Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

www.malayajournal.org

On Quasi Weak Commutative Near-rings-II

G. Gopalakrishnamoorthy^{*a*,*} S.Geetha^{*b*} and S. Anitha^{*c*}

^a Department of Mathematics, PSNL College of Education, Sattur-626 203, Tamil Nadu, India.

^bDepartment of Mathematics, Pannai College of Engineering and Technology, Sivaganga-630 561, Tamil Nadu, India.

^cDepartment of Mathematics, Raja Doraisingam Government Arts College, Sivaganga-630 561, Tamil Nadu, India.

Abstract

A right near-ring N is called weak Commutative,(Definition 9.4 Pilz [9]) if xyz = xzy for every $x,y,z \in N$. A right near-ring N is called pseudo commutative (Definition 2.1, S.Uma and others [10]) if xyz = zyx for all $x,y,z \in N$. A right near-ring N is called quasi weak commutative near-ring if xyz = yxz for every $x,y,z \in N$ [4]. In [4], we have obtained some interesting results of quasi-weak commutative near-rings. In this paper we obtain some more results of quasi weak commutative near-rings.

Keywords: Quasi-weak commutative near-ring, Boolean-like near-ring.

2010 MSC: 16Y30, 16Y60.

©2012 MJM. All rights reserved.

1 Introduction

Through out this paper, N denotes a right near-ring (N,+,) with atleast two elements.For any non-empty subset A of N,we denote A - {0} = A*.The following definitions and results are well known.

Definition:1.1

An element a ε N is said to be 1.Idempotent if $a^2 = a$. 2.Nilpotent, if there exists a positive integer k such that $a^k = 0$.

Result: 1.2 (Theorem 1.62 Pilz [9])

Each near-ring N is isomorphic to a subdirect product of subdirectly irreducible near-rings.

Definition: 1.3

A near-ring N is said to be zero symmetric if ab = 0 implies ba = 0, where $a, b \in N$.

Result: 1.4

*Corresponding author.

E-mail address: ggrmoorthy@gmail.com (G. Gopalakrishnamoorthy), amrishhanda83@gmail.com(S.Geetha).

If N is zero symmetric, then Every left ideal A of N is an N-subgroup of N. Every ideal I of N satisfies the condition NIN \subseteq I. (i.e) every ideal is an N-subgroup. N* I* N* \subseteq I*.

Result: 1.5

Let N be a near-ring. Then the following are true. If A is an ideal of N and B is any subset of N,then (A:B) = { $n\epsilon$ N such that $nB \subseteq A$ } is always a left ideal. If A is an ideal of N and B is an N-subgroup,then (A : B) is an ideal. In particular if A and B are ideals of a zero-symmetric near-ring, then (A : B) is an ideal.

Result: 1.6

1. Let N be a regular near-ring, a ε N and a = axa,then ax,xa are idempotents and so the set of idempotent elements of N is non-empty.

2. axN = aN and Nxa = Na.

3. N is S and S'near-rings.

Result: 1.7 (Lemma 4 Dheena [1])

Let N be a zero-symmetric reduced near-ring. For any a,b ε N and for any idempotent element e ε N, abe = aeb.

Result: 1.8 (Gratzer [6] and Fain [3])

A near-ring N is sub-directly irreducible if and only if the intersection of all non-zero ideals of N is not zero.

Result: 1.9 (Gratzer [6])

Each simple near-ring is sub directly irreducible.

Result: 1.10 (Pilz [9])

A non-zero symmetric near-ring N has IFP if and only if (O:S) is an ideal for any subset S of N.

Result: 1.11 (Oswald [8])

An N-subgroup A of N is essential if $A \cap B = \{0\}$, where B is any N subgroup of N, implies $B = \{0\}$.

Definition: 1.12

A near-ring N is said to be reduced if N has no non-zero nilpotent elements.

Definition: 1.13

A near-ring N is said to be an integral near-ring, if N has no non-zero divisors.

Lemma: 1.14

Let N be a near-ring. If for all a ε N, $a^2 = 0 \Rightarrow a = 0$, then N has no non-zero nilpotent elements.

Definition: 1.15

Let N be a near-ring. N is said to satisfy intersection of factors property (IFP) if ab = 0 and b = 0 for all $n \in N$, where $a, b \in N$.

Definition: 1.16

1. An ideal I of N is called a prime ideal if for all ideals A,B of N, AB is subset of I \Rightarrow A is subset of I or B is subset of I.

