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Numerical solution of time fractional nonlinear Schrödinger equation
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Abstract

In the present article, we are going to investigate the numerical solutions of time fractional nonlinear
Schrödinger equation which is frequently encountered in quantum mechanics by using cubic B-spline
collocation method. To be able to control the efficiency of the proposed method, some sample problems have
been studied in this article. The outstanding purpose of the paper is to indicate that the finite element
method based on the cubic B-spline collocation method approach can also be suitable for the handling of the
fractional differential equations. At the end, the results of numerical experiments are compared with those of
analytical solution to ensure the accuracy and efficiency of the presented scheme.
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1 Introduction

The study of fractional calculus has gained more importance for the formulation of natural phenomena.
This results from the fact that fractional equations instead of integer order differential equations may be used
for a better modeling of natural physics process and dynamic system processes. Moreover, since they have
the memory effects, fractional differential equations can more suitably describe natural processes involving
memory and hereditary characteristics. However, generally speaking, derivation and application of the
analytical solutions of the fractional differential equations is not so easy in most cases. Therefore, obtaining
some reliable and effective methods to solve fractional differential equations has gained more importance in
recent years. Recently, it has increasingly become clear that most of the phenomena in various fields of
science such as engineering, physics, chemistry and many others can be accurately described by
mathematical tools from fractional calculus, that is, the theory of derivatives and integrals of fractional
(non-integer) order [1]. The concept of differentiation and integration to non-integer order dates back very
early in history. In fact, this subject was evident almost as early as the ideas of the classical calculus were
known [2]. Many authors have pointed out that derivatives and integrals of non-integer order are more
suitable for the description of the behavior of various materials. It has also become clear that new
fractional-order models are more adequate than previously used integer-order ones. The increasing number
of fractional derivative applications in many fields of science and engineering clearly shows that there is a
tremendous demand for better mathematical models of real objects, and that the fractional calculus provides
one possible approach on the way to more adequate mathematical modeling of real objects and processes.
Even though there are a few analytical techniques [3] for dealing with the fractional equations, as also
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happens with ordinary (non-fractional) partial differential equations, in many cases the initial condition,
and/or the external force are such that the only reasonable option is to resort to numerical methods.
However, although there have been an increasing number of works on this topic during the last few years
[4-12], this field of applied mathematics is by far much less developed and understood than its non fractional
counterpart [13]. Although there have been many methods applied to solve fractional partial differential
equations, there is still a long way to go in this field. There are several definitions of a fractional derivative of
order α > 0 [14]. The two most widely utilized are the Riemann-Liouville and Caputo. The main difference
between the two is in the order of evaluation. We have just started with recalling the essentials of the
fractional calculus. The fractional calculus is a name for the theory of integrals and derivatives of arbitrary
order, which unifies and generalizes the notions of integer-order differentiation and n-fold integration. Now,
we give some basic definitions and properties of the fractional calculus theory.

Definition 1 [8]. For µ ∈ R and x > 0, a real function f (x), is said to be in the space Cµ if there exists a real
number p > µ such that f (x) = xp f1(x), where f1(x) ∈ C(0, ∞), and for m ∈N it is said to be in the space Cm

µ

if f m ∈ Cµ.
Definition 2 [8]. The Riemann-Liouville fractional integral operator of order α > 0 for a function f (x) ∈

Cµ, µ ≥ −1, is defined as

Jα f (x) =
1

Γ(α)

∫ x

0
(x− t)γ−1 f (t)dt, α > 0, x > 0, J0 f (x) = f (x).

Also we have the following properties:
Jα Jβ f (x) = Jα+β f (x)

Jα Jβ f (x) = Jβ Jα f (x)

Jαxγ =
Γ(γ + 1)

Γ(α + γ + 1)
xα+γ.

Definition 3 [8]. If m be the smallest integer that exceeds α, the Caputo time fractional derivative operator
of order α > 0 is defined as

C
0 Dα

t U(x, t) =
∂αU(x, t)

∂tα
=

{
1

Γ(m−α)

∫ t
0

∂mU(x,s)
∂sm (t− s)m−α−1ds, m− 1 < α < m, m ∈N

∂mU(x,t)
∂tm , m = α.

