
Malaya Journal of Matematik 2(1)(2013) 1–10

Oscillation criteria for third order neutral difference equations with
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Abstract

In this paper we study the oscillatory behavior of third order neutral difference equation of the form

∆
(
r(n)∆2z(n)

)
+

d∑
s=c

q(n, s)f(x(n + s− σ)) = 0, n ≥ n0 ≥ 0, (0.1)

where z(n) = x(n) +
∑b

s=a p(n, s)x(n + s− τ). We establish some sufficient conditions which ensure that every solution

of the equation (0.1) oscillates or converges to zero by using a generalized Ricaati transformation and Philos - type

technique. An example is given to illustrate the main result.
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1 Introduction

In this paper we consider the oscillatory behavior of third order neutral difference equation of the form

∆
(
r(n)∆2z(n)

)
+

d∑
s=c

q(n, s)f(x(n+ s− σ) = 0, n ∈ N0 (1.1)

where

z(n) = x(n) +
b∑

s=a

p(n, s)x(n+ s− τ), (1.2)

∆ is the forward difference operator defined by ∆x(n) = x(n+ 1)− x(n), N0 = {n0, n0 + 1, n0 + 2, . . .}, n0

is a nonnegative integer, and a, b, c, d ∈ N0 subject to the following conditions:

(C1) {r(n)} is a positive real sequence with
∑∞

n=n0

1
r(n) = ∞;

(C2) {q(n, s)} and {p(n, s)} are nonnegative real sequences with 0 ≤ p(n) ≡
∑b

s=a p(n, s) ≤ P < 1;

(C3) f : R → R is a continuous function such that f(u)
u ≥ L > 0, for u 6= 0.

By a solution of equation (1.1) we mean a real sequence {x(n)} and satisfying equation (1.1) for all n ∈ N0.
We consider only those solution {x(n)} of equation (1.1) which satisfy sup{|x(n)| : n ≥ N} > 0 for all N ∈ N0.
A solution of equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative
and nonoscillatory otherwise.

In recent years there is a great interest in studying the oscillatory behavior of third order difference equa-
tions, see for example [1–5, 7–14] and the references cited therein. Motivated by this observation, in this paper
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we obtain some sufficient conditions for the oscillation of all solution of equation (1.1).

In Section 2, we present some preliminary lemmas and in Section 3, we establish some sufficient conditions
which ensure that all solutions of equation (1.1) are either oscillatory or converges to zero. An example is given
to illustrate the main result.

2 Preliminary Lemmas

In this section, we present some lemmas which will be useful to prove our main results.

Lemma 2.1. Let {x(n)} be a positive solution of equation (1.1) and {z(n)} be defined as in (1.2). Then {z(n)}
satisfies only of the following two cases eventually

(I) z(n) > 0, ∆z(n) > 0, ∆2z(n) > 0;

(II) z(n) > 0, ∆z(n) < 0, ∆2z(n) > 0.

Proof. Assume that {x(n)} is a positive solution of equation (1.1). By definition of {z(n)} we have z(n) >
x(n) > 0 for all n ≥ n0. From the equation (1.1), we have

∆(r(n)∆2z(n)) = −
d∑

s=c

q(n, s)f(x(n+ s− σ) < 0.

Thus r(n)∆2z(n) is a nonincreasing function and therefore eventually of one sign. So ∆2z(n) is either eventually
positive or eventually negative for n ≥ n1 ≥ n0. If ∆2z(n) < 0, then there is constant M > 0 such that

r(n)∆2z(n) ≤ −M < 0, n ≥ n1.

Summing the last inequality from n1 to n− 1, we obtain

∆z(n) ≤ ∆z(n1)−M
n−1∑
s=n1

1
r(s)

.

Letting n→∞, then using condition (C1), we have ∆z(n) → −∞, and therefore ∆z(n) < 0. Since ∆2z(n) < 0
and ∆z(n) < 0, we have z(n) < 0, which is a contradiction to our assumption. This proves that ∆2z(n) > 0
and we have only Case (I) or (II) for {z(n)}. This completes the proof.

Lemma 2.2. Let {x(n)} be a positive solution of equation (1.1), and let the corresponding function {z(n)}
satisfies the Case (II) of Lemma 2.1. If

∞∑
n=n0

∞∑
s=n

[ 1
r(s)

∞∑
t=s

d∑
j=c

q(t, j)
]

= ∞, (2.1)

then limn→∞ x(n) = limn→∞ z(n) = 0.

