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Global stability of mutualistic interactions among three species

population model with continuous time delay
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Abstract

This paper deals with the study on a mathematical model consisting of mutualistic interactions among three species

with continuous time delay. The delay kernels are being convex combinations of suitable nonnegative and normalized

functions, the linear chain trick gives an expanded system of ordinary differential equations with the same stability

properties as the original integro-differential system. Global stability is discussed by constructing Lyapunov function.

It has been shown that equilibrium state of the model is globally stable. Finally, numerical simulations supporting our

theoretical results are also included.
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1 Introduction

The study of equations describing population growth is very interesting and challenging mathematically
as well as biologically to discuss the problems on global stability. In the biological process of evolution, the
population of one species does not respond instantaneously to interact with other species. To incorporate this
role in a modeling approach, time delay models have been developed. Gopalsamy K. [5] and Kuang Y. [9]
discussed the necessity of delay differential equation models, see also Beretta E. and Takeuchi [1], Busekros
A. W. [2], Cushing J. M. [3], Gopalsamy K. [6], Hale J. K. and Waltman P. [7], Harlan S. W. [8], Mc Donald
N. [10], and Solimano F. and Beretta E. [13]. Relatively less attention has been given to the study of three
species model with continuous time delay and their dynamical behavior. This motivates the authors to study
mutualistic interactions among three species population model with continuous time delay.

The main purpose of this paper is to establish global stability of three species mutualistic system with
continuous time delay. In section 2, we introduce our mathematical model. In section 3, we discuss global
stability about the biologically feasible equilibrium point of the model by constructing a Lyapunov functional.
In section 4, we illustrate our results by some examples. We conclude with a short discussion in section 5.

2 Mathematical Model

In this section, we consider a mathematical model for three mutually interacting species with continuous
time delay is given by the following integro-differential equations:

dN1

dt
= N1

(
a1 − α11N1 + α12

∫ t

−∞
k2(t− s)N2(s)ds + α13

∫ t

−∞
k3(t− s)N3(s)ds

)
,

dN2

dt
= N2

(
a2 − α22N2 + α21

∫ t

−∞
k1(t− s)N1(s)ds + α23

∫ t

−∞
k3(t− s)N3(s)ds

)
,
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dN3

dt
= N3

(
a3 − α33N3 + α31

∫ t

−∞
k1(t− s)N1(s)ds + α32

∫ t

−∞
k2(t− s)N2(s)ds

)
, (2.1)

where Ni, i = 1, 2, 3 represent the population density of first, second and third species respectively, ai represent
the intrinsic growth rate of first, second and third species respectively, αii, i = 1, 2, 3 represent the rate of
decrease of first, second and third species due to limited resources, α12 is the mutual coefficient of second
species to first species, α13 is the mutual coefficient of third species to first species, α21 is the mutual coefficient
of first species to second species, α23 is the mutual coefficient of third species to second species, α31 is the
mutual coefficient of first species to third species, α32 is the mutual coefficient of second species to third
species, ki(t) called the delay kernels, are weighting factors which indicating how much emphasis should be
given to the size of the population at earlier times to determine the present effect on resources availability.
Here ai, αii, i = 1, 2, 3, and α12, α13, α21, α23, α31, α32 are assumed to be nonnegative constants. Usually the
delay kernels are normalized so that ∫ ∞

0

ki(u)du = 1 i = 1, 2, 3.

We assume that every kernel ki appearing in system (2.1) is a normalized convex combination of functions

k(u) =
βnun−1e−βu

(n− 1)!
n = 1, 2, ..

with β > 0 is a constant, n an integer. When n = 1, the kernel is k(u) = βe−βu. Therefore, the system (2.1)
becomes

dN1

dt
= N1

(
a1 − α11N1 + α12

∫ t

−∞
βe−β(t−s)N2(s)ds + α13

∫ t

−∞
βe−β(t−s)N3(s)ds

)
,

dN2

dt
= N2

(
a2 − α22N2 + α21

∫ t

−∞
βe−β(t−s)N1(s)ds + α23

∫ t

−∞
βe−β(t−s)N3(s)ds

)
,

dN3

dt
= N3

(
a3 − α33N3 + α31

∫ t

−∞
βe−β(t−s)N1(s)ds + α32

∫ t

−∞
βe−β(t−s)N2(s)ds

)
, (2.2)

where using linear chain trick, define

P1(t) =
∫ t

−∞
βe−β(t−s)N1(s)ds,

P2(t) =
∫ t

−∞
βe−β(t−s)N2(s)ds,

P3(t) =
∫ t

−∞
βe−β(t−s)N3(s)ds.