The finite element method, especially, has been an important method for solving both ordinary and
partial differential equations. Besides, in this paper, the finite element method is applied to solve fractional
differential equation, namely time fractional telegraph equation. The main idea behind the finite element
method is to divide the whole region of the given problem into an equivalent system of finite elements with
associated nodes and to choose the most appropriate element type to model most closely the actual physical
behavior. Thus, by means of the finite element method, a huge problem is converted into many solvable
small ones. For easy implementation, those elements must be made small enough to give usable results and
yet large enough to reduce computational effort [15]. In this paper, we will use cubic B-spline finite element
method to obtain the numerical solutions of the time fractional nonlinear Schrödinger equation by using the
L1 discretizaton formulae of the fractional derivative as used by Ref.[5].

The Schrödinger equation is one of the fundamental equations arising in physics for describing quantum
mechanical behavior [16, 17]. It is also often called the Schrödinger wave equation and is a partial differential
equation that describes how the wave function of a physical system evolves over time. The fractional
Schrödinger equation is a fundamental equation of fractional quantum mechanics [18]. It was discovered by
Nick Laskin [19, 20] as a result of extending the Feynman path integral,from the Brownian-like to Levy-like
quantum mechanical paths. After that, he considered the fractional Schrödinger equation for some particular
cases like fractional Bohratom and one-dimensional fractional oscillator [20]. Some other cases of the
fractional Schrödinger equation were discussed in [8, 21–24].

2 Governing Equation

In this study, we will consider the time fractional nonlinear Schrödinger equation as a model given as
follows

i
∂γU(x, t)

∂tγ
+

∂2U(x, t)
∂x2 + |U(x, t)|2U(x, t) = f (x, t) (2.1)
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where
∂γU(x, t)

∂tγ
=

1
Γ(1− γ)

∫ t

0
(t− τ)−γ ∂U(x, τ)

∂τ
dτ , 0 < γ < 1

is the fractional derivatives given in the Caputo’s sense [3, 14] and i =
√
−1. In this paper, for the time

fractional nonlinear Schrödinger equation, we are going to take the boundary conditions of the model problem
(2.1) given in the interval a ≤ x ≤ b as

U(a, t) = h1(t) , U(b, t) = h2(t), t ≥ 0 (2.2)

and the initial condition as
U(x, 0) = g(x) , a ≤ x ≤ b. (2.3)

In the numerical solution process, to be able to obtain a finite element scheme for solving time fractional
nonlinear Schrödinger equation, we will also discretize the Caputo derivative by means of the so-called L1
formulae [5]:

∂γ f (t)
∂tγ

|tm =
(∆t)−γ

Γ(2− γ)

m−1

∑
k=0

bγ
k [ f (tm−k)− f (tm−1−k)]

where
bγ

k = (k + 1)1−γ − k1−γ.

Since U(x, t) is complex valued function, we decompose U(x, t) into its real and imaginary parts R(x, t) and
S(x, t), respectively:

U(x, t) = R(x, t) + iS(x, t). (2.4)

Substituting (2.4) into (2.1), the complex Eq. (2.1) can be rewritten as a system involving two time fractional
partial differential equations:

∂γS(x,t)
∂tγ − ∂2R(x,t)

∂x2 −
(

R(x, t)2 + S(x, t)2) R(x, t) = − fr(x, t)
∂γR(x,t)

∂tγ + ∂2S(x,t)
∂x2 +

(
R(x, t)2 + S(x, t)2) S(x, t) = fl(x, t).

(2.5)

where − fr(x, t) and fl(x, t) are, respectively, the real and imaginary parts of the f (x, t). Also, we have initial
and boundary conditions of Eq. (2.1) as follows:

R(a, t) = h1r (t) , R(b, t) = h2r (t), t ≥ 0
S(a, t) = h1l (t) , S(b, t) = h2l (t), t ≥ 0

(2.6)

where h1r (t) and h1l (t) are, respectively, the real and imaginary parts of the h1(t) and h2r (t) and h2l (t) are,
respectively, the real and imaginary parts of the h2(t). The initial conditions as

R(x, 0) = gr(x) , S(x, 0) = gl(x) , a ≤ x ≤ b. (2.7)

where gr(x) and gl(x) are, respectively, the real and imaginary parts of the g(x).