- 2. I is called a semi-prime ideal if for all ideals A of N, A² is subset of I implies A is subset of I.
- 3. I is called a completely semi-prime-ideal, if for any x ε N, x2 ε I \Rightarrow x ε I.
- 4. A completely prime ideal, if for any x,y ε N, xy ε I \Rightarrow x ε I or y ε I.
- 5. N is said to have strong IFP, if for all ideals I of N, ab ε I implies anb ε I for all n ε N.

Result: 1.17 (Proposition 2.4[10])

Let N be a Pseudo commutative near-ring. Then every idempotent element is central.

Result: 1.18[4]

Let N be a regular quasi weak commutative near-ring. Then

- 1. A = \sqrt{A} , for every N sub-group A of N
- 2. N is reduced
- 3. N has (*IFP)

Result: 1.19[4]

Let N be a regular quasi weak commutative near-ring. Then every N sub group is an ideal N = Na = Na² = aN = aNa for all a ϵN

Result: 1.20[4]

Let N be a quasi weak commutative near-ring. For every ideal I of N, (I:S) is an ideal of N where S is any subset of N.

Result: 1.21[4]

Every quasi weak commutative near-ring N is isomorphic to a sub-direct product of Sub-directly irreducible quasi weak commutative near-rings.

2. Main Results:

Lemma: 2.1

Let N be a regular quasi weak commutative near-ring.

Then

(i) $P \cap Q = PQ$ for any two N-subgroups P,Q of N.

(ii) $P = P^2$ for every N-sub group(ideal) P of N.

(iii) If P is a proper N-subgroup of N, then each element of P is a zero divisor.

(iv) Na Nb = Na \cap Nb = Nab for all a,b ε N.

(v) Every N-subgroup of N is essential if N is integral.

Proof:

Hence $PQ \subset P$ and $PQ \subseteq Q$.So $PQ \subseteq P \cap Q$. Let a $\varepsilon P \cap Q$.Since N is regular,there exists b ε N such that a = aba = (ab) a ε (PN)Q \subseteq PQ. Hence $P \cap Q = PQ$.This completes (i). (ii) Taking Q = P in (i) we get P = P². (iii) Let P be a proper N-subgroup of N. Let $0 \neq a \varepsilon$ P.Now by(ii) Na = (Na)² = NaNa. Therefore for every n ε N,there exists x,y ε N such that na = xaya. Hence (n-xay)a = 0.If a is not a zero divisor,then n-xay = 0. (i.e) n = xay ε NPN \subseteq P.

Hence N = P, contradicting P is a proper ideal of N.So a is a zero divisor of N. This proves (iii).

(iv) Since Na and Nb are N-subgroups,

(i) Let P and Q be two N-subgroups of N. Then by Result1.19[4] they are ideals.

 $Na \cap Nb$ = Na Nb. (by(i))

Since $Na \subseteq N$, $Na \cap N = Na = Na \cap Na = Na$

$$\subseteq$$
 Na N = Na N.

and Na is an ideal implies Na N = (Na)N \subseteq Na

= Na \cap N.

Therefore $Na = Na \cap N = Na N$.

This implies that Nab = (Na)b = (Na N)b = Na Nb = Na \cap Nb.

This proves (iv).

(v) Let P be a non-zero N-subgroup of N.

Suppose there exists an N-subgroup Q of N such that $P \cap Q = \{0\}$.

Then by (i) $PQ = \{0\}$ and since N is an integral near-ring $Q = \{0\}$.

This proves (v).

Theorem:2.2

Let N be a regular quasi weak commutative near-ring and P be a proper N-subgroup of N.Then the following are equivalent

(i) P is a prime ideal.

(ii) P is a completely prime ideal.

(iii) P is a primary ideal.

(iv) P is a maximal ideal.

Proof:

