ IRn are chosen arbitrarily and ? denotes the matrix transpose.
Inserting (14) in (11) by using (12) and (13), it is easy to verify that the control u(t) transfers the initial complete
state φ(0) to the desired vector x1 at time T for each fixed x. Now observing (12) and substituting (14) in
(10), we have

x(t) = Eq(A(t)q)x0 +
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)

× B?
kEq,q(A?(T − rk(s))q)r′k(s)ψ−1Υ(φ(0), x1;x)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

(3.14)

Now, we impose the following conditions on data of the problem:

(iv) The linear fractional stochastic dynamical system (2) is globally relatively controllable.
(v) f and σ satisfy Lipschitz and linear growth conditions. That is, there exists some constants N, Ñ, L, L̃ > 0
such that

‖f(t, x)− f(t, y)‖2 ≤ N‖x− y‖2, ‖f(t, x)‖2 ≤ Ñ(1 + ‖x‖2)
‖σ(t, x)− σ(t, y)‖2 ≤ L‖x− y‖2, ‖σ(t, x)‖2 ≤ L̃(1 + ‖x‖2).

For our convenience, let us introduce the following notations.

a1 = max{‖Eq(Atq)‖2; t ∈ J}, a2 = max{‖u0(t)‖2; t ∈ J}, rk = max{‖r′k(t)‖2; t ∈ J}

bk = max{‖Eq,q(A(t− rk(s))q)‖2; s ∈ [0, T ]}, ck =
∫ T

0

(T − rk(s))2(q−1)ds

c̃k =
∫ 0

hk(0)

(T − rk(s))2(q−1)ds, ĉk =
∫ hk(T )

hk(0)

(T − rk(s))2(q−1)ds

We claim that if (iv) holds, the operator ψT
0 is strictly positive definite and thus the inverse linear operator

(ψT
0 )−1 is bounded, say, by l, (see [10] for more details).

Theorem 3.4. Under the conditions (iv) and (v), the nonlinear system (9) is globally relatively controllable
on J .
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Proof. Firstly, from the definition (14) we can write the control function u as

u(t) = B?
kEq,q(A?(T − rk(t))q)r′k(t)ψ−1

×

[
x1 − Eq(A(T )q)x0 −

m∑
k=0

∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

−
M∑

k=m+1

∫ hk(t)

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

−
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−
∫ T

0

(T − s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(T − s)q)ds

]
.

Secondly, we define the operator P : C → C by

P(x)(t) = Eq(A(t)q)x0 +
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)

× B?
kEq,q(A?(T − rk(s))q)r′k(s)ψ−1Υ(φ(0), x1;x)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

In order to prove the global relative controllability of the system (9) it is enough to show that P has a fixed
point in C. To do this, we can employ the contraction mapping principle. To apply the principle, first we show
that P maps C into itself. We have

IE‖P(x)(t)‖2 ≤ 6a1IE‖x0‖2 + 6
m∑

k=0

IE

∥∥∥∥∥
∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′
k(s)u0(s)ds

∥∥∥∥∥
2

+ 6
m∑

k=0

IE

∥∥∥∥∥
∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)

× B?
kEq,q(A?(T − rk(s))q)r′k(s)ψ−1Υ(φ(0), x1;x)ds

∥∥∥∥∥
2

+ 6
M∑

k=m+1

IE

∥∥∥∥∥
∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

∥∥∥∥∥
2

+ 6IE

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

∣∣∣∣∣
∣∣∣∣∣
2

+ 6IE

∥∥∥∥∥
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds

∥∥∥∥∥
2

.

