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Abstract

In the present paper we introduce difference entire sequence spaces of fuzzy numbers defined by a sequence of Orlicz

functions. We also make an effort to study some topological properties and inclusion relations between these spaces.
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1 Introduction and Preliminaries

Fuzzy set theory, compared to other mathematical theories, is perhaps the most easily adaptable theory to
practice. The main reason is that a fuzzy set has the property of relativity, variability and inexactness in the
definition of its elements. Instead of defining an entity in calculus by assuming that its role is exactly known,
we can use fuzzy sets to define the same entity by allowing possible deviations and inexactness in its role.
This representation suits well the uncertainties encountered in practical life, which make fuzzy sets a valuable
mathematical tool. The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [16]
and subsequently several authors have discussed various aspects of the theory and applications of fuzzy sets
such as fuzzy topological spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy
mathematical programming. Matloka [11] introduced bounded and convergent sequences of fuzzy numbers and
studied some of their properties. For more details about sequence spaces of fuzzy numbers see ([1], [4], [7], [12],
[13], [14], [15]) and references therein.

The notion of difference sequence spaces was introduced by Kızmaz [8], who studied the difference sequence
spaces l∞(∆), c(∆) and c0(∆). The notion was further generalized by Et and Çolak [6] by introducing the
spaces l∞(∆n), c(∆n) and c0(∆n). Let w be the space of all complex or real sequences x = (xk) and let r, s

be non-negative integers, then for Z = l∞, c, c0 we have sequence spaces

Z(∆r
s) = {x = (xk) ∈ w : (∆r

sxk) ∈ Z},

where ∆r
sx = (∆r

sxk) = (∆r−1
s xk−∆r−1

s xk+1) and ∆0xk = xk for all k ∈ N, which is equivalent to the following
binomial representation

∆r
sxk =

r∑
v=0

(−1)v

(
r

v

)
xk+sv.

Taking s = 1, we get the spaces which were introduced and studied by Et and Çolak [6]. Taking r = s = 1, we
get the spaces which were introduced and studied by Kızmaz [8].

An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and convex function such that
M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.
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Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the following sequence space,

`M =
{

x ∈ w :
∞∑

k=1

M
( |xk|

ρ

)
< ∞

}
which is called as an Orlicz sequence space. Also `M is a Banach space with the norm

||x|| = inf
{

ρ > 0 :
∞∑

k=1

M
( |xk|

ρ

)
≤ 1

}
.

Also, it was shown in [9] that every Orlicz sequence space `M contains a subspace isomorphic to `p(p ≥ 1).
An Orlicz function M satisfies ∆2−condition if and only if for any constant L > 1 there exists a constant K(L)
such that M(Lu) ≤ K(L)M(u) for all values of u ≥ 0. An Orlicz function M can always be represented in the
following integral form

M(x) =
∫ x

0

η(t)dt

where η is known as the kernel of M , is right differentiable for t ≥ 0, η(0) = 0, η(t) > 0, η is non-decreasing
and η(t) →∞ as t →∞.

Let D be the set of all bounded intervals A = [A,A] on the real line R. For A,B ∈ D, define A ≤ B if and
only if A ≤ B and A ≤ B, d(A,B) = max{A−B,A−B}.
Then it can be easily see that d defines a metric on D and (D, d) is complete metric space (see [5]).

A fuzzy number is fuzzy subset of the real line R which is bounded, convex and normal. Let L(R) denote
the set of all fuzzy numbers which are upper semi continuous and have compact support, i.e. if X ∈ L(R) then
for any α ∈ [0, 1], Xα is compact where

Xα =
{

t : X(t) ≥ α, if 0 < α ≤ 1,

t : X(t) > 0, if α = 0.

For each 0 < α ≤ 1, the α-level set Xα is a non-empty compact subset of R. The linear structure of L(R)
includes addition X + Y and scalar multiplication λX, (λa scalar) in terms of α-level sets, by

[X + Y ]α = [X]α + [Y ]α

and
[λX]α = λ[X]α,

for each 0 ≤ α ≤ 1.

Define a map d̄ : L(R)× L(R) → R by

d̄(X, Y ) = sup
0≤α≤1

d(Xα, Y α).

For X, Y ∈ L(R) define X ≤ Y if and only if Xα ≤ Y α for any α ∈ [0, 1]. It is known that (L(R, d̄)) is a
complete metric space (see [11]).

A sequence X = (Xk) of fuzzy numbers is a function X from the set N of natural numbers into L(R). The
fuzzy number Xn denotes the value of the function at n ∈ N and is called the nth term of the sequence.