Proof. Let {x(n)} be a positive solution of equation (1.1), and {z(n)} satisfies Case (II) of Lemma 2.1. Then
there exists ` ≥ 0 such that limn→∞ z(n) = `. We shall prove that ` = 0. Assume that ` > 0, then we have
`+ ε < z(n) < ` for all ε > 0 and n ≥ n1 ≥ n0. Choosing 0 < ε < `(1−P )

P . From (1.2), we have

x(n) = z(n)−
b∑

s=a

p(n, s)x(n+ s− τ)

> `−
b∑

s=a

p(n, s)z(n+ s− τ)

> `− P (`+ ε)

=
`− P (`+ ε)

`+ ε
(`+ ε)

> kz(n) (2.2)
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where k = `−P (`+ε)
`+ε . From the equation (1.1), we have

∆(r(n)∆2z(n)) = −
d∑

s=c

q(n, s)f(x(n+ s− σ)

≤ −
d∑

s=c

q(n, s)Lx(n+ s− σ).

Now using (2.2), we obtain

∆(r(n)∆2z(n)) ≤ −kL
d∑

s=c

q(n, s)z(n+ s− σ).

Summing the last inequality from n to ∞, we have

−r(n)∆2z(n) ≤ −kL
∞∑

t=n

d∑
s=c

q(t, s)z(t+ s− σ)

or

∆2z(n) ≥ kL`
1

r(n)

∞∑
t=n

d∑
s=c

q(t, s).

Summing again from n to ∞, we have

−∆z(n) ≥ kL`

∞∑
s=n

[ 1
r(s)

∞∑
t=s

d∑
j=c

q(t, j)
]
.

Summing the last inequality from n1 to ∞, we obtain

z(n1) ≥ kL`
∞∑

n=n1

∞∑
s=n

[ 1
r(s)

∞∑
t=s

d∑
j=c

q(t, j)
]

which contradicts condition (2.1). Thus ` = 0. Moreover, the inequality 0 < x(n) ≤ z(n) implies that
limn→∞ x(n) = 0. The proof is now complete.

Lemma 2.3. Assume that y(n) > 0, ∆y(n) ≥ 0, ∆2y(n) ≤ 0 for all n ≥ n0. Then for each α ∈ (0, 1) there
exists a N ∈ N0 such that

y(n− σ)
n− σ

≥ α
y(n+ 1)
n+ 1

for all n ≥ N. (2.3)

Proof. From the monotonicity property of {∆y(n)}, we have

y(n+ 1)− y(n− σ) =
n∑

s=n−σ

∆y(s) ≤ (σ + 1)∆y(n− σ)

or
y(n+ 1)
y(n− σ)

≤ 1 +
(σ + 1)∆y(n− σ)

y(n− σ)
. (2.4)

Also,
y(n− σ) ≥ y(n− σ)− y(n0) ≥ (n− σ − n0)∆y(n− σ).

So, for each α ∈ (0, 1), there is a N ∈ N0 such that

y(n− σ)
∆y(n− σ)

≥ α(n− σ), n ≥ N. (2.5)

Combining (2.4) and (2.5), we obtain

y(n+ 1)
y(n− σ)

≤ 1 +
(σ + 1)
α(n− σ)

≤ αn− ασ + σ + 1
α(n− σ)

or
y(n+ 1)
y(n− σ)

≤ (n+ 1)
α(n− σ)

.

This completes the proof.
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Lemma 2.4. Assume that z(n) > 0, ∆z(n) > 0, ∆2z(n) > 0, ∆3z(n) ≤ 0 for all n ≥ N . Then

z(n)
∆z(n)

≥ n−N

2
for all n ≥ N. (2.6)

Proof. From the monotonicity property of {∆2z(n)}, we have

∆z(n) = ∆z(N) +
n−1∑
s=N

∆2z(n) ≥ (n−N)∆2z(n).

Summing from N to n− 1, we obtain

z(n) ≥ z(N) +
n−1∑
s=N

(s−N)∆2z(s)

= z(N) + (n−N)∆z(n)− z(n+ 1) + z(N).

Hence z(n) ≥ (n−N)
2 ∆z(n), n ≥ N . This completes the proof.

3 Main Results

In this section, we obtain new oscillation criteria for the equation (1.1) by using the generalized Riccati
transformation and Philos type technique.

