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Abstract

Firstly by using iterative method, we prove existence and uniqueness of solutions of Cauchy problems of
differential equations involving Caputo fractional derivative, Riemann-Liouville and Hadamard fractional
derivatives with order g4 € (0,1). Then we obtain exact expression of solutions of impulsive fractional
differential equations, i.e., exact expression of piecewise continuous solutions. Finally, four classes of integral
type periodic boundary value problems of singular fractional differential equations with impulse effects are
proposed. Sufficient conditions are given for the existence of solutions of these problems. We allow the
nonlinearity p(t)f(t, x) in fractional differential equations to be singular at t = 0,1 and be involved a super-
linear and sub-linear term. The analysis relies on Schaefer’s fixed point theorem.
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1 Introduction

One knows that the fractional derivatives (Riemann-Liouville fractional derivative, Caputo fractional
derivative and Hadamard fractional derivative and other type see [40]) are actually nonlocal operators
because integrals are nonlocal operators. Moreover, calculating time fractional derivatives of a function at
some time requires all the past history and hence fractional derivatives can be used for modeling systems
with memory.

Fractional order differential equations are generalizations of integer order differential equations. Using
fractional order differential equations can help us to reduce the errors arising from the neglected parameters
in modeling real life phenomena. Fractional differential equations have many applications see Chapter 10 in
[63], books [41} 163 66].

In recent years, there have been many results obtained on the existence and uniqueness of solutions of
initial value problems or boundary value problems for nonlinear fractional differential equations, see [16} 18|
58,161} 162, 64, 71}, 185, 188].

Dynamics of many evolutionary processes from various fields such as population dynamics, control
theory, physics, biology, and medicine. undergo abrupt changes at certain moments of time like earthquake,
harvesting, shock, and so forth. These perturbations can be well approximated as instantaneous change of
states or impulses.These processes are modeled by impulsive differential equations. In 1960, Milman and
Myshkis introduced impulsive differential equations in their paper [56]. Based on their work, several
monographs have been published by many authors like Samoilenko and Perestyuk [67], Lakshmikantham et
al. [B0], Bainov and Simeonov [21,22], Bainov and Covachev [23], and Benchohra et al. [24].

Fractional differential equation was extended to impulsive fractional differential equations, since Agarwal
and Benchohra published the first paper on the topic [20] in 2008. Since then many authors such as in
[8, 27, 130} 139 [42] 143} [46H49] [60] [64, (70, 71}, [84] studied the existence or uniqueness of solutions of impulsive
initial or boundary value problems for fractional differential equations. For examples, impulsive anti-periodic
boundary value problems see [10, 11} 20}/44) 72, 73], impulsive periodic boundary value problems see [69, [79],
impulsive initial value problems see [25}29]59, 68]], two-point, three-point or multi-point impulsive boundary
value problems see [9}[72] [87], impulsive boundary value problems on infinite intervals see [86]].

In [31]], Feckan and Zhou pointed out that the formula of solutions for impulsive fractional differential
equations in [2,[7, 13, [19] is incorrect and gave their correct formula. In [76] [78], the authors established a
general framework to find the solutions for impulsive fractional boundary value problems and obtained some
sufficient conditions for the existence of the solutions to a kind of impulsive fractional differential equations
respectively. In [75], the authors illustrated their comprehensions for the counterexample in [31] and criticized
the viewpoint in [31] 76, [78]. Next, in [32], Feckan et al. expounded for the counterexample in [31] and
provided further five explanations in the paper.

Recently, in [33} (78, [89], the authors studied the existence and uniqueness of solutions of the following
boundary value problem of impulsive fractional differential equation

CD{, x(t) = f(t,x(t)),t € (ti, ti1],i € Ny,
Ax|t:t,- = Il(x(tz_))/l €N, (11)
ax(0) + bx(T) = xo,

where g € (0,1], DY, is the standard Caputo fractional derivative of order g, Ng = {0,1,--- ,m} and N =
{1,2,---,m}, f : [0,T] xR — R is is a jointly continuous function, Iy : R — R(k = 1,2,---,m) are
continuous functions, and 0 = fg < t1 < -+ < ty < tyyy1 = T, Ax|j=y, = tlirtrk x(t) — tlir? x(t) = x(t]) —
k k

x(t, ) and x(t), x(t; ) represent the right and left limits of x(t) at t = # respectively, a, b, xo a constant with
a+Db # 0. One knows that the boundary condition ax(0) + bx(T) = xg in (1.1) becomes x(0) — x(T) = 2
when a + b = 0, that is so called nonhomogeneous periodic type boundary condition.

Wang and Bai [69] studied the existence and uniqueness of solutions of the following periodic boundary
value problems for nonlinear impulsive fractional differential equation

RLDﬂL ( ) _ /\x(t) f(t x(t)),t S (Or 1} \ {tl}r
hmt1 “x(t) = x(1), (1.2)
)

t—0

lim (t — t1)17%[x(t) — x(t1)] = I(x(t1)),

t—tf



Yuji Liu et al. / Periodic boundary value problems for IFDEs 425

where & € (0,1], RED? is the standard Riemann-Liouville fractional derivative, A € R, 0 < t; < 1, I €
C(R,IR), f is continuous at every point (t,u) € [0,1] x R. We note that the impulse effects in (1.2) change to

lin}r(t —t)17%x(t) = I(x(t;)) when & € (0,1). The assumptions imposed on f and I are as follows: (i) there
tt]
exists a constant M > 0 such that |f(t,u)| < M and |I(u)] < M forall t € [0,1] and u € R; (ii) there exist
positive constant k, and ! such that |f(t,u) — f(t,v)| < klu —v| and |I(u) — I(v)| < llu —v| forall t € [0,1]
and u,v € R.

One knows that lim (t — )17 ¥[x(t) — x(t1)] = I(x(t1)) becomes lirrl(t — )70 (t) = I(x(ty)) ifa €

ot t—t]

(0,1). So it is easy to know that the results can not be applied to solve the following problem

REDG.x(t) — Ax(t) = f(t,x(1)),t € (0,1] \ {t:},
hmt‘1 *x(t) = x(1), (13)
tlgg(f*fl) x(t) — x(t1) = J(x(h)),

since I(x) = x + J(x) in mentioned problem corresponding to (1.3) may be unbounded. Furthermore, it seems
to be difficult to generalize the method in the proof of Lemma 2.1[69] to the following problem with multiple
impulse point:

RLD&, x(t) — Ax(t) = f(t, x(t)),t € (ti tiza],i=0,1,2,--- ,m,
: 1—a
fim 7% (6) = x(1), (1.4)
Hm (t —t;) =%« (t) — x(t;) = I(t;, x(t;)),i=1,2,- -+ ,m.
t—tF
In a fractional differential equation, there exist two cases: the firs case is D* = Dy, in (1.1) or (1.3),

i.e., the fractional derivative has a unique start point. Recently, Belmekki, Nieto and Rodriguez-Lopez [17]
consider the second case in which D* has multiple start points, i.e., D* = Dy, . They studied the existence

and uniqueness of solutions of the following periodic boundary value problém of the impulsive fractional
differential equation

RED& u(t) — Au(t) = f(tu(t)),t € (b tial, i =0,1,2,---,p,
(

: llfrx —
t1_1>r51+t u(t) =u(1), (1.5)
lim (t— )% [u(t) — u(t;)] = L(u(t)),i=1,2,---,p,
t—tf

wherea € (0,1),0 =1ty <t; <--- <t, <ty =1AER, RLD?+ represents the standard Riemann-Liouville

fractional derivatives, I; € C(R,R)(i = 1,2,---,p), f is continuous at every point (t,u) € (t;t;11] X R for
i=0,1,2,---,p. The assumptions imposed on f and I; are similar to those used in [69].

We observed that in the above-mentioned work, the authors all require that the nonlinear term f is
bounded and continuous, if the impulse functions I, J; are bounded, it is easy to see that these conditions
are very strongly restrictive and difficult to satisfy in applications. We observed that in the above-mentioned
work, the authors all require that the nonlinear term f is bounded and continuous, if the impulse functions
I, Jx are bounded, it is easy to see that these conditions are very strongly restrictive and difficult to satisfy
in applications. Furthermore, there has been few papers discussed the existence of solutions of the periodic
boundary value problems for impulsive fractional differential equations involving other fractional derivatives
such as the impulsive Hadamard type fractional differential equation

Dg,x(t) — Ax(t) = f(t,x(t)), t € (titita],i=0,1,--- ,m, 16
{ Ax(t;) = I(t, x(t;),i = 1,2, ,m, (1.6)

where Df, is the so called Hadamard type fractional derivative of order « € (0,1).
In this paper, we will study the existence of solutions of four classes of impulsive integral type boundary
value problems of singular fractional differential systems. The first one is as follows:

REDG, x(t) — Ax(t) = P( )f( ,x(b),t € (t tia],i = 0,1,
x(l)—%ii%tl_“ x(t) = fo s)G(s, x(s))ds,
lim (t — t1>17 (t> - x(t1> = I(tll (tl))’

+
t—t,

(1.7)
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where

@ 0<a<1,AER, RLD(”)‘+ is the Riemann-Liouville fractional derivative of order «,

b) 0=ty <t <t =1,

(© ¢:(0,1) — Rsatisfy ¢[(,), € L'(0,£1), dl (s, 1) € L (11, 1),

(d) p:(0,1) — IR satisfy the growth conditions: there exist constants k, | with k > —1 and max{—a, —k —
1} <1 < 0such that |p(t)] < (1 —t)!,t € (0,1),

(e) f,G defined on (0,1] x R are impulsive II-Carathéodory functions, I : {f;} x R — R is a Discrete
II-Carathéodory function.

The second one is following

x(1) = lim x(t) = [y ¢(s)G(s,x(s))ds, (1.8)
tlir?* x(t) —x(ty) = I(ty, x(t)),

where

Ho<a<l,AeR, CDE’)‘+ is the Caputo fractional derivative of order a, t; satisfies (b), ¢ : (0,1) — R
satisfy (c), p : (0,1) — R satisfy that there exist constants k,! with k > —1,1 < 0,] < 0 witha+1 > 0,
a+k+1> 0such that |p(t)| < (1 —t)!, t € (0,1),

(g f,G defined on (0,1] x R are impulsive I-Carathéodory functions, I : {#;} x R — R is a Discrete
I-Carathéodory function.