In this paper we define difference entire sequence spaces of fuzzy numbers by using regular matrices A =
(ank), (n, k = 1, 2, 3, · · · ). By the regularity of A we mean that the matrix which transform convergent sequence
into a convergent sequence leaving the limit (see [10]). We denote by w(F ) the set of all sequences X = (Xk)
of fuzzy numbers.

Let X = (Xk) be a sequence of fuzzy numbers, A = (ank) n, k = 1, 2, 3, · · · be a non-negative regular matrix
and M = (Mk) be a sequence of Orlicz functions. Now, we define the following sequence spaces in this paper :
ΓM(F,A, p,∆r

s) ={
X = (Xk) :

∑
k

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

→ 0 as k →∞, for some ρ > 0
}
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and
ΛM(F,A, p,∆r

s) ={
X = (Xk) : sup

n

( ∑
k

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
)

< ∞, for some ρ > 0
}

.

If A = I, the unit matrix, we get the above spaces as follows :
ΓM(F, p, ∆r

s) = {
X = (Xk) :

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

→ 0 as k →∞, for some ρ > 0
}

and
ΛM(F, p, ∆r

s) = {
X = (Xk) : sup

n

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

< ∞, for some ρ > 0
}

.

If we take M(x) = x, we get
Γ(F,A, p,∆r

s) = {
X = (Xk) :

∑
k

ank

[
d̄

(
|∆r

sXk|
1
k

ρ
, 0

)]pk

→ 0 as k →∞, for some ρ > 0
}

and
Λ(F,A, p,∆r

s) = {
X = (Xk) : sup

n

( ∑
k

ank

[
d̄

(
|∆r

sXk|
1
k

ρ
, 0

)]pk
)

< ∞, for some ρ > 0
}

.

If we take p = (pk) = 1 ∀ k, we get
ΓM(F,A, ∆r

s) ={
X = (Xk) :

∑
k

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]
→ 0 as k →∞, for some ρ > 0

}
and
ΛM(F,A, ∆r

s) ={
X = (Xk) : sup

n

( ∑
k

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))])
< ∞, for some ρ > 0

}
.

If A = (ank) is a Cesaro matrix of order 1, i.e.

ank =
{

1
n , k ≤ n,

0, k > n

then we get
ΓM(F, p, ∆r

s) ={
X = (Xk) :

1
n

n∑
k=1

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

→ 0 as k →∞, for some ρ > 0
}

and
ΛM(F, p, ∆r

s) = {
X = (Xk) : sup

n

1
n

n∑
k=1

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

< ∞, for some ρ > 0
}

.
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The space Γ is defined as follows:

Γ =
{

X = (Xk) :
1
n

n∑
k=1

|Xk|
1
k → 0 as k →∞, for some ρ > 0

}
.

The following inequality will be used throughout the paper. Let p = (pk) be a sequence of positive real
numbers with 0 < pk ≤ supk pk = H and let K = max{1, 2H−1}. Then for sequences {ak} and {bk} in the
complex plane, we have

|ak + bk|pk ≤ K(|ak|pk + |bk|pk).

The main purpose of this paper is to study difference entire sequence spaces of fuzzy numbers defined by a
sequence of Orlicz functions. We also studied some topological properties and interesting inclusion relations
between the above defined sequence spaces.

2 Main Results

Proposition 2.1. If d̄ is a translation invariant metric on L(R) then

(i) d̄(X + Y, 0) ≤ d̄(X, 0) + d̄(Y, 0),

(ii) d̄(λX, 0) ≤ |λ|d̄(X, 0), |λ| > 1.

Proof. It is easy to prove so we omit the details.

Theorem 2.2. If M = (Mk) be a sequence of Orlicz functions, then ΓM(F, p, ∆r
s) is a complete metric space

under the metric

d(X, Y ) = sup
n

[
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

s(Xk − Yk)| 1k
ρ

, 0
))]pk

.

Proof. Let X = (Xk), Y = (Yk) ∈ ΓM(F, p, ∆r
s). Let {X(n)} be a Cauchy sequence in ΓM(F, p, ∆r

s). Then
given any ε > 0 there exists a positive integer N depending on ε such that d(X(n), X(m)) < ε, for all n, m ≥ N .
Hence

sup
(n)

[
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sX
(n)
k −∆r

sX
(m)
k | 1k

ρ
, 0

))]pk

< ε ∀m,n ≥ N.