3 Cubic B-spline Finite Element Collocation Solutions

Before solving Eq. (2.5) with boundary conditions (2.6) and initial condition (2.7) by using collocation finite
element method, first of all, we define cubic B-spline base functions. Let us assume that interval [a, b] is
partitioned into N finite elements of uniformly equal length by knots xm, m = 0, 1, 2, ..., N such that a = x0 <

x1 · · · < xN = b and h = xm+1 − xm. Cubic B-splines φm(x) , (m = −1(1)N + 1), at knots xm are defined over
interval [a, b] by [25]

φm(x) = 1
h3



(x− xm−2)
3, x ∈ [xm−2, xm−1],

h3 + 3h2(x− xm−1) + 3h(x− xm−1)
2 − 3(x− xm−1)

3, x ∈ [xm−1, xm],
h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ [xm, xm+1],
(xm+2 − x)3, x ∈ [xm+1, xm+2],
0 otherwise.
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The set of B-splines {φ−1(x), φ0(x), . . . , φN+1(x)} forms a basis for the functions defined over [a, b]. Therefore,
an approximation solutions RN(x, t) and SN(x, t) can be written in terms of the cubic B-splines trial functions
as:

RN(x, t) = ∑N+1
m=−1 δm(t)φm(x)

SN(x, t) = ∑N+1
m=−1 σm(t)φm(x)

(3.8)

where δm(t)’s and σm(t)’s are unknown, time dependent quantities to be determined from the boundary
and cubic B-spline collocation conditions. Each cubic B-spline covers four elements so that each element
[xm, xm+1] is covered by four cubic B-splines. For this problem, the finite elements are identified with the
interval [xm, xm+1] and the elements knots xm, xm+1. Using the nodal values Rm, R

′
m and R

′′
m given in terms of

the parameter δm(t)
Rm = R(xm, t) = δm−1(t) + 4δm(t) + δm+1(t),
R′m = R′(xm, t) = 3

h (−δm−1(t) + δm+1(t)),
R′′m = R′′(xm, t) = 6

h2 (δm−1(t)− 2δm(t) + δm+1(t)),
(3.9)

the variation of RN(x, t) over the typical element [xm, xm+1] is given by

RN(x, t) =
m+2

∑
j=m−1

δj(t)φj(x).

Using the nodal values Sm, S
′
m and S

′′
m given in terms of the parameter σm(t)

Sm = S(xm, t) = σm−1(t) + 4σm(t) + σm+1(t),
S′m = S′(xm, t) = 3

h (−σm−1(t) + σm+1(t)),
S′′m = S′′(xm, t) = 6

h2 (σm−1(t)− 2σm(t) + σm+1(t)),
(3.10)

the variation of SN(x, t) over the typical element [xm, xm+1] is given by

SN(x, t) =
m+2

∑
j=m−1

σj(t)φj(x).

Firstly, if we substitute the global approximations in (3.8) and its required derivatives (3.9) and (3.10) into
Eq.(2.1), we easily obtain the following set of γ-th order fractional ordinary differential equations:

(σ̇m−1(t) + 4σ̇m(t) + σ̇m+1(t))− 6
h2 (δm−1(t)− 2δm(t) + δm+1(t))

−Zm (δm−1(t) + 4δm(t) + δm+1(t)) = − fr(x, t)(
δ̇m−1(t) + 4δ̇m(t) + δ̇m+1(t)

)
+ 6

h2 (σm−1(t)− 2σm(t) + σm+1(t))
+Zm (σm−1(t) + 4σm(t) + σm+1(t)) = fl(x, t)

(3.11)

where ˙ denotes γth fractional derivative with respect to time and

Zm = R2 + S2.

If time parameters δm(t)’s and its fractional time derivatives δ̇m(t)’s in Eq. (3.11) are discretized by the Crank-
Nicolson formula, L1 formula, respectively:

δ =
1
2
(δn + δn+1), (3.12)

δ̇ =
dγ−1δ

dtγ−1 =
(∆t)−γ

Γ(2− γ)

n−1

∑
k=0

[
(k + 1)1−γ − k1−γ

] [
δn−k − δn−k−1

]
, (3.13)

and if time parameters σm(t)’s and its fractional time derivatives σ̇m(t)’s in Eq. (3.11) are discretized by the
Crank-Nicolson formula, L1 formula, respectively:

σ =
1
2
(σn + σn+1), (3.14)

σ̇ =
dγ−1δ

dtγ−1 =
(∆t)−γ

Γ(2− γ)

n−1

∑
k=0

[
(k + 1)1−γ − k1−γ

] [
σn−k − σn−k−1

]
, (3.15)
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we obtain a recurrence relationship between successive time levels relating unknown parameters δn+1
m (t) and

σn+1
m (t)