Theorem 3.1. Assume that condition (2.1) holds. If there exists a positive nondecreasing real sequence {ρ(n)}
such that

lim
n→∞

n−1∑
s=N

[
Q(s)− (∆ρ(s))2

4ρ(s+ 1)r(s)

]
= ∞ (3.1)

where

Q(n) = ρ(n)q1(n)
α(n− σ)(n+ c− σ −N)

2(n+ 1)
, (3.2)

and

q1(n) = L(1− P )
d∑

s=c

q(n, s), (3.3)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Assume that {x(n)} is a nonoscillatory solution of equation (1.1). Without loss of generality we may
assume that x(n) > 0, x(n+ s− τ) > 0 for n ≥ n1 ≥ n0 ∈ N0 and {z(n)} is defined as in (1.2). Then {z(n)}
satisfies two cases of Lemma 2.1.
Case(I). Let {z(n)} satisfies Case (I) of Lemma 2.1. From (1.2), we have

x(n) ≥ z(n)−
b∑

s=a

p(n, s)z(n+ s− τ)

≥
(
1−

b∑
s=a

p(n, s)
)
z(n)

≥ (1− P )z(n). (3.4)

Using condition (C3) in equation (1.1), we have

∆(r(n)∆2z(n)) ≤ −
d∑

s=c

q(n, s)Lx(n+ s− σ). (3.5)

Now using (3.4) in inequality (3.5), we obtain

∆(r(n)∆2z(n)) ≤ −L(1− P )
d∑

s=c

q(n, s)z(n+ s− σ)
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≤ −q1(n)z(n+ c− σ). (3.6)

Define

w(n) = ρ(n)
r(n)∆2z(n)

∆z(n)
, n ≥ n1. (3.7)

Then w(n) > 0 for all n ≥ n1 and from (3.6), we have

∆w(n) ≤ −ρ(n)
q1(n)z(n+ c− σ)

∆z(n+ 1)
+

∆ρ(n)
ρ(n+ 1)

w(n+ 1)

− w(n+ 1)
∆2z(n)
∆z(n)

≤ −ρ(n)
q1(n)z(n+ c− σ)

∆z(n+ 1)
+

∆ρ(n)
ρ(n+ 1)

w(n+ 1)

− w2(n+ 1)
ρ(n+ 1)r(n)

. (3.8)

By Lemma 2.3 with y(n) = ∆z(n), we have

1
∆z(n+ 1)

≤ α(n− σ)
n+ 1

1
∆z(n− σ)

for all n ≥ N. (3.9)

Unsing (3.9) in (3.8), we obtain

∆w(n) ≤ −ρ(n)q1(n)
α(n− σ)
n+ 1

z(n+ c− σ)
∆z(n− σ)

+
∆ρ(n)
ρ(n+ 1)

w(n+ 1)

− w2(n+ 1)
ρ(n+ 1)r(n)

.

Now applying Lemma 2.4 in the last inequality, we obtain

∆w(n) ≤ −ρ(n)q1(n)
α(n− σ)
n+ 1

(n+ c− σ −N)
2

+
∆ρ(n)
ρ(n+ 1)

w(n+ 1)− w2(n+ 1)
ρ(n+ 1)r(n)

≤ −Q(n) +A(n)w(n+ 1)−B(n)w2(n+ 1)

or
Q(n) ≤ −∆w(n) +A(n)w(n+ 1)−B(n)w2(n+ 1) (3.10)

where

A(n) =
∆ρ(n)
ρ(n+ 1)

, B(n) =
1

ρ(n+ 1)r(n)
.

Now, using completing the square, we have

Q(n)− (A(n))2

4B(n)
≤ −∆w(n).

Summing the last inequality from N to n− 1, we have

n−1∑
s=N

(
Q(s)− (∆ρ(s))2

4ρ(s+ 1)r(s)

)
≤ w(N)− w(n) ≤ w(N).

Letting n→∞, we obtain a contradiction to (3.1).
If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have limn→∞ x(n) = 0. This completes
the proof.

Before stating the next theorem, we define functions h, H : N0 × N0 → R such that

(i) H(n, n) = 0 for n ≥ n0 ≥ 0;
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(ii) H(n, s) > 0 for n > s ≥ n0;

(iii) ∆2H(n, s) = H(n, s + 1) −H(n, s) ≤ 0 for n > s ≥ n0 and there exists a positive real sequence {ρ(n)}
such that

∆2H(n, s) +
∆ρ(s)
ρ(s+ 1)

H(n, s) = −h(n, s)
√
H(n, s)

for n > s ≥ n0.