Therefore, the system (2.2) is equivalent to the following system of six ordinary differential equations.

dN1

dt
= N1(a1 − α11N1 + α12P2 + α13P3),

dN2

dt
= N2(a2 − α22N2 + α21P1 + α23P3),

dN3

dt
= N3(a3 − α33N3 + α31P1 + α32P2),

dP1

dt
= β(N1 − P1),

dP2

dt
= β(N2 − P2),

dP3

dt
= β(N3 − P3). (2.3)

3 Stability Analysis

In this section, the existence of the unique positive biologically feasible equilibrium point of the system
(2.3) and local and global stabilities are investigated. The equilibrium point E1(N∗

1 , N∗
2 , N∗

3 , P ∗1 , P ∗2 , P ∗3 ) exists
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if and only if there is a unique positive solution to the following equations.

−α11N1 + α12P2 + α13P3 = −a1,

−α22N2 + α21P1 + α23P3 = −a2,

−α33N3 + α31P1 + α32P2 = −a3,

β(N1 − P1) = 0,

β(N2 − P2) = 0,

β(N3 − P3) = 0,

provided that the four conditions

(C1) a1α22α33 + a2(α12α33 + α13α32) + a3(α12α23 + α13α22) > a1α23α32,

(C2) a1(α21α33 + α23α31) + a2α11α33 + a3(α11α23 + α13α21) > a2α13α31,

(C3) a1(α22α31 + α21α32) + a2(α11α32 + α12α31) + a3α11α22 > a3α12α21,

(C4) α11α22α33 > α11α23α32 + α12α21α33 + α12α23α31 + α13α22α31 + α13α21α32,

hold, where

N∗
1 = P ∗1 =

[
a1(α22α33 − α23α32) + a2(α12α33 + α13α32 + a3(α12α23 + α13α22)

]/[
α11α22α33 − α11α23α32

− α12α21α33 − α12α23α31 − α13α22α31 − α13α21α32

]
,

N∗
2 = P ∗2 =

[
a1(α21α33 + α23α31) + a2(α11α33 − α13α31) + a3(α11α23 + α13α21)

]/[
α11α22α33 − α11α23α32

− α12α21α33 − α12α23α31 − α13α22α31 − α13α21α32

]
,

N∗
3 = P ∗3 =

[
a1(α22α31 + α21α32) + a2(α11α32 + α12α31) + a3(α11α22 − α12α21)

]/[
α11α22α33 − α11α23α32

− α12α21α33 − α12α23α31 − α13α22α31 − α13α21α32

]
.

We note that the equilibrium point E1 of the system (2.3) is also an equilibrium point of the system (2.1)
with the kernel βe−βu. To discuss the local stability of the system (2.3), we compute variational matrix about
equilibrium point E1 as

J1(N∗
1 , N∗

2 , N∗
3 , P ∗1 , P ∗2 , P ∗3 ) =

−α11N
∗
1 0 0 0 α12N

∗
1 α13N

∗
1

0 −α22N
∗
2 0 α21N

∗
2 0 α23N

∗
2

0 0 −α33N
∗
3 α31N

∗
3 α32N

∗
3 0

β 0 0 −β 0 0
0 β 0 0 −β 0
0 0 β 0 0 −β


The characteristic equation of the above variational matrix about equilibrium point E1 is