σn+1
m−1 + 4σn+1

m + σn+1
m+1 +

(
−6α− Zmh2α

)
δn+1

m−1 +
(
12α− 4Zmh2α

)
δn+1

m
+
(
−6α− Zmh2α

)
δn+1

m+1 = σn
m−1 + 4σn

m + σn
m+1 +

(
6α + Zmh2α

)
δn

m−1
+
(
−12α + 4Zmh2α

)
δn

m +
(
6α + Zmh2α

)
δn

m+1 − 2h2α fr(x, t)

−
n
∑

k=1
bγ

k

[
(σn−k+1

m−1 − σn−k
m−1) + 4(σn−k+1

m − σn−k
m ) +(σn−k+1

m+1 − σn−k
m+1)

]
δn+1

m−1 + 4δn+1
m + δn+1

m+1 +
(
6α + Zmh2α

)
σn+1

m−1 +
(
−12α + 4Zmh2α

)
σn+1

m
+
(
6α + Zmh2α

)
σn+1

m+1 = δn
m−1 + 4δn

m + δn
m+1 +

(
−6α− Zmh2α

)
σn

m−1
+
(
12α− 4Zmh2α

)
σn

m +
(
−6α− Zmh2α

)
σn

m+1 + 2h2α fl(x, t)

−
n
∑

k=1
bγ

k

[
(δn−k+1

m−1 − δn−k
m−1) + 4(δn−k+1

m − δn−k
m ) +(δn−k+1

m+1 − δn−k
m+1)

]

(3.16)

where

Zm = (δm−1(t) + 4δm(t) + δm+1(t))
2 + (σm−1(t) + 4σm(t) + σm+1(t))

2

and

α =
(∆t)γΓ(2− γ)

2h2 .

The iterative system (3.16) consists of 2N + 2 linear equations involving 2N + 6 unknown parameters
(δ−1, . . . , δN+1, σ−1, . . . , σN+1)

T . In order to be able to obtain a unique solution to these systems, four
additional constraints are needed. Those are obtained from the boundary conditions and their second
derivatives and after that they are used to eliminate δ−1, δN+1, σ−1, σN+1 from system (3.16). Using the
relations

RN(x, 0) =
N+1

∑
m=−1

δm(0)φm(x)

and

SN(x, 0) =
N+1

∑
m=−1

σm(0)φm(x)

together with extra conditions, which can easily be obtained from R′′(x0, 0) = R′′N(x0, 0) and S′′(x0, 0) =

S′′N(x0, 0), since the second derivatives of the approximate initial conditions shall agree with those of the exact
initial conditions to discard δ−1, δN+1, σ−1, σN+1, we obtain initial vectors δ0

m and σ0
m can be respectively

obtained from the following matrix equations:

6 0
1 4 1

1 4 1
. . .

1 4 1
0 6





δ0
δ1
δ2
...

δN−1
δN


=



R0 − h2

6 R′′0
R1
R2
...

RN−1

RN − h2

6 R′′N


and 

6 0
1 4 1

1 4 1
. . .

1 4 1
0 6





σ0
σ1
σ2
...

σN−1
σN


=



S0 − h2

6 S′′0
S1
S2
...

SN−1

SN − h2

6 S′′N


,

which can be solved using an appropriate algorithm. Therefore, the approximate solution functions for R(x, t)
and S(x, t) can be obtained from δn and σn using Eq. (3.16).
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4 Numerical examples and results

Now, we are going to present a numerical example which support numerical results for time fractional
nonlinear Schrödinger equation are obtained by collocation method using cubic B-spline base functions. The
accuracy of the present method is measured by the error norm L2

L2 =
∥∥Uexact −UN

∥∥
2 '

√√√√h
N

∑
j=0

∣∣∣Uexact
j − (UN)j

∣∣∣2
and the error norm L∞

L∞ =
∥∥Uexact −UN

∥∥
∞ ' max

j

∣∣∣Uexact
j − (UN)j

∣∣∣ .

We are going to consider the time fractional nonlinear Schrödinger equation (2.1) with boundary
conditions

U(0, t) = it2 , U(1, t) = it2, t ≥ 0

and initial conditions as

U(x, 0) = 0 , 0 ≤ x ≤ 1.

The corresponding forcing term f (x, t) is of the form

f (x, t) = − 2t2−γ

Γ(3− γ)
cos(2πx) + (t6 − 4π2t2) sin(2πx)

+i
(

2t2−γ

Γ(3− γ)
sin(2πx) + (t6 − 4π2t2) cos(2πx)

)
.

The exact solution of the problem is given by [8]

U(x, t) = t2(sin(2πx) + i cos(2πx)).