Consequently {X(n)
k } is a Cauchy sequence in the metric space L(R). But L(R) is complete. So, X

(n)
k → Xk

as n →∞. Hence there exists a positive integer n0 such that[
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sX
(n)
k −∆r

sX
(m)
k | 1k

ρ
, 0

))]pk

< ε ∀n > n0.

In particular, we have [
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sX
(n0) −∆r

sXk|
1
k

ρ
, 0

))]pk

< ε.

Now [
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk

≤
[

1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sXk −∆r
sX

(n0)
k | 1k

ρ
, 0

))]pk

+
[

1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sX
(n0)
k | 1k
ρ

, 0
))]pk

≤ ε + 0 as n →∞.

Thus (
1
n

n∑
k=1

d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

)))pk

< ε as n →∞.

This implies that (Xk) ∈ ΓM(F, p, ∆r
s). Hence ΓM(F, p, ∆r

s) is a complete metric space. This completes the
proof.
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Theorem 2.3. Let M = (Mk) be a sequence of Orlicz functions and p = (pk) be a bounded sequence of positive
real numbers, the space ΓM(F, p, ∆r

s) is a linear over the field of complex numbers C.

Proof. Let X = (Xk), Y = (Yk) ∈ ΓM(F, p, ∆r
s) and α, β ∈ C. Then there exist some positive numbers ρ1 and

ρ2 such that
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ1
, 0

))]pk

→ 0 as k →∞

and
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sYk|
1
k

ρ2
, 0

))]pk

→ 0 as k →∞.

Let 1
ρ3

= min
{

1
|α|p

1
ρ1

, 1
|β|p

1
ρ2

}
. Since M is non-decreasing and convex so by using inequality (1.1), we have

n∑
k=1

1
n

[
d̄

(
Mk

(
|∆r

s(αXk + βYk)| 1k
ρ3

, 0
))]pk

≤
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sαXk|
1
k

ρ3
+
|∆r

sβYk|
1
k

ρ3
, 0

))]pk

≤
n∑

k=1

1
n

[
d̄

(
Mk

(
|α| 1k |∆r

sXk|
1
k

ρ3
+
|β| 1k |∆r

sαYk|
1
k

ρ3
, 0

))]pk

≤
n∑

k=1

1
n

[
d̄

(
Mk

(
|α||∆r

sXk|
1
k

ρ3
+
|β||∆r

sαYk|
1
k

ρ3
, 0

))]pk

≤
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ1
+
|∆r

sαYk|
1
k

ρ2
, 0

))]pk

≤ K

n∑
k=1

1
n

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ1
, 0

))]pk

+ K
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

sYk|
1
k

ρ2
, 0

))]pk

→ 0 as k →∞.

Hence
n∑

k=1

1
n

[
d̄

(
Mk

(
|∆r

s(αXk + βYk)| 1k
ρ3

, 0
))]pk

→ 0 as k →∞. Hence ΓM(F, p, ∆r
s) is a linear space. This

completes the proof.

Theorem 2.4. Let M = (Mk) be a sequence of Orlicz functions and p = (pk) be a bounded sequence of positive
real numbers. Then the space ΓM(F,A, p,∆r

s) is complete with respect to the paranorm defined by

g(X) = sup
(k)

( ∑
ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
) 1

H

,

where H = max
{
1, supk(pk/H)

}
and d̄ is translation metric.

Proof. Clearly, g(0) = 0, g(−x) = g(x). It can also be seen easily that g(x+y) ≤ g(x)+g(y) for X = (Xk), Y =
(Yk) in ΓM(F,A, p,∆r

s), since d̄ is translation invariant. Now for any scalar λ, we have |λ|
pk
H < max{1, sup |λ|},

so that g(λx) < max{1, sup |λ|}, λ fixed implies λx → 0. Now, let λ → 0, X fixed for sup |λ| < 1, we have[∑
ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
] 1

H

< ε for N > N(ε).

Also for 1 ≤ n ≤ N , since [∑
ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
] 1

H

< ε,

there exists m such that [ ∞∑
k=m

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
] 1

H

< ε.
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Taking λ small enough, we have[ ∞∑
k=m

ank

[
d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))]pk
] 1

H

< 2ε for all k.

Since g(λX) → 0 as λ → 0. Therefore g is a paranorm on ΓM(F,A, p,∆r
s).