Theorem 3.2. Assume that (2.1) holds. If there exists a positive real sequence {ρ(n)} such that

lim
n→∞

sup
1

H(n, n0)

n−1∑
s=n0

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
= ∞, (3.11)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Assume that {x(n)} is a nonoscillatory solution of equation (1.1). Proceeding as the proof of Theorem
3.1, we have (3.10). Now multiplying the inequality (3.10) by H(n, s), then summing the resulting inequality
from n2 to n− 1 for all n ≥ n2 ≥ n0, we have

n−1∑
s=n2

H(n, s)Q(s) ≤ −
n−1∑
s=n2

∆w(s)H(n, s)

+
n−1∑
s=n2

(A(s)w(s+ 1)−B(s)w2(s+ 1))H(n, s).

By summation by parts, we obtain

n−1∑
s=n2

H(n, s)Q(s)

≤ H(n, n2)w(n2) +
n−1∑
s=n2

w(s+ 1)∆2H(n, s)

+
n−1∑
s=n2

A(s)w(s+ 1)H(n, s)−
n−1∑
s=n2

B(s)w2(s+ 1)H(n, s)

≤ H(n, n2)w(n2) +
n−1∑
s=n2

[
∆2H(n, s) +

∆ρ(s)
ρ(s+ 1)

H(n, s)
]
×

w(s+ 1)−
n−1∑
s=n2

B(s)w2(s+ 1)H(n, s). (3.12)

Using completing the square in the last inequality, we obtain

n−1∑
s=n2

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
≤ H(n, n2)w(n2)

or
1

H(n, n2)

n−1∑
s=n2

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
≤ w(n2).

Letting n→∞, we obtain a contradiction to (3.1).
If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have limn→∞ x(n) = 0. This completes
the proof.

Corollary 3.1. If H(n, s) = (n− s)β for all n ≥ s ≥ 0 and

lim
n→∞

sup
1
nβ

n−1∑
s=n0

[
(n− s)βQ(s)− 1

4
ρ(s+ 1)r(s)(n− s)β−2

]
= ∞, (3.13)

for every β ≥ 1, then every solution of equation (1.1) is oscillatory.
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Corollary 3.2. If H(n, s) =
(
log n+1

s+1

)β

for all n ≥ s ≥ 0 and

lim
n→∞

sup(log(n+ 1))−β 1
nα

n−1∑
s=n0

[(
log

n+ 1
s+ 1

)β

Q(s)

− 1
4(s+ 1)2

ρ(s+ 1)r(s)
(
log

n+ 1
s+ 1

)β−2]
= ∞, (3.14)

for every β ≥ 1, then every solution of equation (1.1) is oscillatory.

The proof of Corollary 3.1 and 3.2 follows from Theorem 3.2 and hence the details are omitted.

Theorem 3.3. Assume that all conditions of Theorem 3.2 are satisfied except condition (3.11). Also let

0 < infs≥n0

[
lim

n→∞
inf

H(n, s)
H(n, n0)

]
≤ ∞ (3.15)

and

lim
n→∞

sup
1

H(n, n0)

n−1∑
s=n0

ρ(s+ 1)r(s)h2(n, s) <∞ (3.16)

hold. If there exists a positive sequence {ψ(n)} such that

lim
n→∞

sup
n−1∑
s=n0

(ψ(n))2

ρ(s+ 1)r(s)
= ∞ (3.17)

and

lim
n→∞

sup
1

H(n,N)

n−1∑
s=N

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
≥ ψ(N), (3.18)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. Proceeding as in the proof of Theorem 3.2, we obtain (3.12). Using completing the square in (3.12) and
rearranging we obtain

lim
n→∞

sup
1

H(n, n2)

n−1∑
s=n2

[
H(n, s)Q(s)− h2(n, s)

4B(s)

]
≤ w(n2)

− lim
n→∞

inf
1

H(n, n2)

n−1∑
s=n2

[√
H(n, s)B(s)w(s+ 1) +

h(n, s)
2
√
B(s)

]2

for n ≥ n2. It follow from (3.18) that

w(n2) ≥ ψ(n2) + lim
n→∞

inf
1

H(n, n2)
n−1∑
s=n2

[√
H(n, s)B(s)w(s+ 1) +

h(n, s)
2
√
B(s)

]2

,

which means that,
w(n2) ≥ ψ(n2) for n ≥ N (3.19)

and

lim
n→∞

inf
1

H(n, n2)

n−1∑
s=n2

[√
H(n, s)B(s)w(s+ 1) +

h(n, s)
2
√
B(s)

]2

<∞.