A comparison of the analytical solution and numerical solutions obtained for the values of different values
of γ is given in Tables 1-2. As it is clearly seen from the table, the analytical and numerical solutions obtained
by the present scheme are in good agreement with each other. As the value of γ increases, the values of error
norms L2 and L∞ decrease for S(x, t) imaginary part of U(x, t) and increase for R(x, t) real part of U(x, t). In
Tables 3-4, we demonstrate the numerical results for γ = 0.5, ∆t = 0.002 and t f = 1 and for different number
of divisions of the region. Tables 3-4 clearly show that as the number of division increases, the obtained
numerical results become more accurate. We see this from the decreasing values of the error norms L2 and
L∞. In Tables 5-6, we demonstrate the numerical results for γ = 0.5, N = 40 and t f = 0.25 and for different
number of ∆t. Tables 5-6 clearly show that as the number of ∆t decreases, the obtained numerical results
become more accurate. We see this from the decreasing values of the error norms L2 and L∞. In Table 7, the
error norm L∞ of the present study are better than those in Ref. [8] at t f = 1. In Figure 1, we demonstrate the
graphs of numerical solutions obtained for γ = 0.50 and N = 40 at different time levels.
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Table 1: The comparison of the exact solutions with the numerical solutions of R(x, t) real part of U(x, t) with
N = 40, ∆t = 0.002 and t f = 1 for different values of γ and the error norms L2 and L∞.

x γ = 0.1 γ = 0.3 γ = 0.7 γ = 0.9 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.587513 0.587497 0.587474 0.587460 0.587785
0.2 0.950666 0.950628 0.950542 0.950477 0.951057
0.3 0.950637 0.950580 0.950441 0.950328 0.951057
0.4 0.587431 0.587362 0.587185 0.587038 0.587785
0.5 -0.000224 -0.000299 -0.000491 -0.000651 0.000000
0.6 -0.587870 -0.587941 -0.588122 -0.588273 -0.587785
0.7 -0.951043 -0.951102 -0.951248 -0.951366 -0.951057
0.8 -0.951018 -0.951057 -0.951148 -0.951218 -0.951057
0.9 -0.587794 -0.587811 -0.587837 -0.587853 -0.587785
1.0 0.000000 0.000000 0.000000 0.000000 0.000000

L2 × 103 0.244241 0.282432 0.388333 0.481627
L∞ × 103 0.421466 0.476307 0.622788 0.754269

Table 2: The comparison of the exact solutions with the numerical solutions of S(x, t) imaginary part of U(x, t)
with N = 40, ∆t = 0.002 and t f = 1 for different values of γ and the error norms L2 and L∞.

x γ = 0.1 γ = 0.3 γ = 0.7 γ = 0.9 Exact
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.809065 0.809048 0.808989 0.808932 0.809017
0.2 0.309182 0.309153 0.309045 0.308944 0.309017
0.3 -0.308704 -0.308741 -0.308876 -0.309001 -0.309017
0.4 -0.808581 -0.808619 -0.808762 -0.808889 -0.809017
0.5 -0.999514 -0.999548 -0.999678 -0.999789 -1.000000
0.6 -0.808572 -0.808599 -0.808703 -0.808785 -0.809017
0.7 -0.308687 -0.308706 -0.308777 -0.308828 -0.309017
0.8 0.309202 0.309191 0.309150 0.309123 0.309017
0.9 0.809078 0.809073 0.809055 0.809045 0.809017
1.0 1.000000 1.000000 1.000000 1.000000 1.000000

L2 × 103 0.299659 0.276193 0.191137 0.132380
L∞ × 103 0.485920 0.451507 0.327280 0.232999

Table 3: The comparison of the exact solutions with the numerical solutions of R(x, t) imaginary part of U(x, t)
with γ = 0.5, ∆t = 0.002 and t f = 1 for different values of N and the error norms L2 and L∞.

x N = 10 N = 20 N = 40 Exact
0.0 0.000000 0.000000 0.000000 0.000000
0.1 0.563396 0.582546 0.587484 0.587785
0.2 0.910919 0.942434 0.950586 0.951057
0.3 0.907609 0.941667 0.950514 0.951057
0.4 0.554170 0.580413 0.587279 0.587785
0.5 -0.014876 -0.003451 -0.000388 0.000000
0.6 -0.582572 -0.587006 -0.588025 -0.587785
0.7 -0.932052 -0.947350 -0.951170 -0.951057
0.8 -0.929195 -0.946693 -0.951101 -0.951057
0.9 -0.574077 -0.585053 -0.587825 -0.587785
1.0 0.000000 0.000000 0.000000 0.000000