To show the completeness, let (X(i)) be a Cauchy sequence in ΓM(F,A, p,∆r
s). Then for a given ε > 0 there

is r ∈ N such that [∑
ank

[
d̄

(
Mk

(
|∆r

s(X
(i) −X(j))| 1k

ρ
, 0

))]pk
] 1

H

< ε for all i, j > r. (2.1)

Since d̄ is a translation, so equation (2.1) implies that

[∑
ank

[
d̄

(
Mk

(
|∆r

s(X
(i)
k −X

(j)
k )| 1k

ρ
, 0

))]pk
] 1

H

< ε for all i, j > r and each n. (2.2)

Hence [
d̄

(
Mk

(
|∆r

s(X
(i)
k −X

(j)
k )| 1k

ρ
, 0

))]
< ε for all i, j > r.

Therefore (X(i)) is a Cauchy sequence in L(R). Since L(R) is complete, limj→∞Xj
k = Xk. Fixing r0 ≥ r and

letting j →∞, we obtain (2.2) that[∑
ank

[
d̄

(
Mk

(
|∆r

s(X
(i)
k −Xk)| 1k

ρ
, 0

))]]
< ε for all r0 > r, (2.3)

since d̄ is a translation invariant. Hence[∑
ank

[
d̄

(
Mk

(
|∆r

s(X
(i) −X)| 1k
ρ

, 0
))]pk

] 1
H

< ε

i.e. X(i) → X in ΓM(F,A, p,∆r
s). It is easy to see that X ∈ ΓM(F,A, p,∆r

s). Hence ΓM(F,A, p,∆r
s) is

complete. This completes the proof.

Theorem 2.5. Let A = (ank) (n, k = 1, 2, 3, · · · ) be an infinite matrix with complex entries. Then A ∈
ΓM(F,A, p,∆r

s) if and only if given ε > 0 there exists N = N(ε) > 0 such that |ank| < εnNk (n, k = 1, 2, 3, · · · ).

Proof. Let X = (Xk) ∈ Γ and let Yn =
( ∞∑

k=1

ankd̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))pk
)

, (n = 1, 2, 3, · · · ). Then (Yn) ∈ Γ

if and only if given any ε > 0 there exists N = N(ε) > 0 such that |ank| < εnNk by using Theorem 4 of [3].
Thus A ∈ ΓM(F,A, p,∆r

s) if and only if the condition holds.

Theorem 2.6. If A = (ank) transforms Γ into ΓM(F,A, p,∆r
s) then limn→∞(ank)qn = 0 for all integers q > 0

and each fixed k = 1, 2, 3, · · · , where X = (Xk) be a sequence of fuzzy numbers and d̄ is translation invariant.

Proof. Let Yn =
[ ∞∑

k=1

ankd̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))pk
]

(n = 1, 2, 3, · · · ). Let (Xk) ∈ Γ and (Yn) ∈ ΓM(F,A, p,∆r
s).

Take (Xk) = δk = (0, 0, 0, · · · , 1, 0, 0, · · · ), 1 in the kth place and zero’s elsewhere, then (Xk) ∈ Γ. Hence
∞∑

k=1

|ank|qn < ∞ for every positive q. In particular lim
n→∞

(ank)qn = 0 for all positive integers q and each fixed

k = 1, 2, 3, · · · . This completes the proof.

Theorem 2.7. If A = (ank) transforms ΓM(F,A, p,∆r
s) into Γ, then limn→∞(ank)qn = 0 for all integers q > 0

and each fixed k = 1, 2, 3, · · · , where X = (Xk) be a sequence of fuzzy numbers and d̄ is translation invariant.
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Proof. Let

tn =
[ ∞∑

k=1

d̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))pk
]
∈ Γ.

Let

sn =
[ ∞∑

k=1

d̄

(
Mk

(
|0| 1k
ρ

, 0
))pk

]
∈ Γ.

Then Yn = (tn − sn) =
[ ∞∑

k=1

ankd̄

(
Mk

(
|∆r

sXk|
1
k

ρ
, 0

))p]
and d̄

(
Mk

(
|∆r

sXk|
1
k

ρ , 0
)pk

)
∈ Γ. Hence (Yn) ∈ Γ.

Therefore (ank)qn → 0 as n →∞ ∀k. This completes the proof.

Theorem 2.8. If A = (ank) transforms ΓM(F,A, p,∆r
s) into ΓM(F,A, p,∆r

s), then limn→∞(ank)qn = 0 for
all integers q > 0 and each fixed k = 1, 2, 3, · · · , where X = (Xk) be a sequence of fuzzy numbers and d̄ is
translation invariant.

Proof. The proof of the Theorem follows from Theorem 2.6 and Theorem 2.7.
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