We emphasize that much work on fractional boundary value problems involves either Riemann-Liouville
or Caputo type fractional differential equations see [4-6} [11]. Another kind of fractional derivatives that
appears side by side to Riemann-Liouville and Caputo derivatives in the literature is the fractional derivative
due to Hadamard introduced in 1892 [35], which differs from the preceding ones in the sense that the kernel
of the integral (in the definition of Hadamard derivative) contains logarithmic function of arbitrary exponent.
Recent studies can be seen in [12}, (14} [15].

Thirdly we study the following impulsive integral type boundary value problems of singular fractional
differential systems

1.9
tim (1o L)Hx(t)—x(t ) = I(t1,x(h)) )
et g H 1 1,X\t1)),
where

(h) 0<a<1,AeR, RH Di‘+ is the Hadamard fractional derivative of order «,

D1=ty<ti <t =e¢peLl(le),p:(1e) — Rarecontinuous and satisfy the growth conditions: there
exist constants k, ! with k > —1 and max{—a, —k — 1} < I < Osuch that |p(t)| < (logt)*(1 —logt)!, t € (1,e),

() f,G defined on (1,¢] x R are impulsive III-Carathéodory functions, I : {#;} X R — R is a Discrete
III-Carathéodory function.

Finally we study the following impulsive integral type boundary value problems of singular fractional
differential systems

D x(t) - /\x( ) = ( )f( x(t)),t € (i tiyal, i = 0,1,
x(e )— tgm x(t) =[] ¢( x(s))ds,
lim x(t) — x(tl) =I(t1,x ( ))

:
tt]

(1.10)

where
K o<a<l,AeR,CH D, is the Caputo type Hadamard fractional derivative of order a’
M1=ty<t;<tr=e ¢ € L(1,e)and p: (1,e) — IR satisfies that there exist constants k, [ with k > —1
and max{—a, —k — a} <1 < 0such that |p(t)| < (logt)*(1 —1logt)!, t € (1,e),
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(m) f,G defined on (1,¢| x R are impulsive I-Carathéodory functions, I : {f;} x R — R is a Discrete
I-Carathéodory function.

A function x : (0,1] — Ris called a solution of BVP(1.7) (or BVP(1.8)) if x|, ;,,)(i = 0,1) is continuous,

the limits below exist tlgﬂ(t — )7 x(),i=0,1 (or hrn+ x(t)(i =0,1) and x satisfies all equations in (1.7) (
i t—t;
or (1.8)).
A function x : (1,e] — R is called a solution of BVP(1.9) (or BVP(1.10)) if x|, i) (i = 0,1) is continuous,
1—
the limits below exist lim (log F) : x(t),i = 0,1 (or lim x(#)(i = 0,1) and x satisfies all equations in (1.9)
t—tt ! t—tt

(or (1.10)).

To get solutions of a boundary value problem of fractional differential equations, we firstly define a Banach
space X, then we transform the boundary value problem into a integral equation and define a nonlinear
operator T on X by using the integral equation obtained, finally, we prove that T has fixed point in X. The
fixed points are just solutions of the boundary value problem. Three difficulties occur in known papers: one
is how to transform the boundary value problem into a integral equation; the other one is how to define and
prove a Banach space and the completely continuous property of the nonlinear operator defined; the third
one is to choose a suitable fixed point theorem and impose suitable growth conditions on functions to get the
fixed points of the operator.

To the best of the authors knowledge, no one has studied the existence of solutions of BVP(1.i) (i =
7,8,9,10). This paper fills this gap. Another purpose of this paper is to illustrate the similarity and difference
of these three kinds of fractional differential equations. We obtain results on the existence of at least one
solution for BVP(1.i) (i = 7,8,9,10) respectively. Some examples are given to illustrate the efficiency of the
main theorems. For simplicity we only consider the left-sided operators here. The right-sided operators can
be treated similarly.

The remainder of this paper is as follows: in Section 2, we present related definitions; in Section 3 some
preliminary results are given. In Sections 4, the main theorems and their proof are given. In Section 5, a
mistake happened in cited paper is showed and a corrected expression of solutions is given.

2 Related definitions

For the convenience of the readers, we firstly present the necessary definitions from the fractional calculus
theory. These definitions and results can be found in the literatures [41} 63, 66].
Let the Gamma function, Beta function and the classical Mittag-Leffler special function be defined by

k

=) iy
M) = ™ vy, B(p.q) = Jy w71 (1 =21, Eso(v) = T il

respectively for ,& > 0,p > 0,4 > 0,0 > 0,0 > 0. We note that E; 5(x) > 0 for all x € IR and E; 5(x) is strictly
increasing in x. Then for x > 0 we have E;5(—x) < E;5(0) = %5) < Es5(x).

Definition 2.1. [41]. Let ¢ € R. The Riemann-Liouville fractional integral of order « > 0 of a function g : (¢, ) — R
is given by

158(t) = m [t —s)1g(s)ds,
provided that the right-hand side exists.

Definition 2.2. [41. Let ¢ € R. The Riemann-Liouville fractional derivative of order & > 0 of a function g :
(¢, +00) — R is given by

RLDE, g(+) = mrgy i Ji = merds,
where x < n < a+1,i.e., n = [a], provided that the right-hand side exists.
Definition 2.3. [41]. Let c € R. The Caputo fractional derivative of order & > 0 of a function g : (¢, +00) — Ris
given by

CD?+3(t) (n ) f (- S)a( r)1+1 ds,
where x < n < a+1,i.e., n = [a], provided that the right-hand side exists.
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Definition 2.4. [41]. Let ¢ > 0. The Hadamard fractional integral of order & > 0 of a function g : [c, +00) — R is
given by

t -1
HIx g(t) = iy Ji (log§)"™ g(s) %,
provided that the right-hand side exists.

Definition 2.5. [41]. Let ¢ > 0. The Hadamard fractional derivative of order « > 0 of a function g : [c, +00) — R is
given by

oot —a—1
RLHDS g(t) = iy (Hh) S (log )" g(s) %,
where x < n < a+1,i.e, n = [a], provided that the right-hand side exists.

Definition 2.6. [38]. Let ¢ > 0. The Caputo type Hadamard fractional derivative of order « > 0 of a function
<t [c, +00) — R is given by

t —a—1 n
CHDY, g(t) = gy JY (108 )" ™" (s£) " g(s)%,
wherex < n < a+1,ie,n = [a], provided that the right-hand side exists.

1
Definition 2.7. Wecall F : |J (¢;,ti11) X R — IR an impulsive I-Carathéodory function if it satisfies
i=0
() t — F (¢, u) is measurable on (t;,t;,1)(i =0,1) foranyu € R,

(ii) u — F (t,u) are continuous on R forall t € (t;,t;11)(i=0,1),
(iii) for each r > O there exists M, > 0 such that

|F (t,u)| < My, t € (tj,tiyr),|ul <r (i=0,1).

1
Definition 2.8. Wecall F : |J (¢;,ti11) X R — IR an impulsive II-Carathéodory function if it satisfies
i=0

()t — F (t, (t — t;)* ') is measurable on (t;, t;11)(i = 0,1) forany u € R,
Gi) u — F (t, (t — t;)* Lu) are continuous on R for all t € (t;,t;11)(i = 0,1),
(iii) for each r > 0O there exists M, > 0 such that

[F(t (t—t)" ") | < Myt € (ti, tin), lul <7, (i=0,1).

—_

Definition 2.9. We call F : |J (¢;,ti+1) X R — IR an impulsive III-Carathéodory function if it satisfies
i=0

a—1

@) t—F (t, (log %) u> is measurable on (t;,t; 1)(i =0,1) forany u € R,

-1
(i) u — F (t, <log %>”‘ u) are continuous on R forall t € (t;,t;,1)(i =0,1),
(iii) for each r > O there exists M, > 0 such that

‘F (t (1ogf)“_1u>‘ < Myt € (b ti), [ul <r,(i=0,1)
s I >~ rr irti+1)s =1y ,L)-

Definition 2.10. We call I : {t;} x R — R an discrete I-Carathéodory function if it satisfies
() u — I (t,u) are continuous on IR,
(ii) for each v > O there exists M, > 0 such that |I (t1,u)| < M,, |u| <r.

Definition 2.11. Wecall I : {t;} X R — IR an discrete II-Carathéodory function if it satisfies
Du—1 (tl, t‘i‘_lu) are continuous on IR,
(ii) for each v > O there exists M, > 0 such that ‘I (tl,ti‘_lu) ’ < My, |ul <.

Definition 2.12. Wecall I : {t;} x R — IR an discrete III-Carathéodory function if it satisfies
@Du—1I (tl, (logt;)* ! u) are continuous on R,

(ii) for each v > O there exists M, > 0 such that ‘I (tl, (log t)* ! u) ’ <M, |u| <.
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Definition 2.13. [57].Let E and F be Banach spaces. A operator T : E — F is called a completely continuous operator
if T is continuous and maps any bounded set into relatively compact set.

The following Banach spaces are used:
(i) Let a < b be constants. C(a,b] denote the set of all continuous functions on (a,b] with the limit lim x(t)

t—at
existing, and the norm ||x|| = sup |x(¢)|;
te(a,b)
(ii) Let a < b be constants. Cy_,(a, b] the set of all continuous functions on (a, b] with the limit lim (t —a)'~*x(t)

t—at
existing, the norm ||x||1_, = sup (t —a)=%|x(t);
te(a,b]
(i) Let 0 < a < b. LCy_,(a,b] denote the set of all continuous functions on (a,b] with the limit

lim (log %)1_0‘ x(t) existing, and the norm ||x|| = sup (log %)1_“ |x(t)].
b=t te(ab)

Let m be a positive integer and Ny = {0,1,2,--- ,m},0 =ty < t; < --- < by, < ty41 = 1. The following
Banach spaces are also used in this paper:

PuCi_a(0,1] = {x :(0,1] = R: x|, 1 € Cioalti tia] :i € N }

with the norm

IIXII—Ilelpmcl_a—maX{ sup (f—ti)l“Ix(t)I:ieNo},

te(titipal
PuC(0,1] = {x (0,1 = R: x|y, € Clti tiga] :i € No }
with the norm

[x[| = [Ixp,c01 :max{ sup |x(t)|:i€ INO}'

te(titiv]

Letl=ty) <t <--- <ty <tys1 = e. Wealso use the Banach spaces

X|(t,,,4] € C(ti tipa],1 € Ny,

there exist the limits
1—a .
lim <log %) x(t),i € Ny

t—tt

LPyCi_y(le) =¢x: (e~ R:

with the norm

¢ 1—«a .
|lxl| = [lxllLp,c, , = maxq sup (108 Ti) |x(t)],i € No ¢,

b (titiv]
PuC(1,¢] = {x :(Le] = R: x|y, € Cltitis)i € No }

with the norm

||x||:]|x]|pmczmax{ sup ]x(t)|,i€lN0}.

te(titiv]

3 Some preliminary results

In this section, we present some preliminary results that can be used in next sections for get solutions of
BVP(1.i)(i=7,8,9,10) respectively.