L2 × 103 25.493140 5.451631 0.330630
L∞ × 103 43.447435 9.389941 0.542810



394 Alaattin Esen et al. / Numerical solution of...

Table 4: The comparison of the exact solutions with the numerical solutions of S(x, t) imaginary part of U(x, t)
with γ = 0.5, ∆t = 0.002 and t f = 1 for different values of N and the error norms L2 and L∞.

x N = 10 N = 20 N = 40 Exact
0.0 1.000000 1.000000 1.000000 1.000000
0.1 0.816537 0.810582 0.809024 0.809017
0.2 0.333872 0.314208 0.309109 0.309017
0.3 -0.262747 -0.299328 -0.308796 -0.309017
0.4 -0.745014 -0.795588 -0.808678 -0.809017
0.5 -0.928686 -0.985022 -0.999602 -1.000000
0.6 -0.743595 -0.795271 -0.808643 -0.809017
0.7 -0.260341 -0.298783 -0.308736 -0.309017
0.8 0.336396 0.314784 0.309173 0.309017
0.9 0.818142 0.810950 0.809065 0.809017
1.0 1.000000 1.000000 1.000000 1.000000

L2 × 103 44.135685 9.266138 0.240051
L∞ × 103 71.314360 14.977938 0.399538

Table 5: The comparison of the exact solutions with the numerical solutions of R(x, t) imaginary part of U(x, t)
with γ = 0.5, N = 40 and t f = 0.25 for different values of ∆t and the error norms L2 and L∞.

∆t = 0.01 ∆t = 0.005 ∆t = 0.0025 ∆t = 0.002 ∆t = 0.001
L2 1.7777× 10−3 0.8377× 10−3 0.3677× 10−3 0.2738× 10−3 0.0869× 10−3

L∞ 2.9810× 10−3 1.3993× 10−3 0.6087× 10−3 0.4506× 10−3 0.1343× 10−3

Table 6: The comparison of the exact solutions with the numerical solutions of S(x, t) imaginary part of U(x, t)
with γ = 0.5, N = 40 and t f = 0.25 for different values of ∆t and the error norms L2 and L∞.

∆t = 0.01 ∆t = 0.005 ∆t = 0.0025 ∆t = 0.002 ∆t = 0.001
L2 2.7965× 10−3 1.3264× 10−3 0.5915× 10−3 0.4445× 10−3 0.1506× 10−3

L∞ 4.5839× 10−3 2.1733× 10−3 0.9682× 10−3 0.7273× 10−3 0.2453× 10−3

Table 7: The results obtained of numerical solutions of R(x, t) real part and S(x, t) imaginary part of U(x, t) for
N = 40 and ∆t = 0.002 by proposed method in comparison with the in Ref. [8] and exact solution at t f = 1.

γ = 0.1 γ = 0.3
L∞ Real Part Imaginary Part Real Part Imaginary Part

Present 4.2147× 10−4 4.8592× 10−4 4.7631× 10−4 4.5151× 10−4

[8] 2.8536× 10−3 2.1753× 10−3 2.8610× 10−3 2.1771× 10−3
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Figure 1: The comparison of the exact(lines) and numerical solutions for γ = 0.5, N = 40 and ∆t = 0.002 at
t = 0.5 (stars), t = 0.75 (squares), and t = 1 (triangles).

5 Conclusion

For last words, in the present study, numerical solutions of the time fractional nonlinear Schrödinger
equation encountered in quantum mechanics based on the cubic B-spline finite element method have been
calculated and presented. The time fractional derivative is considered in the form of the Caputo sense. In
this study, the fractional derivative appearing in the time fractional nonlinear Schrödinger equation arising
in quantum mechanics is approximated by means of the so-called L1 formulae. A test problem is worked
out to examine the performance of the present algorithm. The performance and efficiency of the method are
shown by calculating error norms L2 and L∞. The obtained results show that the error norms are sufficiently
small during all computer runs. The obtained results also indicate that the present method is a particularly
successful numerical scheme to solve the time fractional nonlinear Schrödinger equation arising in quantum
mechanics. As a conclusion, in future studies, the method can efficiently be applied to this type of non-linear
time fractional problems arising in physics and mathematics with success. Moreover, the method can also be
applied and tested on a more wide range of other physically important equations.
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