(i) \Rightarrow (ii) Let P be a proper N-subgroup of N. Assume P is prime.Let ab ε P. By Lemma 2.1(iv) Na Nb = Nab \subseteq NP \subseteq P. Also by Result1.19[4],Na and Nb are ideals of N. Since P is prime, Na Nb \subseteq P implies Na \subseteq P (or) Nb \subseteq P. Since N is regular,there exists x,y ε N such that a = axa and b = byb. If $Na \subseteq P$, then $a = axa \varepsilon Na \subseteq P$ or if $Nb \subseteq P$, then $b = byb \varepsilon Nb \subseteq P$. (i.e) $a\epsilon P$ or $b\epsilon P$ and hence P is completely prime. (ii) \Rightarrow (i) is obvious. $(ii) \Rightarrow (iii)$ Let a, b ϵ N.By Lemma 2.1(iv) Nab = Na \cap Nb. Since $Na \cap Nb = Nb \cap Na$, Nab = Nba for all $a, b \in N$. Hence for all a,b,c ε N. Nabc = Nacb = Nbca = Nbac = Ncab = Ncba. Suppose abc ε P and ab \notin P,by (ii) c ε P. Again suppose abc ε P and ac \notin P. Since N is regular, acb ε Nacb \subseteq NP \subseteq P. Thus acb = (ac)b ε P implies b ε P (by(ii)). Continuing in the sameway, we can easily prove that if abceP and if the product of any two of a,b,c doesnot belong to P, then the third belongs to P: This proves (iii). $(iii) \Rightarrow (i)$ Let $ab \in P$ and $a \notin P$. Since N is regular a = axa for some $x \in N$. We shall first prove that $xa \notin P$. Suppose xa ε P, then a = axa = a(xa) ε NP \subseteq P, which is a contradiction. Therefore $xa \notin P$. Also x(ab) ε NP \subseteq P.Thus xab ε P and xa \notin P. As P is a primary ideal of N,bk εP for some integer k.Now bk εP implies $b\varepsilon\sqrt{P}$ P.But by Result1.18[4] \sqrt{P} = P.So b ε P. This proves (ii). (i) \Rightarrow (iv) Let J be an ideal of N such that $P \subseteq J \subseteq N$. Suppose P = J, there is nothing to prove. So,assume $P \subset J$.We shall prove that J = N. Let a ε J\ P.Since N is regular there exists x ε N such that a = axa. Then $a = (xa)a = xa^2$ (quasi weak commutative). So, for all $n \in N$, $na = nxa^2$ and this implies (n - nxa) a = 0. Since N has $I \subset P$, we get n - nxa) ya = 0 for all y ε N. Consequently, N(n-nxa) Na = N0 = $\{0\}$. If b = (n-nxa) then Na Nb = Nab = $\{0\} \subseteq P$. Since P is a prime ideal and Na and Nb are ideals in N, Na \subseteq P or Nb \subset P. If Na \subseteq P, then a = axa ε P which is a contradiction. Hence $Nb \subseteq P \subseteq J$. Since N is regular, there exists y ε N such that b = byb, (i.e) b = (by)b ε Nb \subseteq J. (i.e) b = n-nxa ε J.Since a ε J, nxa ε nJ \subseteq J. (By Lemma 1.4) Therefore $n\varepsilon$ J.Hence J = N.So P is maximal. $(v) \Rightarrow (i)$ is obvious.

This completes the proof of the theorem.

Theorem:2.3

Any quasi-weak commutative near-ring N with left identity is commutative.

Proof:

Let a,b ε N and e ε N be the identity.

Then ab = abe = bae (quasi weak commutative).

= ba

Hence N is commutative.

Theorem: 2.4

Let N be a subdirectly irreducible quasi weak commutative near-ring.

Then either N is simple with each non-zero idempotent element is an identity or the intersection of the non-zero ideals of N has no non-zero idempotents.

Proof:

Let N be a subdirectly irreducible quasi weak commutative near-ring.

Suppose that N is simple.

Let e ε N be a non-zero idempotent element.

Then by Result1.8[4] N has IFP.By Theorem1.20 [4], (0:e) is an ideal.

Since $e \notin (0:e)$ and N is simple, we get $(0:e) = \{0\}$.

Hence (ene - en)e = ene² - ene = ene - ene = 0 for all n ε N.

This implies (ene - en) ε (0: e) = {0}.

Hence ene - en = 0.

(i.e) ene = en \cdots (1)

Also since N is quasi weak commutative,

 $ene = nee = ne^2 = ne \cdots (2)$

(1) and (2) gives $ne = en \cdots$ (3)

Also (ne - n)e = ne² - ne = ne - ne = 0 for all n ε N.

This implies ne - n = $0 \cdots (4)$

(3) and (4) gives

ne = en = n. Hence e is an identity of N.

Suppose N is not simple.

Let I be the intersection of non-zero ideals of N.Since N is subdirectly irreducible, we have $I \neq \{0\}$.

Suppose that I contains a non-zero idempotent e.

We claim that e is a right identity.

If not, there exists $n \epsilon N$ such that $n \epsilon \neq n$.

Hence ne - n \neq 0.Since (ne - n)e = 0.

We have ne - n ε (0:e) and hence (0:e) is a non-zero ideal of N.

Therefore I \subseteq (0:e).Hence $e\varepsilon I \subseteq$ (0:e)

(i.e) e ε (0:e). This contradiction leads to conclude that e is a right identity of N. Hence for all n ε N, n = ne ε NI \subseteq I.