3.1 Basic theory for linear fractional differential equation

Lakshmikantham et al. [51-54] investigated the basic theory of initial value problems for fractional
differential equations involving Riemann-Liouville differential operators of order g4 € (0,1). The existence
and uniqueness of solutions of the following initial value problems of fractional differential equations were
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discussed under the assumption that f € C,[0, 1]. We will establish existence and uniqueness results for these
problems under more weaker assumptions see (Al)-(A4) in the sequel.

Lety € R,F,A:(0,1) — Rand B,G : (1,¢) — R are continuous functions. We will consider the following
four classes of initial value problems of non-homogeneous linear fractional differential equations:

{ ;fr& x((f))_:;}( )x(t) +F(t), t € (0,1), (3.1.1)
{ Zr;‘%ﬁ@(; i(;),x(t) +F(t), t € (0,1), (3.1.2)
e
{ tc;g%(,;)(t)_;,za(t)x(t) +G(t), t€(Le), (3.1.4)

To get solutions of (3.1.1), we need the following assumptions:

(A1) there exists constants k; > —1,; < 0with [; > {—a, —a —k;} (i = 1,2), M4 > 0 and Mg > 0 such
that |A(t)| < Mat1(1 — ) and |F(t)| < Mpth2(1 —t)2 forall t € (0,1).

Choose Picard function sequence as

(PO(t) =1, te (Or 1}/

Pu(t) =1+ Jo SEE T [AG)gu1(5) + F(s)lds b € (0,1, n=1,2,--.

Claim 1. ¢, € C(0,1]. One sees ¢y € C(0,1]. Then ¢, is continuous on (0, 1], together with

L |E(s)|ds

|A )|ds + fo

UO zx A(s)o(s) + (s)}ds‘ < ||x||f(;f(

_)a—1
< Jy CEE S [Mallsh (1 5)'s + Mpska (1 — s)'2)ds

tS+]2

“ids + Mg [ ¢ T sh2ds

h

< Maly| fy s

vc+ll 1

0 whidw + Mprtketh fl (—w)*+21 wk2dw

= My |tethath (@)

_ ky+1; Bladl ki +1 ko415 Bla+lp ko +1
= My|nt*t 1+17(“r(1“)1 )+MPt“+2+27(“r(2“)2 )—>Oast—>0+,

we see that lir(?+ ¢1(t) exists. So ¢ € C(0,1]. By mathematical induction method, we can prove that ¢, €
t—

C(0,1].
Claim 2. {¢,} is convergent uniformly on (0, 1]. In fact we have for ¢ € (0,1] that

91(t) = go(D)] = | fy T [A(s)go(s) + F(5)]ds|

< MA|11|ft(tsia k(1 —s)hds + Mr fg (t—s k2 (1 — 5)lads

nz+l rxl
<MA|’7|ft(t57)1 fuds + Mg [ 1= Sr(+)2 shads

_ +k1+1q Blatly ki +1) +ko+1, Blatl kp+1)
= My|y|t*Tath T(a) + Mgttt T(w) .
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So
[#2(0) = 91()] = |Jg T A1) = ol

t(t—s)*1 B(a+1q,k+1 B(a+lpkp+1
< fo (tr?t)x) MAskl(l _5)11 (MA|17|S“+k1+ll (Hr(la)ﬁ ) 4 Mpsttheth (Wrr(za)ﬁ )) ds

2 (t— s“’l ! a2k +1y Blatl ki +1)

T(a)
s)tht gtk +kp+1 Blatlp ko +1)
FMAMp Jo S st Bl ds

= | \MZ p20+2ky+21 Blatly k1) Blatlya 2k 1 41)
UARLY} T'(a) T'(«a)

2a+ky+ho+1y+1p Blatlokot1) Blathatky thotl+1)
+M Mgt T(0) ()

Now suppose that

918 = 4y-2(0)] < frl e [T Bleshinliet s

. o , j—1 o .
j-1 a+(j—1)k;+hko+(j—1)1; +1p Blatlp ko +1) B(atly iatiki+hky+(i—1)l++1)
+M1 Mpti*U 1 ] 1 (@) [ |1 () .

We get that
951(5) = ¢i(8)] = | o Crii—AG)gy(5) — 91 (s)]ds

£ (t—s)v1 J iaiky ity o Blact it (i 1)k il 41
Sfo ( rtzi) My <|’7|MAS]DC+] 10 T (atly e #(a)) 1+l +1)

i=0

- o . j—1 — -
-1 _ — B b jo+1 B Ih, k1+k -1 +1+1
—Q—M{q Mpsiat(i=Dktke+(i-1)h+l (06+r(2a)z+ ) Hl (atlyiatiky +ho+(i—1)l+1+ )) shi(1—s)hds

T'(a)

i=0

t—s)*+h—1 B(a+! ky+ili+1
< fO ( Si“)( ; My <|11|M] gjatiki+il H (“+1la+l(_(a)) 1+il+1)

. o , -1 o .
+M{;1Mpsfo‘*(]*l)kl*kZ*(]*l)ll“2 B(Hrl(z:;zﬂ) I B(Hllrmﬂkﬁrk(g(l1)11+lz+1)> sk1ds
=1

F+L (D)t (i4+1)kg 4+ (7+1)1 I B(a+1,ia+(i+1)k; +il+1)
§|77|MA U+ Da+(j+1)ki+(j )111;% 1 ) 170

+M] MptUtDatiki+hketil+h B(Dé-ii_l(z ko +1) I—[ B(atl, 106+lk1-*i_k(i-;-(l Dh+h+1)
i=1

From the mathematical induction method, we get for every n = 1,2, - - - that

i1 (t) — pu(t)] < |77|Mﬁ+1t(”+1)"‘+("+l)k1+(”+1)11 ﬁ B(l’é+11,i0¢+1(j(z)1)k1+i11+1)
i=0

n . )
n (n4+1)a+nky +ky+nly +1p Batlp ka+1) Bath iatiki+ho+(i—1)h+lp+1)
+Mj Mt T Al T(a)

i=

n o )
+1 B(a+1y i+ (i+1)ky+il;+1)
S e
1=

+M" M B(a+lky+1) ﬁ B(a+ll,ia+ik1+k2+(z’—1)ll+lz+1)’t c[0,1].

@) AL M)
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Consider
Z Uy = Z |17|Mn+1 H B(a+ly, wc+(1+1)k1+111+1)
n=1 n=1 i=0 O
te ot B(a+lko+1) 5 Blatlyiatiky+ky+(i—1)l+l+1)
I = B MaMe T I

One sees for sufficiently large n that

Ut :MAB(Hll/(nﬂ)wrgn)ﬂ)kl+(n+1)11) My fo x)eth =Ty (ntDat (et Dk + (1)l gy
n u

< My foé(l _ x)vc+ll71x(n+l)a+(n+1)k1+(n+l)lldx + My f(sl (1 . x)szrllfldx with é € (011)
4 -1 1 1)k 1)1 M I

< My fO (1 _ x)oc+1 dxsmtDa+(m+1)k+(n+1)h + F,?l(goﬁl

< Df\iz?l5(n+l)a+(n+1)k1 (n+1)h 4 Df\_/{_AlycHl

For any € > 0, it is easy to see that there exists 6 € (0,1) such that ff—”}lé“ﬂl < 5. For this J, there exists
an integer N > 0 sufficiently large such that &(5(”“)"‘*(”H)kl+(”“)ll < §foralln > N. So0 < = <

5+ 5 =eforalln > N. It follows that nhm ”"—“ = 0. Then Z uy is convergent. Similarly we get Z vy is
n=1 n=1
convergent. Hence

Po(t) + [¢1(t) — po(B)] + [@2(t) = pr ()] + - - + [pn(t) = Pua(B)] +--- £ € [0,1]

is uniformly convergent. Then {¢,(t)} is convergent uniformly on (0, 1].
Claim 3. ¢(t) = hm 4)n( ) defined on (0, 1] is a unique continuous solution of the integral equation

x(t) = 7+ iy Jo (£ = 5)* [A(s)x(s) + F(s)lds, t € (0,1]. 1 (3.15)

Proof. By ¢(t) = 1_1>rJrr1 ¢n(t) and the uniformly convergence, we see ¢(f) is continuous on [0,1] by
n (o]

definging x(t)|;—p = lim x(t). From
t—=0"

‘fot i CLA(S)pn1(s) + E(s))ds — [2 = 5 “[A(S)gu1(s) + F(s))ds

< Mullpn—1 — Pm— 1||f)f L S 1(1—5)11‘15

B(a+Iq,k1+1
< Mal|¢n1 — ¢m_1||t“+k1+h%

< Mallpn-1— Pm- 1||m—>0asm,n—>+oo,

T(a)
it follows that o
o) = lim ¢u(t) = tm_[n+ f; E5—[A(s)ga-1(s) + F(s))ds|
=+ tim[3 C [A()gn(5) + Fs)lds

n——+

a—1
=1+ Jy S [As)¢(s) + F(s)) ds.
Then ¢ is a continuous solution of (3.1.5) defined on (0, 1].
Suppose that ¢ defined on (0, 1] is also a solution of (3.1.5). Then

a—1

() =1+ fy S [A()p(s) + F(s))ds, £ € (0,1].
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We need to prove that ¢(t) = 1(t) on [0, 1]. Then
[$(8) = 9o(t)] = | fo “H—AS)9(s) + F(s)lds

atky+1; Blatl ki +1) atky+1, Blatl kp+1)
< M'MAt i T(a) + Mpt* 2T T(a) .

Furthermore, we have

(1) = 91(8)] = |3 LEi— A(S)[9(5) — gols)]ds

2 202k +21; Batl ki +1) Batl a+2ky+1+1)
< [ | M £ E =Es T(a)

20+ky+hy+1y+1p Blatl ko +1) B(at+l a+ki+kp+1+1)
+M s Mt (&) Tla .