Therefore

lim
n→∞

inf
[ 1
H(n, n2)

n−1∑
s=n2

H(n, s)B(s)w2(s+ 1)



8 R. Arul et al. / Oscillation criteria for...

+
1

H(n, n2)

n−1∑
s=n2

h(n, s)
√
H(n, s)w(s+ 1)

+
1
4

1
H(n, n2)

n−1∑
s=n2

h2(n, s)
B(s)

]
<∞.

Then

lim
n→∞

inf
[ 1
H(n, n2)

n−1∑
s=n2

H(n, s)B(s)w2(s+ 1)

+
1

H(n, n2)

n−1∑
s=n2

h(n, s)
√
H(n, s)w(s+ 1)

]
<∞. (3.20)

Define the functions

U(n) =
1

H(n, n2)

n−1∑
s=n2

H(n, s)B(s)w2(s+ 1)

V (n) =
1

H(n, n2)

n−1∑
s=n2

√
H(n, s)h(n, s)w(s+ 1)

Then, the inequality (3.20), implies that

lim
n→∞

inf [U(n) + V (n)] <∞. (3.21)

The rest of the proof is similar to that of Theorem 2 of [6], and hence the details are omitted.
If {z(n)} satisfies Case (II) of Lemma 2.1, then by condition (2.1) we have limn→∞ x(n) = 0. This completes
the proof.

Theorem 3.4. Assume that all conditions of Theorem 3.3 are satisfied except condition (3.16). Also let

lim
n→∞

inf
1

H(n, n0)

n−1∑
s=n0

H(n, s)Q(s) <∞ (3.22)

and

lim
n→∞

inf
1

H(n,N)

n−1∑
s=N

[
H(n, s)Q(s)− 1

4
ρ(s+ 1)r(s)h2(n, s)

]
≥ ψ(N) (3.23)

then every solution of equation (1.1) is either oscillatory or converges to zero.

Proof. The proof is similar to that of Theorem 3.3 and hence the details are omitted.

Now, let us define
H(n, s) = (n− s)β , n ≥ s ≥ 0,

where β ≥ 1 is a constant. Then H(n, n) = 0, for n ≥ 0 and H(n, s) > 0 for n > s ≥ 0. Clearly ∆2H(n, s) ≤ 0
for n > s ≥ 0 and

h(n, s) = [(n− s)β − (n− s− 1)β ](n− s)−(β/2) ≤ β(n− s)(β−2)/2,

for n > s ≥ 0. We see that (3.15) holds,

lim
n→∞

H(n, s)
H(n, n0)

= lim
n→∞

(n− s)β

nβ
= 1.

Hence, by Theorems 3.3 and 3.4, we have the following two corollaries.
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Corollary 3.3. Let β ≥ 1 be a constant, and suppose that

lim
n→∞

sup
1
nβ

n−1∑
s=n0

βρ(s+ 1)r(s)(n− s)β−2 <∞. (3.24)

If there is a sequence {ψ(n)} satisfying (3.17) and

lim
n→∞

sup
1

(n−N)β

n−1∑
s=N

[
(n− s)βQ(s)− β2

4
ρ(s+ 1)r(s)(n− s)β−2

]
≥ ψ(N) (3.25)

then every solution of equation (1.1) is oscillatory or converges to zero.

Proof. The proof follows from Theorem 3.3 and hence the details are omitted.

Corollary 3.4. Let β ≥ 1 be a constant, and suppose that

lim
n→∞

inf
1
nβ

n−1∑
s=n0

(n− s)βQ(s) <∞. (3.26)

If there is a sequence {ψ(n)} satisfying (3.17) and

lim
n→∞

inf
1

(n−N)β

n−1∑
s=N

[
(n− s)βQ(s)− β2

4
ρ(s+ 1)r(s)(n− s)β−2

]
≥ ψ(N) (3.27)

then every solution of equation (1.1) is oscillatory or converges to zero.

Proof. The proof follows from Theorem 3.4 and hence the details are omitted.

We conclude this paper with the following example.

4 An example

Consider the difference equation

∆
(
n∆2

(
x(n) +

2∑
s=1

1
2
x(n+ s− 1)

))
+

2∑
s=1

(
4n+

4
3
s
)
x(n+ s− 1) = 0. (4.1)

Here r(n) = n, p(n, s) = 1
2 , q(n, s) = 4n + 4

3s, σ = τ = 1, a = 1, b = 2, c = 1 and d = 2. It is easy to see
that all conditions of Theorem 3.1 are satisfied. Hence every solution of equation (4.1) is oscillatory. In fact
{xn} = {(−1)n} is one such oscillatory solution of equation (4.1).
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