It follows from Lemma 2.5, in [15], and the above notation that:

IE‖P(x)(t)‖2 ≤ 6a1IE‖x0‖2 + 6a2

(
m∑

k=0

c̃kbkrk‖Bk‖2 +
M∑

k=m+1

ĉkbkrk‖Bk‖2
)

+ 6b
t2q−1

2q − 1

∫ t

0

IE‖f(s, x(s))‖2ds+ 6l2
m∑

k=0

ckb
2
kr

2
k‖Bk‖4

∫ t

0

IE‖Υ(φ(0), x1;x)‖2ds

+ 6Lσb
t2q−1

2q − 1

∫ t

0

(∫ τ

0

IE‖σ(θ, x(θ))‖2dθ

)
ds.
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Thus we have

IE‖P(x)(t)‖2 ≤ 6a1IE‖x0‖2 + 6a2β + 6b
t2q−1

2q − 1
Ñ

∫ t

0

(1 + IE‖x(s)‖2)ds

+ 6l2η

[
IE‖x1‖2 + a1IE‖x0‖2 + a2β + b

T 2q−1

2q − 1
Ñ

∫ T

0

(1 + IE‖x(s)‖2)ds

+ Lσb
T 2q−1

2q − 1
L̃

∫ T

0

(∫ τ

0

(1 + IE‖x(θ)‖2)dθ

)
ds

]

+ 6Lσb
t2q−1

2q − 1
L̃

∫ t

0

(∫ τ

0

(1 + IE‖x(θ)‖2)dθ

)
ds.

Hence,

IE‖P(x)(t)‖2 ≤ 6l2ηIE‖x1‖2 + 6a1IE‖x0‖2(1 + l2η) + 6a2β(1 + l2η)

+ 6b
T 2q−1

2q − 1
Ñ(1 + l2η)(1 + ‖x‖2L2) + 6LσL̃b

T 2q−1

2q − 1
(1 + l2η)(1 + T‖x‖2L2).

It follows from from the above inequality and the condition (v) that there exists c > 0 such that

IE‖P(x)(t)‖2 ≤ c(1 + ‖x‖2L2).

Therefore P maps C into itself.
Secondly, we claim that P is a contraction mapping on C. For x, y ∈ C,

IE‖P(x)(t)− P(y)(t)‖2

≤ 3
m∑

k=0

IE

∥∥∥∥∥
∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)

× B?
kEq,q(A?(T − rk(s))q)r′k(s)ψ−1[Υ(φ(0), x1;x)−Υ(φ(0), x1; y)]ds

∥∥∥∥∥
2

+ 3IE

∥∥∥∥∥
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)(f(s, x(s))− f(s, y(s)))ds

∥∥∥∥∥
2

+ 3IE

∥∥∥∥∥
∫ t

0

(t− s)q−1

(∫ τ

0

(σ(θ, x(θ))− σ(θ, y(θ)))dw(θ)

)
Eq,q(A(t− s)q)ds

∥∥∥∥∥
2

.

Using Lemma 2.5, in [15], condition (v), and the above notations we get

IE‖P(x)(t)− P(y)(t)‖2

≤ 3l2
T 2q

2q − 1
b

m∑
k=0

ckb
2
kr

2
k‖Bk‖4

[∫ T

0

IE‖f(s, y(s))− f(s, x(s))‖2ds

+ Lσ

∫ τ

0

IE‖σ(θ, y(θ))− σ(θ, x(θ))‖2dθ

]
+ 3

T 2q−1

2q − 1
b

∫ t

0

IE‖f(s, x(s))− f(s, y(s))‖2ds

+ 3
T 2q−1

2q − 1
bLσ

∫ t

0

(∫ τ

0

IE‖σ(θ, x(θ))− σ(θ, y(θ))‖2dθ

)
ds.

≤ 3l2bη
T 2q−1

2q − 1
[N + LLσ]

∫ T

0

IE‖x(s)− y(s)‖2ds

+ 3b
T 2q−1

2q − 1
[N + TLLσ]

∫ T

0

IE‖x(s)− y(s)‖2ds.