Now suppose that

S o BV
[9(8) = 41 (D] < g My e T] Bt rrlt et
1=

1 L ,
+M] lM piat(i—Dky+kp+(j—1)l+1 Blatlo ko +1) ]H Blathiatikythot(i=1)h+h+1)

@) At Iw)

Then

[(6) = 950 = | Jo LTi—A)(s) — ¢y (s))ds

+1,(j+1 1)k 1)l B(a+1yia+(i+1)ky +il;+1
< [y M U+ D G Dk G4 DR IH:O (ath,i &“)) 1+l +1)

+M14Mpt(]+1)a+]k1 tko+jl+lo B(ﬂc+rlal;z+1) I B (a1, ia+iky ?ﬁg(zfl)lﬁlﬁl)_
i=1

Hence
|l[)(t) _ ( )‘ < |17|Mn+1 (n+1)a+(n+1)ky+(n+1)I ﬁ “+11/i“+§i(23)k1+i11+1)

i=0

+M:14MFt(n+1)lX+nk1+k2+n11+12 B(a+lp ko +1) ﬁ B(atly iatiky+kp+(i—1)l1+1p+1)

Tlw) A% ()

n . . .
+1 B(a+1,ia+(i+1)ky +il; +1
< |gMETT (ath 1(_(a)) 1+il+1)

i=0

n
+MZMFB(“+I2’]{2+1) I B(a+1yintiky+ko+(i—1) +1p+1) foralln =1,2,-

T'(a) i T'(a)

Similarly we have

n o .
limoo |17|MZ+1 H B(a+ll,za+lgz(—;)l)k1+lll+1) —0,
=

lim MnM B(a+lp,kp+1) H B(atlyintiky+ho+(i=1)h+b+1) _ 0
i Tw) At I(w) :

Then LIT ¢n(t) = ¢(t) uniformly on (0,1]. Then ¢(t) = (t). Then (3.1.5) has a unique solution ¢. The
n o

proof is complete.

Theorem 3.1. Suppose that (A1) holds. Then x is a solution of IVP(3.1.1) if and only if x is a solution of the integral
equation (3.1.5).
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Proof. Suppose that x € C(0,1] is a solution of IVP(3.1.1). Then lirél+ x(t) = nand ||x|| = r < +oo, From
t—

(A1), we have

Ut (tr?ia 1 (s)x(s) + F(s) ds‘ < ||x||ft (t— s |A |ds+ft (t— s)a \F(s)|ds

< Jo LEE— [Marsh (1= 5)t + Mps2 (1 — s)2)ds

+12

< MA]’fO tsi)s dS+MFfO W kzds

a+12

wh dw 4+ Mpt*tketh f 7) wh2dw

— MArta+k1+ll f EZ;“

_ atky+1 Blatly ki +1) atky+1, Blatlp kp+1)
= Mpurt*mh ) + Mt () .

-1

Sot — fot (t}?g; [A(s)x(s) + F(s)]ds is defined on (0,1] and

-1

A(s)x(s)ds = lim [ Lok " F(s)ds = 0.

(X

lim fo

t—=0+ "‘ t—0+

Furthermore, we have for t1, t, € (0,1] with {; < t; that

IS <f1;(i3)”” [A()x(5) + F(s)lds — [ el [A(s)x(s) + F(s)]ds)

2 (2 A(s)x(s) + F(s)ds + fy =l A s)x(s) + F(s) s

—_ t]

< Myr [fff s (1 o) 4 for (== igh (1 - )hs]

+Mp [ :12 (fz;(?;_l Sk2<1 _ S)lzds + fOtl (h *s)w_ll_(;()tzis)a_l Skl(l — S)lzd5:|

< Myr [ f2 L skds - [ (1) b (1 — ) ds]|

4+ Mg [ t (fz—lfz‘;lzfl skds + f(]tl (151—S)"‘711_(—06()1‘2—S)"‘f1 k2 (tr — S)lzds}

a1 a I atl
= Myr [té”‘l*’l I Qo gy 4 [ 0 s — i1 gl klds}

Fky+1 1—q)xth-1 k t t zx+12 -1 ko t (¢ a+ly—1 k
+Mp {“ ’ zflg( Ty —whadw + [ M —shads — [t 22— slads

_ atki+h 1 (I—w)*th=t g
= Myr [tz f% T @ dw
t
atky+l 1 Q—w) etk pR (Lmw)dthl e
+t1 fO T(a) whdw tZ f() T(a) wdw
atly—1
w)* 2 wk2 dw

(3.1.6)
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)ac+l2

a+ky+1
+y et 1 8 (@)

1
e _op)atlp—1

1 et -1
= Myr {f?kﬁll Jiy g —whdw
t2

_oat+l—1
+|tlf+k1+ll _ t026+k1+11|3(a-;l(1‘;];1+1) _ t026+k1+11 fé (1 Z;E(X) 1 wkldw:l

)DH»Iz*

M {"‘*"2“2 Ju Utr 2w dw

+| t’f+k2 +h t02¢+k2+12 | B(atlpko+1)

atky+1 (1—w)*+h~1
r(,x) t2 2 Zfl

r(“)wkldw} —0ast — t.

a—1

So t +— fot (t}a) [A(s)x(s) + F(s)]ds is continuous on (0, 1] by defining

o= Jim [T AG)x(s) + F(s)lds.

Jy Y55 AGs)x(s) + F(s)]ds|

We have I8, CD3, x(t) = I%, [A(t)x(t) + F(t)]. So

Jy Y5 TAG)x(5) + F(s)lds = I3 [A(Hx() + F(8)] = 1§, CDg. x(1

= fot % (ﬁ Jo (s —w) ™ (w )dw) ds interchange the order of ingrals

= r(tx fo f )41 (s — w) ~*dsx’ (w)dw use =% =y

= r(lX fo fo (1 —u)* 'u=*dux'(w)dw by B(a,1 — a) = T@ri-o)

= Otx/(w)dw =x(t) — lim x(t) = x(¢t) — .

t—0t

Then x € C(0, 1] is a solution of (3.1.5).
On the other hand, if x is a solution of (3.1.5), together Cases 1,2 and 3, we have x € C(0,1] and lim x(t) =

t—=0+
1. So x € C(0,1]. Furthermore, we have

D x(t) = i [y (t—s)=%x/(s)ds

a—1

= it ot =97 (n+ J3 ST [A@)x(w) + Flw)Jdw) ds

= i Jate =97 (Ji ST (AGw)x(w) + Fw)ldw) ds
B {u Jo =9 etz (o (s = @) "0~ [Aw)x(w) + F<w>1dw)/ds}
— ey | (=9 ety s = ) 0 AGw)xw) + Fw)d],

F =) fi (= 9) gy Jo (s — )0 [A(w)x(w) + F(w)dwds]
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=M [fo e C ~- "‘)[A(w)x(w)JrP(w)]dwds}/ by (3.1.6)

= r(ll—a) ﬁ [fot f;(t —5)"%(s —w) "= ds[A(w)x(w) + F(w)]dw}/ by chenging the order of integrals

— rirr [Jo (= 0t MdulAGw)a() + Fleo)ldo] by 2 =

= [fof [A(w)x(w) + F(w)}dw]/ by B(1—a,a) = (1 — a)T(a) = A(t)x(t) + E(t).
So x € C(0,1] is a solution of IVP(3.1.1). The proof is completed. O

Theorem 3.2. Suppose that (A1) holds. Then (3.1.1) has a unique solution. If there exists constants ko > —1,1; <0
with ly > {—«, —a —ky}, Mp > 0 such that |[F(t)| < Mptf2(1 — £)2 for all t € (0,1), then the following special
problem

CDE x(t) = Ax(t) + E(t), t € (0,1],
lim x(t) =9 (3.1.7)
t—0+
has a unique solution
x(t) = nEq1 (AtY) +f0 ) E 0 (A(t — 5)*)F(s)ds, t € (0,1]. (3.1.8)

Proof. From Claims 1, 2 and 3, Theorem 3.1 implies that (3.1.1) has a unique solution. From the assumption
and A(t) = A, itis easy to see that (A1) holds with k; = I; = 0 and ky, [ mentioned. Thus (3.1.7) has a unique
solution. We get from the Picard function sequence that

1

Pu(t) =1+ A fy CEi pua(s)ds + [y ri F(s)ds

-1

=1 +yA [y s (¢ S) Lds + A2 fo r(“) N (5}2(42;71 Pn—2(w)dwds

—g)a—1 (g_gp)a-1 _g)a-1
—i—/\f(;E (tr(i) ( r(i) F(w)dwds—i—fot (tr(i) F(s)ds

a—1 —7 a—1
=n+ (,x+1) A2 f5 J F(zc) - r&?) dsy—2(w)dw

)a—l a 1

A fE S (tr?f)w L dsF (w)dw + [y U F(s)ds

a—1

—u ur—1
=1+ F(a—i—l)ta + A2 [y (t—w)> 1 [} (1r8) Ty A2 (w)dw

1 a—1 a—1

A fy (8 —wy2t [ O Lf(;) duF (w)dw + [y Sl F(s)ds

=1 (1 + (a+1)) +A? fo r 4’11 2(w)dw + [y (¢ —s)* (/\S(;:?a + ﬁ) F(s)ds

noc 1 n—1
=y Z F)]L‘]xtjrl + Al fO F ) dw +f0 (Z lf\] )) F(S)ds
LN t 2 N(t—s
= E ]oct+1 + Jo(t—9)* <Z iy (]+1; ) ) F(s)ds
— NEu1 (M) + [o (£ — 8)*  Enq(A(t — s)*)F(s)ds.

Then we get (3.1.8). The proof is complete. O
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To get solutions of (3.1.2), we need the following assumptions:

(A2) there exists constants k; > —a, [; < 0withl; > {—a, —a —ki},l > max{—«a, —1 —k}, My > 0and
Mg > 0 such that |A(t)| < Mat*1(1 — £)h and |F(t)] < Mpth2(1 — )2 forall t € (0,1).