λ6 + k1λ
5 + k2λ

4 + k3λ
3 + k4λ

2 + k5λ + k6 = 0,

where,

k1 =3β + α11N
∗
1 + α22N

∗
2 + α33N

∗
3

k2 =3β2 + 3
(

α11N
∗
1 + α22N

∗
2 + α33N

∗
3

)
β + α11α22N

∗
1 N∗

2 + α22α33N
∗
2 N∗

3 + α11α33N
∗
1 N∗

3
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k3 =β3 + 3
(

α11N
∗
1 + α22N

∗
2 + α33N

∗
3

)
β2 + 3

(
α11α22N

∗
1 N∗

2 + α22α33N
∗
2 N∗

3 + α11α33N
∗
1 N∗

3

)
β

+ α11α22α33N
∗
1 N∗

2 N∗
3

k4 =
(

α11N
∗
1 + α22N

∗
2 + α33N

∗
3

)
β3 +

[(
3α11α22 − α12α21

)
N∗

1 N∗
2 +

(
3α22α33 − α23α32

)
N∗

2 N∗
3

+
(

3α11α33 − α13α31

)
N∗

1 N∗
3

]
β2 + 3α11α22α33N

∗
1 N∗

2 N∗
3 β

k5 =
[(

α11α22 − α12α21

)
N∗

1 N∗
2 +

(
α22α33 − α23α32

)
N∗

2 N∗
3 +

(
α11α33 − α13α31

)
N∗

1 N∗
3

]
β3

+
(

3α11α22α33 − α11α23α32 − α12α21α33 − α13α22α31

)
N∗

1 N∗
2 N∗

3 β2

k6 =
(

α11α22α33 − α11α23α32 − α12α21α33 − α12α23α31 − α13α22α31 − α13α21α32

)
N∗

1 N∗
2 N∗

3 β3.

It is very difficult to find the roots or apply Routh-Hurwitz criteria. Therefore, we conclude that if all the roots
have negative real part then the system (2.3) is stable (see numerical examples in Section 4).
Now we establishes the global stability of the system (2.3) by constructing a suitable Lyapunov function in the
following theorem.

Theorem 3.1. The positive equilibrium point E1(N∗
1 , N∗

2 , N∗
3 , P ∗1 , P ∗2 , P ∗3 ) of the system (2.3) is globally stable,

if

2α11 > α2
12 + α2

13 + 4

2α22 > α2
21 + α2

23 + 4

2α33 > α2
31 + α2

32 + 4

holds.

Proof. The proof can be reached by using a Lyapunov stability theorem which gives a sufficient condition.
Now, let us consider a positive definite function

V (N1, N2, N3) = V1(N1) + V2(N2) + V3(N3) + V4(P1) + V5(P2) + V6(P3)

where,

V1(N1) = 2
(

N1 −N∗
1 −N∗

1 ln
N1

N∗
1

)
,

V2(N2) = 2
(

N2 −N∗
2 −N∗

2 ln
N2

N∗
2

)
,

V3(N3) = 2
(

N3 −N∗
3 −N∗

3 ln
N3

N∗
3

)
,

V4(P1) =
2
β

(P1 − P ∗1 )2,

V5(P2) =
2
β

(P2 − P ∗2 )2,

V6(P3) =
2
β

(P3 − P ∗3 )2,

on H = {(N1, N2, N3, P1, P2, P3) | N1 > 0, N2 > 0, N3 > 0, P1 > 0, P2 > 0, P3 > 0}. It is obvious that
V (N1, N2, N3, P1, P2, P3) ∈ C1(H,R) and V (N∗

1 , N∗
2 , N∗

3 , P ∗1 , P ∗2 , P ∗3 ) = 0. The function V (N1, N2, N3, P1, P2, P3)
satisfies

V (N1, N2, N3, P1, P2, P3) > V (N∗
1 , N∗

2 , N∗
3 , P ∗1 , P ∗2 , P ∗3 ) = 0

which holds for all V (N1, N2, N3, P1, P2, P3) ∈ H−{E1}. Then the time derivative of V (N1, N2, N3, P1, P2, P3)
computed along the solution of the system (2.3) is

dV

dt
= 2

[
− α11(N1 −N∗

1 )2 − α22(N2 −N∗
2 )2 − α33(N3 −N∗

3 )2
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+ α12(N1 −N∗
1 )(P2 − P ∗2 ) + α13(N1 −N∗

1 )(P3 − P ∗3 )

+ α21(N2 −N∗
2 )(P1 − P ∗1 ) + α23(N2 −N∗

2 )(P3 − P ∗3 )