This implies that $I = N_{a}$ again a contradiction. Hence the intersection of the non-zero ideals of N has no non-zero idempotents.

This proves the theorem.

Theorem:2.5

Let N be a regular quasi weak commutative near-ring.

Then the following are equivalent

(i) N is subdirectly irreducible.

(ii) Non-zero idempotents of N are not zero divisors.

(iii) N is simple.

Proof:

 $(\mathrm{i}) \Rightarrow (\mathrm{ii})$

Let J be the set of all non-zero idempotents in N which are zero divisor too.We shall prove that J is empty.If J is not empty, let $I = \bigcap \{(0 : e) / e\varepsilon J\}$.

Since N is sub-directly irreducible, $I \neq 0$ by Result1.8([6],[3])

Let $0 \neq a \epsilon I$.

Since N is regular, there exists an element $b \in N$ such that $a = aba \cdots (1)$

Also ab, ba are idempotents. Since $0 \neq a \epsilon I$, as = 0 for all $e \epsilon J \cdots (2)$

Then (ae)b = 0.

Since N is zero symmetric b(ae) = 0.

(i.e) (ba)e = 0. Hence ba is a zero divisor and so ba $\varepsilon J.$

So by (2) a(ba) = 0.

This is a contradiction as a \neq 0.Hence J is empty.

 $(\mathrm{ii}) \Rightarrow (\mathrm{iii})$

Let I be a non-zero ideal of N and $0 \neq x \epsilon I$.

Since N is regular, there exists $y \in N$ such that $x = xyx \cdots (3)$

Also yx is an idempotent element of N.

Therefore for every $n \in N$, nx = nxyx.

(i.e) (n-nxy)x = 0.Since N has IFP, (n-nyx)yx = 0.By (ii) n-nxy = 0

(i.e) for every $n \in \mathbb{N}$, $n = nxy \in NIN \subset I$.

Thus $N \subseteq I$. This proves that N has no non-trivial ideal of N.

So N is Simple.

 $(iv) \Rightarrow (i)$

This follows from the Result 1.9.

Corollary:2.6

Let N be a regular quasi weak commutative near-ring. Then N is subdirectly irreducible if and only if N is a field.

Proof: By theorem 2.4 and 2.5 every non-zero idempotent is an identity.

Since N is regular,

a = aba for some b ε N · · · · · (1)

a = (ba)a

That is inverse exists for every a ε N.

Hence N is a field. The converse is obvious.

Theorem:2.7

Let N be a regular quasi weak commutative near-ring. Then N is isomorphic to a subdirect product of fields.

Proof:

By Result1.21[4] N is isomorphic to a subdirect product of subdirectly irreducible quasi weak commutative near-rings N_k 's, each N_k is regular and quasi weak commutative. Then the proof follows from the above corollary.

Corollary:2.8

Let N be a regular quasi weak commutative near-ring. Then N has no non-zero zero divisors if and only if N is a field.

Proof:

Follows from the theorem.

References

- [1] Foster.A.L, The theory of Boolean like rings, Trans. Amer. Math. Soc, Vol. 59, 1946.
- [2] Gopalakrishnamoorthy.G, Kamaraj.M and Geetha.S, On Quasi weak commutative near-ring, Int.Jour. of Math. Research, Vol.5, No 5, 2013, 431-440.
- [3] Gopalakrishnamoorthy.G and Anitha.S, On Commutativity Property of $Q_{k,n}, Q_{k,\infty}, P_{k,n}, P_{\infty}$ and Q^{∞} Rings, Jour. Of Inst. Of Mathematics and Computer Sciences, Vol. 23, No. 2 (2010) 63-70.
- [4] Ketsela Hailu, Berhanu Bekele Belayneh, Zelabesm Teshome and K.Venkateswarlu, Boolean like semi ring of fractions, Inter. Jour of Math. Archive, Vol 3 No 4, 2012, 1554-1560.
- [5] Pliz. Gunter, Near-Rings, The theory and its applications, North Holland, 1983.
- [6] Swaminathan.V, Boolean-like rings, Ph.D. dissertation, Andhra University, India, 1982.
- [7] Swaminathan.V, On Fosters Boolean-like rings, Math. Seminar Notes, Kobe University, Japan, Vol 8, 1980, 347-367.
- [8] Uma.S, Balakrishnan.R and Tamizh Chelvam.T, Pseudo Commutative near-rins, Scientia Magna, Vol 6, No 2, 2010, 75-85.
- [9] Yaqub.A, A generalization of certain Rings of A.L. Foster, University of California, 1962.

Received: October 10, 2014; Accepted: March 23, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/