Choose Picard function sequence as

¢o(t) = yt*~1, t € (0,1],

Pu(t) = 71+ fy CEEZAG) pua(s) + F(s)lds, £ € (0,1],n=1,2, -

Claim 1. ¢, € C1_,(0,1]. Since ¢p € C1_,(0,1], then ¢; is continuous on (0, 1], together with

tl—l)t

Jy SR TAG)go(s) + F(5))ds|

— tl—tX

I “}EZS” [A(s)s* 15" o(s) + F(5))ds|

< fo Fuc MA|;7|S"‘ Ik (1 — s)h + Mpsk2 (1 — s)2]ds

zx+l zx+l 1
t(t— s 1 a+k1—1ds+tl aM ft (t— s 2~ Skzds

1—
< HMalyl [ @

_ ky+1 Blatl,a+k 14ky+1, Blatlp kp+1
—MA|17|t“+1+1%+MFt+2+2%—>0a5t—>0+,

we see ¢ € C1_,(0,1]. By mathematical induction method, we can prove that ¢, € C;_,(0,1].
Claim 2. {t — t!7%¢,(t)} is convergent uniformly on (0, 1]. In fact we have for t € (0, 1] that

21 (8) — go(8)] = | fy CEATAG)u(s) + F(s)lds|

e L[Malnlsh (1= s)l + Mps¥2(1 — s)2]ds

a+12 1

skids + Mptt =2 [ (=2 skads

+h

< || Mati= [ tsrT

_ kq -+l +1 B(atl ki +1) ky+lp+1 B(atlp kp+1)
— |77|MAt1 1 W"’M}:tz 2 W

So

E%1ga(t) = 1(1)] = | fo SHE—AG)[9(s) — go(s))ds

— 11,k Iy k
S tl o Ot (t ?)) MAskl(l _ S)ll (|77|MAsk1+11+1B(a"}(lt;)l“rl) + MFSkz+lz+1 B(“"’}(Z;()Z“Fl)) ds

a+ll ! 2k1+11+1 B(at+ly ki +1) ds

T(a)

< [yIME e [ =

T—a t (=)0 g kol +1 Blathk+1)
+MAMFt a fo TS 1 272 Tds

_ 2 (2ky+214+2 B(atly k1+1) B(a+ly, 2k +114+2)
= || M5t
T'(a) I'(a)

ky+ho+1y+1p+2 BlatD ko+1) B(a+ly ki +ky+1+2)
+My Mgt Ta T(w) .
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1 ga (1) = @2(0)] = | f3 ek A [92(5) — 1 (5))ds|

t(t— B(a+1y,k+1) B(a+ly,2k; +1 +2
< - ucf ( s) MAs (175)11 <|11|Mf452k1+211+2 (ﬂé+r(1“)1+) (et lr(le)+ 1+2)

+MAM[.‘Sk1 +ky+li+1+2 B(“‘;’(Z;Z;Z"'l) B(“+11/2§§3+k2+12)> ds

3 1—a [t (t= s““l ! 3k1+211+23(“+11rk1+1) B(a+1,2+2k1+1)
< [y M3 fi L @ ) ) ds

1
+M2M - aff (t—s a+)1 1 2k1+k2+ll+lz+2B(a+l(zak)z+1) B(atly, kll(—:j;2+12+2)ds

M3 3k+3h+3 Blatluki+1) Blatly 2k +11+2) Bath 3k +21+3)

= |n|nm T(a) T(a) T(a)

" fo Mpt2kitha+2h 143 B(ochFlal;z+l) B(a+l, kll(t(l§2+lz+2) B(a+l;, 2k1r+(1;2)+11+12+3)

0gu(8) = ¢a(D)] = |y Cr A9 (s) — ¢als))ds

< fl-a fo ) (1 . s)ll (|11|Mf’453k1+311+3 B(a+rl(1£1+1) B(a+ll,r2(l;1)+ll+2) B(a+11,1331(<;;r211+3)

2 2ky+ky+211+15+3 B(a+lp ko+1) B(a+1q kg +ko+1+2) B(a+ly,2ky +ko+11+1+3)
+ My MFs T(a) @) o) ds

4 ,1—n [t (= s)"“”l -1 4k1+311+3B(a+l1,k1+1) B(a+11,2k1+11+2) B(a+1y,3ky+211+3)
< [n| M4t 0 T T(a) T(a) T() ds

+]\/13]\/1 - "‘ft (t— s a+11 1 3k1+k2+211+lz+33(“"}12 Jo+1) B(a+1y,ky+kp+1p+2) B(a+ll,2k1+k2+ll+lz+3)d

(@) T(a) T(a) s

— | |M4 t4k] +4ll +4 B(lX+ll,k1+1) B(Dé+l],2k1+l]+2) B(Dé+ll,3k]+zl]+3) dSB(IX+l],4k]+3l]+4)
M4 T(a) T(a) T(«) T(«)

+M3 M t3k1+k2+3ll+lz+4 B(a+1p,kp+1) B(a+1q kg +ko+1p+2) B(a+1y,2ky +kp+11+1p+3) B(a+1y,3ky+ko+211 +1,+4)
AVIE T(a) T(a) T'(a) T(a) :

Similarly by the mathematical induction method, we get for every n = 1,2, - - - that

n—1 . , .
19 (8) = g ()] < [y Mg T Bt

M IMp =Dk kot (n— 1)11+lz+n3(0¢+lz,kz+1) H B(a+l, 1k1+kz-*1:§1)1)11+12+1+1)
T'(a ®

< |y ”ﬁl B(atly, (i+1)ki +ily +(i+1))

i=0 T(@)

+MZ_1MP B(lX+lz,k2+1)

B(a+1Liki+hko+(i—1)l +lp+i+1)
bk 1t Db+t 4 e, q],

I'(«)

~. =
L=

Similarly we can prove that both

[(a) ’

Eoun Z |;7|Mn n_ B(a+1y,(i4+1)ky il +(i+1))

o0 oo n—1 . . .
_ n—1 B(a+1p,kp+1) B(a+1iky+hky+(i—1)1 +lp+i4+1)
L on= X My Me=ry = T T()

n

are convergent. Hence

Ho%0 (1) + 1741 (£) — o (5)] + 1 [pa(t) — pr(E)] + -+ + £ [u(t) — pu_r(t)] + -+, £ € [0,1]
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is uniformly convergent. Then {t — t!~%¢,(t)} is convergent uniformly on (0, 1].
Claim 3. ¢(t) = t*! gr_{l t!=%¢, (t) defined on (0,1] is a unique continuous solution of the integral
n (e o]

equation

x(t) = et 4 fy Gk A(s)x(s) + F(s)]ds, t € (0,1]. (3.1.9)

Proof. By 1_1>rJrr1 t=%p, (t) = t'=*¢(t) and the uniformly convergence, we see ¢(t) is continuous on (0, 1].
n o

From
tl —K

I3 T LAGH )+ FE)lds = J§ T A pn1(5) + FOLs

a—1

< Mallpn-1— P[5 fy (t}a) sk1(1 — s)hs*1ds

S a+ll

<MAH(P71 l_(Pm ]||t1 afOtT 0‘+k]71ds

B(atlyatk
< Mallpn-1— ¢m_1||t“+k1+11%

< Mallpn—1— Pm— 1||M—>Ounif0rmlyasm,n—>+oo,

we know that
a—1

9(t) = 71 lim #1709, (1) = lim [p+ #1707 S [A()ga-a(s) + F(s)]ds]

n—o00 n——+o0o

a—1

- 1 1 1-
=nqt* 1+t lim ¢ “fo

n—+o00 r "‘

[A(s)Pn—1(s) + F(s)]ds

a—1

=+ Jo UL [AG)¢(s) + F(s)] ds.

Then ¢ is a continuous solution of (3.1.9) defined on (0, 1].
Suppose that ¢ defined on (0, 1] is also a solution of (3.1.9). Then

t —s a—1
¥(t) = gt* ! —I—/O %[A(s)gb(s) + F(s)]ds, t € [0,1].
We need to prove that ¢(t) = (t) on (0,1]. Then

A= p(r) — go(r)| = 12| [

ki 41341 B(atly kg +1) ko+1p+1 B(atl ko 4+1)
< || Mytth o) + Mpt*ath T

SR AG)P(S) + F(s)lds|

Furthermore, we have

Hop(t) — o (1) = t17¢

Jy L5 AGS) [9(5) — os)]ds|

2 2ky+21+2 Blatly ki +1) B(a+ly, 2k +11+2)
< | M T T(«) T ()

ki +ko+1q +1,+2 Blatly ko+1) B(atl ki +k2+lz+2)
+M 4 Mgt T(w) Ta)

By mathematical induction method, we can get that

(1) = gu(D)] = 87| fo CEE=AG)[9(s) — g1 (5)ds|

< |n|M prkinly+n H B(atl, (l+1r)é<;)+lll+(l+1))

n—1 . . .
n—1 (n—1)ky+kp+(n—1)ly +lp+n Blatl kp+1) B(a+1iki+ko+(i—1)l1+1lp+i+1)
+My " Mrt ) Hl T(a) :
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Hence
n—1 . : :
1— B(a+1y,(i+1)ky+ili+(i+1))
HoS1g(0) = gu ()] < Iyl TT Bt
+Mn 1M (0(+l(2p§2+1) nﬁl B(ﬂc+l,l'k1+k2~l¢:g:;51)ll+lz+i+1), foralln =12 ---.
i=1

Similarly we have Lnr t1=%p, (t) = t1=*¢(t) uniformly on (0,1]. Then ¢(t) = (t) on (0,1]. Then (3.1.9) has
n [eo)

a unique solution ¢. The proof is complete.
Theorem 3.3. Suppose that (A2) holds. Then x € C1_,(0,1] is a solution of IVP(3.1.2) if and only if x € C1_,(0,1]
is a solution of the integral equation (3.1.9).

Proof. Suppose that x € C;_,(0,1] is a solution of IVP(3.1.2). Then t — t!~%x(t)is continuous on (0, 1] by
defining H=%*x(t)|;—o = lir(gl+ t17%x(t) and ||x|| = r < +o00. So by £ = u, we get
t—

. S(a — _ —&x—1..1—a
slg(l)l+ Jo (s —w) " *x(w )dw_sli%l o (s — w) w Lo *x(w)dw
= lim ¢'"*x(¢) [, (s — w) "w* 'dw by mean value theorem of integral, ¢ € (0,s)

= lim &% (&) fOl(l —u)"u*du = yB(1 —a,a).

From (A2), we have

tl—Dé

S A)x(s) + Fls s

— ¢l

I “}EZS’l [A(s)st 15 4x(s) + F(s)Jas|

< fo r “ MArs“ Tsk1(1 —s)h 4+ Mpsf2 (1 — s)R2]ds

)zx+2 1

<t1 “pM rft (t— s +11 a+k1—1ds+t1 pcM ft (t—s kst

— a+ki+1 B(“+ll/“+kl) 1+ky+1p B(“+12/k2+1)
= MAI’t T(a) +M1:t T(®) .

Sot— = t (t S TA(s)x(s) + F s)]ds is defined on (0, 1] and
)

lim £ [ L0 [A(s)x(s) + F(s)]ds = 0. (3.1.10)

t—0t

Furthermore, we have similarly to Theorem 3.1 that t — fo r(i) : [A(s)x(s) 4+ F(s)]ds is continuous on (0, 1].