+ α31(N3 −N∗
3 )(P1 − P ∗1 ) + α32(N3 −N∗

3 )(P2 − P ∗2 )
]

+ 4
[
(N1 −N∗

1 )(P1 − P ∗1 ) + (N2 −N∗
2 )(P2 − P ∗2 )

+ (N3 −N∗
3 )(P3 − P ∗3 )− (P1 − P ∗1 )2 − (P2 − P ∗2 )2 − (P3 − P ∗3 )2

]
= −(P1 − P ∗1 )2 − (P2 − P ∗2 )2 − (P3 − P ∗3 )2 −

[
2α11 − α2

12

− α2
13 − 4

]
(N1 −N∗

1 )2 −
[
2α22 − α2

21 − α2
23 − 4

]
(N2 −N∗

2 )2

−
[
2α33 − α2

31 − α2
32 − 4

]
(N3 −N∗

3 )2 −
[
α12(N1 −N∗

1 )− (P2 − P ∗2 )
]2

−
[
α13(N1 −N∗

1 )− (P3 − P ∗3 )
]2

−
[
α21(N2 −N∗

2 )− (P1 − P ∗1 )
]2

−
[
α23(N2 −N∗

2 )− (P3 − P ∗3 )
]2

−
[
α31(N3 −N∗

3 )− (P1 − P ∗1 )
]2

−
[
α32(N3 −N∗

3 )− (P2 − P ∗2 )
]2

< 0

This shows that dV
dt < 0 on H. Therefore, the function V is a Lyapunov function with respect to E1. Hence,

the equilibrium point E1 is globally asymptotically stable on H.

Consequently, we have the following result.

Theorem 3.2. The equilibrium point (N∗
1 , N∗

2 , N∗
3 ) of the system (2.1) with a kernel k(u) = βe−βu is globally

stable.

4 Numerical Simulations

To check the feasibility of our analysis regarding stability conditions, we have conducted some numerical
computation by choosing the following set of parameters values in model system (2.3) as

a1 = 1, a2 = 0.5, a3 = 2, α11 = 1, α12 = 0.1, α13 = 0.3, α21 = 0.2,

α22 = 1.5, α23 = 0.3, α31 = 0.4 α32 = 0.6 α33 = 1.3, β = 8

With the above parameter values, it follows that the system (2.3) is locally stable as shown in Figure 1.
However, even if these parameter do not satisfy the conditions of Theorem 3.1, Figure 2 exhibits that the
system (2.3) seems to be globally stable.
Consider the another set of parameters values in system (2.3) as

a1 = 2, a2 = 4, a3 = 3, α11 = 2.5, α12 = 0.1, α13 = 0.3, α21 = 0.2,

α22 = 3.5, α23 = 0.3, α31 = 0.4 α32 = 0.6 α33 = 3.3

From Theorem 3.1, under these parameters values the system (2.3) is globally stable as shown in the figure 3.
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Figure 1: (a) Time series for N1(t), N2(t) and N3(t). (b) The phase graph with initial condition (1.8879, 1.5409,

2.4459, 1.8879, 1.5409, 2.4459).
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Figure 2: (c) Time series for N1(t), N2(t) and N3(t). (d) The phase graph with initial condition (8, 12, 10, 40, 30, 20).
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Figure 3: (e) Time series for N1(t), N2(t) and N3(t). (f) The phase graph with initial condition (2, 4, 5, 10, 20, 30).

5 Discussion

In this article, local and global stabilities of the three mutually interacting species with continuous time
delay has been investigated. Our numerical simulation shows that even if time delay parameter vary for large
value the system (2.3) remains stable. The approach of study in this article differs from Feng C. H. and Chao P.
H. [4], Mukherjee D. [11], Shukla V. P. [12] and Xia Y. [14] in the sense that it studies two species mutualistic
system with discrete delay. To the best of our knowledge, this paper is the first time to deal with the research
for system (2.1) which belongs to a three species mutualism model with continuous time delay. There is a lot of
work to do in this area. For example it would be interesting to see what the behavior of the model (2.1) would
be when several delays occurs in this system. However less attention has been given to the study of mutualism
as compared to the prey-predator and competition. Thus the present article contributes a few more results on
mutualism model.
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