It results that

sup
t∈[0,T ]

IE‖P(x)(t)− P(y)(t)‖2 ≤

[
3l2bη

T 2q−1

2q − 1
[N + LLσ] + 3b

T 2q−1

2q − 1
[N + TLLσ]

]
sup

t∈[0,T ]

IE‖x(t)− y(t)‖2.
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Therefore we conclude that if 3l2bη
T 2q−1

2q − 1
[N + LLσ] + 3b

T 2q−1

2q − 1
[N + TLLσ] < 1, then P is a contraction

mapping on C, implies that the mapping P has a unique fixed point x(·) ∈ C. Hence we have

x(t) = Eq(A(t)q)x0 +
m∑

k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
m∑

k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′
k(s)u0(s)ds

+
∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+
∫ t

0

(t− s)q−1

(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds.

Thus x(t) is the solution of the system (9), and it is easy to verify that x(T ) = x1. Further the control function
u(t) steers the system (9) from initial complete state φ(0) to x1 on J . Hence the system (9) is globally relatively
controllable on J .

4 An example

In this section, we apply the results obtained in the previous section for the following stochastic fractional
dynamical systems with multiple delays in control which involves sequential Caputo derivative

cDqx(t) = Ax(t) +B1u(t) +B2u(t− h) + f(t, x(t)) + σ(t, x(t))
dw(t)
dt

; 0 < q < 1, t ∈ [0, T ]

x(0) = x0,
(4.1)

where

A =
(
−1 0
3 −2

)
, B1 = B2 =

(
1 0
0 1

)
,

f(t, x(t)) =
(
x1(t) cosx2(t) + 3x2(t)
x2(t) sinx1(t) + 2x1(t)

)
, σ(t, x(t)) =

(
(2t2 + 1)x1(t)e−t 0

0 x2(t)e−t

)
.

Let us introduce the variables x1(t) = x(t) and x2(t) = cD
q
2 x1(t). Then

cD
q
2 x1(t) = cD

q
2 x(t) = x2.

The Mittag-Leffler matrix of the given system is given by(
Eq(−tq) 0

3Eq(−tq)− 3Eq(−2tq) Eq(−2tq)

)
.

Further

Eq,q(A(T − s)q) =
(

Eq,q(−(T − s)q) 0
3Eq,q(−(T − s)q)− 3Eq,q(−2(T − s)q) Eq,q(−2(T − s)q)

)
,

Eq,q(A(T − (s+ h))q) =
(

Eq,q(−(T − (s+ h))q) 0
3Eq,q(−(T − (s+ h))q)− 3Eq,q(−2(T − (s+ h))q) Eq,q(−2(T − (s+ h))q)

)
.

By simple matrix calculation one can see that the controllability matrix

ψT
0 =

m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′
k(s)][Eq,q(A(T − rk(s))q)Bkr

′
k(s)]?ds

=
∫ T

0

[
(T − s)q−1

(
a2 ac

ac b2 + c2

)
+ (T − (s+ h))q−1

(
ā2 āc̄

āc̄ b̄2 + c̄2

)]
ds.
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is positive definite for any T > h, where

a = Eq,q(−(T − s)q), b = Eq,q(−2(T − (s+ h))q),
c = 3Eq,q(−(T − s)q)− 3Eq,q(−2(T − s)q), ā = Eq,q(−(T − (s+ h))q)
b̄ = Eq,q(−2(T − (s+ h))q), c̄ = 3Eq,q(−(T − (s+ h))q)− 3Eq,q(−2(T − (s+ h))q).

Further the functions f(t, x(t)) and σ(t, x(t)) satisfies the hypothesis mentioned in Theorem 3.4., and so the
fractional system (16) is globally relatively controllable on [0,T].

5 Conclusion

The article contains some controllability results for global relative controllability for the linear and nonlinear
fractional stochastic dynamical systems with multiple delays in control function. The result shows that the
Banach fixed point theorem can effectively be used to study the control problems for establishing sufficient
conditions. Here it is proved that under some hypotheses together with the assumption that the linear stochastic
system is globally relatively controllable, the nonlinear fractional stochastic system is also globally relatively
controllable. An example is also included to illustrate the importance of the results obtained.
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