Sot — tl—@ fo (= S“) [A(s)x(s) + F(s)]ds is continuous on [0, 1] by defining

zx—l

Fo o SRR TAG)x(s) + F(s))ds|

= lim 1~
=0 0+ Jo 5 "‘

[A(s)x(s) + F(s)]ds. (3.1.11)

We have I8, REDE, x(t) = I8, [A(t)x(t) + F(t)]. So

I U;?gj)"l [A(s)x(s) + F(s)]ds = I8, [A(£)x(t) + F(t)] = & REDE, x(t)

:fot (trs(:,)x [ T(i—w) (fo s—w)™" w)dw)/} ds
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- UO F(zx+1)r 7 (oG (w)dw) ds]/
= M= :(t —5)* [ (s — w) " x(w)dw]y +a fy(t—5)* [7(s - w)f"‘x(w)dwds}/

B !
= 7“17“)1”““) —t* lim [i(s — w) "*x(w)dw + a fot(t —s)* L 0 (s— w)“x(w)dwds}

s—0t

M !/
= m @ fot fut)(t—s)""l(s —w)’“dsx(w)dw} - mt”‘ Ulim [5(s — w) *x(w)dw

s—0T

_ / a—1 z
= 7“1 NCE)) [ fo fo (1—u)® "‘dux(w)dw] — m lim 5 (s — w) *x(w)dwby 52 = u

s—0+t

/ o
= |:f(; x(w)dw:| = X(t) - r(lta)l T(« )UB( 06) = X(t) — 1’]tﬂ‘_1.
Then x € C;_,(0,1] is a solution of (3.1.9).

On the other hand, if x € C;_,(0,1] is a solution of (3.1.9), together with (3.1.10)-(3.1.11) implies

lim t!=%x(t) = 5. Furthermore, we have
t—=0+

RLDE& x(t) = 1 g (fo )ds)

a—1

Jat =97 (5% 4 f7 702 A w)x() + F(w)dw) ds)

-1

(

- F(ll—a) (’7 hot 75)_%“_1‘15) + iy i ) (fo “f (S}Z‘Q; [A(w)x(w) +F(w)]dwds)/
(
(

R =t + s (oS =) s A ) x(w0) + Fw)ldo)

S J @ =) Aw)x(w) + F(w)]dw)' — A(D)x(t) + F(8).

So x € C1_4(0,1] is a solution of IVP(3.1.2). The proof is completed. O

Theorem 3.4. Suppose that (A2) holds. Then (3.1.2) has a unique solution. If A(t) = A and there exists constants
ky > —1,1) < Owith Iy > {—a, —1 —ky} and M > 0 such that |F(t)| < Mpt?2(1 — )2 forall t € (0,1), then
following special problem

REDE x(t) = Ax(t) + F(t), t € (0,1],

t—0t

has a unique solution
x(t) = gT(a)t* TEq o (AtY) + fo Y E o (A(t —8)%)F(s)ds, t € (0,1]. (3.1.13)

Proof. From Claims 1, 2 and 3, (3.1.2) and Theorem 3.3 has a unique solution. From the assumption and
A(t) = A, one sees that (A2) holds with k; = I; = 0 and ky, [, mentioned. Thus (3.1.12) has a unique solution.
We get from the Picard function sequence that

)a—l

Pu(t) = i A fo LRl i (s)ds + fy Ul F(s)ds

o

s s + A2 [y Ui fo O, (o) duods

=t Ay (t=s)

+A fo (= ng LG FTE%‘ F(w)dwds + [, = (= S F(s)ds
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20—1 —s)a-1 (s
= gt BETS 02 [t U ot L, o)

_eya—1 _ a—1 a1
AL [ (trii) (s rb(ui) dsF(w)dw + [, %F(s)ds

3 — na—1 n—1
= (@) 2 m A Jo iyt fy (£ = s)° <Z i >> e
o n s)/«
=yl (a)t* ! Z T /}fl +fo (Z I( ]t+1)j) ) F(s)ds
— (@)1 Eg o (M%) + [ (t — 8)8 1 Eq o (A(t — 5)*) F(5)ds.

Then we get (3.1.13). The proof is complete. O

To get solutions of (3.1.3), we need the following assumptions:

(A3) there exists constants k; > —a, [; < Owithl; > {—a, —a — k1 }, [ > max{—«a, —1+kp}, Mg > 0 and
Mg > 0such that |B(t)| < Mp(logt)¥1(1 —logt)" and |G(t)| < M¢(logt)*2(1 —logt) forall t € (1,e).

Choose Picard function sequence as

fo(t) = n(logt)*~", t € (Le],
ou(t) = (l0g )"+ s [1 (log 1) [B(s)gu1(5) + Gs)] %, t € (Lel,m = 1,2,
Claim 1. ¢, € LCy_,(1,¢]. Infact, ¢p € LC1_,(1,¢] and

J1 (1og 1) [B(s)gho(s) + G(s)] 2

(logt)'~*

< (logt)!—* flt (log é)“_l [Mg|y|(logs)*~1(logs)¥1 (1 —logs)" + Mg(logs)k2(1 — logs)IZ]%

< (log )1 =*Mp|y| [} (log 1) (logs)*k1-14 4 (log )1 =* Mg [} (log £)* """ (logs)k2 %

= Mg|n|(log t)“+k1+llB(oc + 11,k + &) + Mg (log )" Fi+hB(a + 1, kp +1) — Oast — 07,

weknow thatt — f1 (log £)* " [B(s)¢o(s) + G(s)] % is continuous on (1, e] and thrél (log t)! =% (t) exists.

Then ¢ € LC1_, (1, e}. By mathematical induction method, we can show ¢, € LCy_,(1,¢].
Claim 2. {t — (logt)'~*¢,(t)} is convergent uniformly on (1,¢]. In fact we have for t € (1, ¢] that

Ji (log ) [B(s)¢o(s) + G(s)] %

(log £)'~*[¢1 (t) — go(t)| = gy (log ) *

< ﬁ(log t)l-« flt (log g)a_l [|[7|Mp(logs)¥1 (1 —logs) + Mg(logs)k2(1 — logs)lﬂ%
)1 a+l—1 ky ds
< M‘MBF (logt fl ( s) (logs) 5

a—1
+Mcr(a) (log t)'~ afl (log £)* ™" (logs)*2(1 — logs) &
= ‘U‘Mg(log t)lelJflw + Mc(log t)szrlerl w'

[14

T'(«)

So

J1 (1og 1) B(s) [ (s) — po(s)]

(log )'*[¢2(t) — P1(t)| = p(y (log )¢

< (log ) [} (log )" ™" Ma(logs)"t (1 — logs)'t (|| Mp(logs)kt+h1 Blethititl
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B Iy ko +1
+ Mg (log s)ketht1 (a+r(z“>z+ )) %

2 2ky 421, +2 B(at1 k1 +1) B(a+1y,2ky+14+2)
< |77|MB(log t)2k1+2h F(lzx)l 1F(al) 1

B(a+lpko+1) B(a-+lq,ky+ko+1o+2
+MBMG(IOgt)k1+k2+ll+ZZ+2 ( 1_(20()2 ) B(ath ll(a)z 212)

I3 (og ) B(s)[a(s) — ¢ (5)]ds

(1og )= [p3(t) — ga(1)| = s (log 1)1~

_ +1—-1 B I,ki1+1) B 11,2k +11+2
< iy (log )1 fY (log £)" """ M (logs)¥t (|| M3 (logs)Pa+2+2 Blashubitl) Bleth 20 th +2)
+MpM (log s)fitheth+h+2 B(a+rl(z£z+1) B(a+ll,kr1(4;1;z+lz+2) ) %

3 3ky 431143 Batly ki +1) B(atly,2k; +13+2) B(a+ly 3k +21+3)
< || Mg (log )11 T(a) T(a) T(a)

2 2ky+ky+21+1p+3 B(a+lpkp+1) B(a+1yky+ko+1p+2) B(a+ly,2ky +hkp+11+1+3)
+M5Mc (log t)“1 ) ) Ta) )

Ji (108 4)" " B(s)[gs(s) — ga(s))ds|

(log )'*[pa(t) — ¢3(t)| = gy (log)'*

Jk1+1) B(a+1y,2k1+11+2) B(a+11,3k14+211+3)

B -1 !
<y (logt)!® [ (log £)* ™" Mp(logs) (|| M} (log s)%i 3 +3 Bletht (@ T

2 2k +ky+21; +1+3 B(atlp ko +1) B(atly ki +hkp+1b+2) Ba+h,2ki+ko+l1+b+3) \ ds
+MpMg(logs) T(a) Ta) T(a) 5

4 4ky 441 +4 B(atly ki +1) B(atly 2k +1+2) B(a+ly 3k +211+3) 5 B(a+ly 4k +31;+4)
< |n|Mg(logt) T(a) T(a) () ds T(«)

3 3k +ky+3l+1,+4 B(a+1p,kp+1) B(a+ly k1 +ko+1+2) B(a+1y,2ky+ko+11+15+3) B(a+11,3ky+ko+211+1+4)
+MpMg(logt) T(x) T(«) T(a) () ’

Similarly by the mathematical induction method, we get for every n = 1,2, - - - that

n—1 . , .
(108 )!~*1gn() = g1 (£)] < [y Mlog ey srien [T Bulisppe)

1 Vo (D) 1o Bl ko +1) "I Bkl kg ko + (i1l o i+1)
—O—Mﬁ MG(log t)(n Y1 +ky+(m—1)h+lr+n r(zw)z 11;[1 1,1K1 2r(“) 1+

n—1 . ) .
= |77|M§ I_IO B(“+ll’(l+11)é<;;‘lll+(l+1))

1=

_ Batlpko+1) "= B(atl,iky+ko+(i—1)ly +lp+i+1
+Mg 1MG (“ra‘)z )11;[1 (a1 iky 2rg;))1 211 ),te(l,e}.

Similarly we can prove that both

—+o0 “+o0 n—1 . . .
B(a+1y,(i+1)kq +ily+ (i+1

ZWZZWMEH ( 1( 12(01) 1+( )),

n=1 n=1 i=0

E" o — E" M1 Btk +1) ”ff B(atl,iky tkot (i—1)1y +lp+i+1)

= =B G T () 4 T(«)

are convergent. Hence
(log 1) "o (t) + (log ) ~*[g1(t) — po(£)] + (log 1) "2 (t) — pr(B)] + -+ + (log ) ™[ (t) = pu—1 ()] + -+,

t € (1,¢] is uniformly convergent. Then {t — (logt)! %@, (t)} is convergent uniformly on (1, ¢].
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Claim 3. ¢(t) = (logt)*~! 1_1)1_{1 (logt)'~*¢,(t) defined on (1,e] is a unique continuous solution of the
n [ee]

integral equation

x(t) = nlog )* ' + 5 Ji (log H% 1 [B(s)x(s) + G(s)]%, t € (1,¢]. (3.1.14)

Proof. By 1_1)1_{1 (logt)'=*¢, (t) = (logt)!~*¢(t) and the uniformly convergence, we see ¢(t) is continuous
n 0o
n (1,e]. From

(log )1 | f} (log £)" " [A(s)gn-1(s) + — Ji (log £)" 7 [B(s)gm-1(s) + G(s)] 2

< Ml|gn1 — ¢u1l|(log )1~ [; (log £)" " (log )"t (logs)* 14
< Mg|[¢n1 — -1l (log !~ [ (log £)* " (log s)r+hi 1

< Mg |pn—1 — pn1l/(log t)* 1 +hB(a + Iy, & + ky)

< Mp||¢pn-—1 — ¢m—1||B(a + I, & + k1) — 0 uniformly as m,n — +oo,

we know that

9(t) = (log )" 1 lim (log#)1 ="y (t) = lim |+ (log#)! "5 [} (log £)" " [B(s)pu-1(s) + G(s)] %]

n——+4o00

=n(logt)*~! + (logt)*~1 nlirfw(logt)l_“ flt (log é)ail [B(s)p,—1(s) + G(s)]%

= n(log )" 1 + s 1 (log £)* " [B(s)(s) + G(s)] &

Then ¢ is a continuous solution of (3.1.14) defined on (1, ¢].
Suppose that ¢ defined on (1, ¢] is also a solution of (3.1.14). Then

¢ a—1 s
P(t) = n(log )1 + F(la)/l <logt> B(s)9(s) + G2t e (1,6]

S

We need to prove that ¢(t) = i(t) on (1,¢]. Then

(log )1 [ (£) — go(t)| = (log )1~ | [} (log £)* " [B(s)y(s) + G(s)| &

< |y|Mp(log t)k1+11+1 B(M}l(ll;’;ﬁl) + Mcg(log t)kz+lz+l B(a-ii_l(zé(k)z-i-l)‘

Furthermore, we have

-1

B(s)[y(s) — ¢o(s)] &

(log )!~*|9(t) — ¢ (1)] = (log )5 | [y (log £)*

2 2k 421742 B(a+1y, k1 +1) B(a+11,2k; +11+2)
< || Mg (log #)= T2 ==l Ty

B I, ko+1) B 11,k +ky+1o4+2
+MBMG(108 t)k1+k2+ll+lz+2 (D“;(ZDC)Z+ ) (“+ 1 11(‘;)24’2 )

By mathematical induction method, we can get that

(log 1)~ 1(t) = ¢ (1) = (log 1)~ 5 | { (1og )" B(s)9(5) — g1 ()]s
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kbl "o B(act, (4 1)ky il + (i41))
< Iy M (g )it T Bleshlieposth

=1 B(atiky +ho+(i—1) +l+i+1)

T'(a)

_i_MgflMG (log t) (n=1)ky+kp+(n—1)l1+I+n B(’X‘}%;k)Z‘Fl)

e

< yiMz nljl B(a+lll(i+1l“)é(;)—i_ill+(i+l))

r(;l)llJrleriJrl), foralln=1,2,---.

n—1 ;
—i—MgflMG B(“‘ii—‘l(zﬂ/Ck)Z’i’l) I B(a+1,iky+kp+(
i=1

Similarly we have 1—1>T (logt)! ¢, (t) = (logt)'~*y(t) uniformly on (1,e]. Then ¢(t) = (t) on (1,e]. Then
n o]
(3.1.14) has a unique solution ¢. The proof is complete.

Theorem 3.5. Suppose that (A3) holds. Then x € LCy_,(1, e] is a solution of IVP(3.1.3) ifand only if x € LC1_,(1, ]
is a solution of the integral equation (3.1.14).

Proof. Suppose that x € C;_,(0,1] is a solution of IVP(3.1.3). Then t — (logt)'~*x(#)is continuous on (1, ¢]
by defining (log )!~%x(t)|;=1 = lim+(log £)1=*x(t) and ||x|| = r < +o0. So
t—1

lim [} (log =) “x(w)%@ = lim [ (log3) * (logw)* ! (log w)'*x(w) v

s—1t s—1+ w

= lim (log&)'~*x(¢) J; (log £) ™" (log w)*~'4% by mean value theorem of integral, ¢ € (1,s)

s—1t

= lim (log&)'~*x(¢) fy (1 —u)~*u~ldu by $EL =

s—1+ logs
=7B(1—a,a).

From (A3), we have

(log £)1=* | [} (log )" " [B(s)x(s) + G(s)] %

< (log )1~ [{ (log 1)~ [Mpr(logs)* " (logs)" (1 — log ) + Mg (logs)*2(1 — logs)™2] &

1—a t pyath-1 atky—1ds 1—a t pyath—1 ky ds
< (log t)!=*Mgpr [; (log %) (logs)*thi—1e 4 (logt)! ~*Mg ] (log ) (logs) 4
= Mpr(log t)* M +hB(a + I, ky + &) + Mg (log t)"PFthB(a 4 15, ky + 1).

Sot — (log#)'~* [/ (log é)a_l [B(s)x(s) + G(s)] % is defined on (1, ¢] and

lim (log )1 [ (log £)* " [B(s)x(s) + G(s)]% = 0. (3.1.15)

t—1+

Furthermore, we have similarly to Theorem 3.1.1 that t — flt (log g)’kl [B(s)x(s) + G(s)] % is continuous on
(1,e].Sot — (logt)!=# flt (log g)%l [B(s)x(s) + G(s)] % is continuous on [1, ] by defining

= lim (log#)'~* [ (log £)* " [B(s)x(s) + G(s)] &.

(logt)!=® f1t (log é)a_l [B(s)x(s) + G(s)] 2 =1 1+
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We have H1% RLED® x(+) = HI% [B(t)x(t) + G(t)]. So

riy i (10 £)* T [B(s)x(s) + G(s)]% = HI, [B(H)x(t) + G(¢)] = F 12, RLH DX x(1)
= ﬁ f1t (log é)ail ﬁs (fls (log %)_a x(w)%w)/ %
= r(al+1) T(I—a) [f1 (log 5 ) (ff (log 5) “x(w )Ww) ds]

-1 - !
+a ff (log )" [} (log 3) " x(w) 42 ]

—a t

= ot [(bg DY (log 5) " x(w) &2 .
s s w s w !

= F(l—rx)ll"(a—i—l)t [(logt)“slirﬂ Ji (log )" x(w) %y + "‘fl f (log £)*~ (log )" d?x(w)d?u}

!/
= mt [(logt)* nB(1 — &, ) + ucfltB(oc,l — oc)x(w)%"]

= x(t) — p(log t)*~!

Then x € LC;_,(1, ¢] is a solution of (3.1.14).

On the other hand, if x is a solution of (3.1.14), together with Cases 1, 2, 3 and (3.1.15) implies
lir{1+ (logt)!=%x(t) = 5. Then x € LC;_,(1, ¢]. Furthermore, we have by Definition 2.5 that
t—

RLED®, x(t) = ﬁt (flt (log )™ x(s)%)/
= ot [ Gog ) ™ (nogs)* * + i i (log 3)* " [A(w)x(w) + F(w)]42) &)’
= ﬁt {17 [ (log £)™" (logs)“’l%}/

it [l S (08 5)° ™ [AG)x(w) + F(wﬂ%”%]'

__1
= I’(lfa)t[UB(l )] +r1 m) [
/
= risat [y Y BO — &) [B(w)x(w) + G(w)]‘%’]
= B(t)x(t) + G(t).
So x € LCy_4(1, €] is a solution of IVP(3.1.3). The proof is completed. O
Theorem 3.6. Suppose that (A3) holds. Then (3.1.14) has a unique solution. If B(t) = A and there exists constants

ky > —1,1, < OQwithly > {—a, —1 — ko } and Mg > Osuch that |G(t)| < Mg(logt)®2(1 —1logt) forall t € (1,e),
then following special problem

RLEDE x(t) = Ax(t) + G(t), t € (1,¢],
" Dyx(t) = (_) (5), te (1el (3.117)
lim (logt)' ~*x(t) =y
t—=0+
has a unique solution

x(t) = T («) (log )" 'Eqa(A(log t)") + [} (log £)" " Eaa (A (log 1)) G(6)%, te (1] (31.18)

Proof. From Claims 1, 2 and 3, (3.1.14) has a unique solution. From the assumption and B(t) = A, one sees
that (A3) holds with k1 = [ = 0 and k», [ mentioned in assumption. Thus (3.1.17) has a unique solution. We
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get from the Picard function sequence that

¢n(t) = n(logt)*~ T+ /\ f1 (IOg ) o Pn-1(s)ds + ﬁ flt (log é)

=n(logt)* ' + T 2) flt (logé) (logs)"‘ 1ds + r f1 (log § ) B T(la) fls (log %)%1 4’n—2(w)dﬁw%

a—1 s \&— w ds x—1 S
—I—% I (log t) ﬁ (log £)* " G(w) e ds 4 ﬁ Ji (log 1)* " G(s) %

o 1 20—1 2 1 a1
= yllogt)* 1+ LB 4 5 1 [, (10 )" iy (l0g 3)" ! £9u-a(w)

-1 sya—1 s w a—1 5
+ﬁ flt fat; (log £)* (log )" r(la) LG(w) % + r(l,x) flt (log )" G(s)%

] o
= yT(a)(log t)* ! z That

x—1 dw t M( s
) f (log £)* & + ﬁ Ji (log £)*" < LT (]t+1s))a)> F(s) %

=
N

1 B Nilog t)i® a—1 [ 1 /\féj
 orteyog = £ s o 1 o) (£ i ) et

— T (a)(log t)¥ 1Eq o (A(logt)®) + fl (log £)* " Eun (/'\ (logé)“) G(s)L.
Then we get (3.1.18). The proof is complete. O

To get solutions of (3.1.4), we need the following assumptions:

(A4) there exists constants k; > —1, I; < 0 with [; > {—a,—a —k;}, Mg > 0 and Mg > 0 such that
|B(t)| < Mg(logt)¥1(1 —logt)" and |G(t)| < Mg(logt)*2(1 —logt)® forall t € (1,e).

Choose Picard function sequence as

po(t) =1, t € (1],
n(t) =1+ g Ji (log )" [B)gu1(s) + G % e (Len=12.
Claim 1. ¢, € C(1,¢]. Since ¢y € C(1,¢], then ¢, is continuous on (1, ¢] and

i (108 )" [B(s)go(s) + G(s))%

< J{ (log £)* ™" [Mj]y|(log )" (1 — log s)1 + Mg (logs)*2(1 — logs)’2] &

< Mpln| f{ (log £)* " (logs)"1 (1 — logs) &

+Mg [ (log £)* ™" (log s)*2(1 — log s)2 &

= Mply|(log t)* ™ 1+ B(a + Iy, k1 + 1) + Mg (log t)* ™2t 2B(a + 1, ky +1) — Oas t — 07,

we get that 111}1+ $1(s) exists. Then ¢; € C(1, e]. By mathematical induction method, we see that ¢, € C(1,¢].
t—

Claim 2. ¢, is convergent uniformly on (1, e]. In fact we have for t € (1, ¢] that

91(8) = 90(8)] = |y Ji (10 £)" " [B(s)go(s) + G(s)) %

<

-1
iy Ji (log £)* ™ [Mly|(log s)¥1 (1 — logs)h + Mg (logs)®2(1 — logs)"2] %
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h-1 -1
< M Ji (log £)* 7 (logs)1 % + Mo s fi (log )77 (logs)f2 s

= |57/ M (log t)a+k1+ll B(“ﬂ}l(lﬂfc’;hq) + Mg(log t)zx+k2+lz B(“Jrrl(zé";zﬂq)‘

92(8) = 91(8)] = |y Ji (1og £)" ™" B(s)[1(5) — pos)] &

<

iy Ji (log £)" ™" [Mi(log s)"t (1 — logs)'t (|| M(logs)®hith Blethutl)
+Mg (logs)““‘frlz B(“Jrrl(sz)frl) ) ds

o S

t +11-1 Blatl k41
51 (logé)"‘ ! (10g5)“+2k1+11%%

-1 B(atlpky+1
+MpM¢g < I"(la) f1t (logé)“ ' (logS)"Hrkﬁkﬁlz7“‘?@»er )%

— 2 2kq 421, 42 B(a+11,k1+1) B(a+1y,a+2ky+1+1)
= |n|Mgz(logt)= 11 rga)l 1 r(“)l 1

+MpMc (log t)2¢x+k1 +hy+l+1p B(“*}lf&k)ﬁl) B(atly, “4}1&4)*24-124-1)

and

193(6) = 92(0)] = [y i (log 1) BLs)als) — g ()]

(o

< 7 Ji (1084)" " Mp(log s)"t (1 — logs)"t (| M5 (log s)%1-+21-+2 Bletfha ) Blecthad Bty )

+Mp M (log s)2a+k1 +ky+1y+1p Blatlp ko +1) Ba+ly,atki+kp+1+1) ) ds

T'(a) T(a) s
+h-1 B(a+1y ki +1) Batly,a+2k+1+1
|’7|M f1 ( é)a ' (108)52H3k1+2h . F(llx)l | Bl ]ar(,x)l : )%

2 atl—1 20+2kq +ko+11 +1, B(a+1p,kp+1) B(a+ly,a+ki+ko+lr+1) ds
M MGr fl( S) (log 5)22+2k1+hath+ly B( %)2 ) Blath r(a)z 2 )s

_ 3 3a+3ky +31; B(atly ki +1) B(a+l a+2ki+1+1) Ba+ly, 2043k +21+1)
= [|Mp(logt) T(a) () ()

2 3a+2kq +ky+21; +1, Blatlo ko +1) Ba+ly,atky+ko+lp+1) Batly 2a+2ki +kp+1 +1o+1)
+MgMc (log t) T(w) ) T(a) :

95(6) = 95(0)] = |y Ji (log 1) B(s)[9a(5) — pa(s)] %

B pya+h—1 34k, +31 Blatlyky+1) B(ath,a+2ki+14 +1) B(ath,2a+3k;+21+1) ds
f1 (log ) (logs) T(a) ) ) s
M3Mg ot pyat+l—1 3a-+3k; +ky+21; +1p Blatb ko+1) B(a+ly,atky+ko+lp+1) Batl 20+2ki +hko+l+b+1) ds
+~e” Ji (log§) (logs) Ta) () T(a) 5
4 dn+4ky 441, B(atly k1) B(atly,a+2ky 41 +1) B(atly,2a+3ki +2114-1) ds B(a+ly,3a+4k+31+1)
< [17|Mg(logt) () T(a) T(a) s T(a)

B(a+1p,kp+1) B(a+ly,a+ky+ky+1p+1) B(a+lq, 2a+2k1+k2+11+12+1)
() I'(a) ()

+M%Mc (lOg t)40¢+3k1 +ko+3l1+1p

B(a+11,3a+3ky +ky+211 +1p +1)
I(a)
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Similarly by the mathematical induction method, we get for every n = 1,2, - - - that

|(Pn(t) _ (Pn—l( )| < |17|M” (log t)na+nk1+nll H (a+ly, 1a+lSZD-1-)1)k1+zll+l

-1 kot (1) 1, Blat b ko +1) "I B(actLiatiky Hho+(i—1)l 1o +1
+Mjp Mg (log t)et(n=Dkitkat(n=1)h+1 (a r(2“)2 ) 1;[1 (at1intiky r(za)(l )+l +1)

n B(ﬂt-Hl i+ (i41)kp+il +1
< |77|M L T(@)

n—1 (a+12k2+1) (D(+l,i0¢+ik1+k2+(l’*1)ll+lz+l)
My MG P Lot te (1.

Similarly we can prove that both

+o0 +o0 n—1
. n B(a+ly, za+(z+1)k1+lll+1
Youn= Y |n|Mj I1 B (@)

and

Z Uy = Z Mn 1M B(a—l—l(zak)z-‘rl H B(a+l, 1a+zk1+1£<(2;;(1 1) 41 +1)

are convergent. Hence

00 (1) + 7 pa (1) — po(D)] + 74 [a(8) — pr (D] + -+ + £ [pu(t) — pua(B)] + -+t € (1,¢]

is uniformly convergent. Then {¢,(t)} is convergent uniformly on (1, e].
Claim 3. ¢(t) = hT ¢n(t) defined on (1, e] is a unique continuous solution of the integral equation
n——+00

x(0) =1+ g Jf (108 9)" " [BE)¥(s) + G % (3119)

Proof. By nETw ¢n(t) = ¢(t) and the uniformly convergence, we see ¢(t) is continuous on (1, e]. From
i (0g 1)* T [B(s)gu1(5) + G(s)]2 — f{ (1og 1) [B(s)pw-1(s) + G(s)] &
< Mg|[gn1 = pm-1]| Ji (log §)" " (logs)*1(1 — logs) &
< M|t — gua | Ji (1og )™ (logs)a &

B 11,k +1
< Mg||pu_1 — fn1]| (log £)+ah Blethdasl)

tx+ll k1+1)

< Mpl|pn—1 — Pm— 1|| — 0 uniformly as m,n — +oo,

we know that

p(t) = lim gu(t) = Tim[y+ s f{ (1og )" [Bs)gu 1(5) + G(s)] %]

n—00 n—-+4o0o

=71+ iy Ji (log £)" " [B(s)(s) + G(s)] %

Then ¢ is a continuous solution of (3.1.19) defined on (1, ¢].
Suppose that ¢ defined on (1, ¢] is also a solution of (3.19). Then

¢ a—1 s
w0 =1+ i [ (log2) 1B + It e (el

S
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We need to prove that ¢(t) = i (t) on (0, 1]. Now we have

! (log )" [B(s)¢(s) + G(s)] &

[(t) — ¢o(t)] =

< |y|Mp(log t)zx-s—kl-s-ll B(lx-}l(ll;’;ﬁl) + Mc(log t)zx-s-kz—s-lz B(tx-;l(zl;’;zﬂ) )

Furthermore, we have

J1 (log 1) B(s)[(s) — go(s)] %

() — o)) = iy

2 2k 4217 +2 B(a+1y k1 +1) Ba+1y,a+2ky+11+1
< |n|M5(log t)=1 =1+ ( rga)l ) B( 1F(0¢)] 1+1)

B bLkr+1) B Iy,a+ky+ko+1p+1
+Mjp M (log t)2a+k1+k2+ll+l2 (M}(za)z-*- ) Blatly Mi_(z-;- 2tltl)

By mathematical induction method, we can get that

Flog DY TV BS)[(5) — u_1(s)]

|l[)( ) (Pn =

n—1 . . .
k 1 B(a+1y,in+(i4+1)k+il1+1
< |17|Mg(10g t)noc+n 1+nly H ( 1 I“((rx) k1 +ily

—1 . . .
n—1 nat (n—1)k; +ko+(n—1)l +1p Blatl ko +1) " BlatLiatiky+ky+(i—1)l+1+1)
< . B(oc—i—ll i (i4+1)kq il +1
|77|M Lo T()
n—1 B(atlko+1) " —1 B(a+1in+iki+kp+(i—1)l1+1p+1)
My MR TT TS b e (1),

Similarly we have grf ¢n(t) = P(t) uniformly on (1,e]. Then ¢(t) = ¢(¢t) on (1,¢]. Then (3.1.19) has a
n e}

unique solution ¢. The proof is complete.

Theorem 3.7. Suppose that (A4) holds. Then x € C(1,e] is a solution of IVP(3.1.4) if and only if x € C(1,e] isa
solution of the integral equation (3.1.19).

Proof. Suppose that x € C(1,e] is a solution of IVP(3.1.4). Then t — x(t)is continuous on [0, 1] by defining
x(t)|t=0 = li%}r x(t) and ||x|| = r < +0co. One can see that
t—

Ji (log £)" " (log s)1 (1~ log )1 < [{ (log 1) " (log )1 & by %] = u
= (log t)a+k1+11 fol (1- u)zx+ll—1 ukidy < (log t)uc+k1+11 fol (1- u)oc+ll—1 Wk du

= (logt)* ™ M*hB(a + 11,k +1).

From (A4), we have for t € (1,e] that

1 (1og 1) " [B(s)x(s) + G(s)] &

< fl ( s) MBr(logS)kl(l — logs)h + MG(IOgs)kz(l _ logs)IZ]
S MBT' flt (log é)‘x_l (logs)kl (1 _ logs)ll %

Mg ! (log £)* " (logs)*2 (1 — log )24
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= Mpr(logt)* ThB(a + 1,k +1)
+Mg (log t)¥ 2B (a + I, ko +1).

Sot— flt (log é)a_l [B(s)x(s) + G(s)]£ is defined on (1, ¢] and

lim [! (log1)*™" [B(s)x(s) + G(s)]% = 0. (3.1.20)

t—1t

Furthermore, we have similarly to Theorem 3.1 that t — flt (log g)a_l [B(s)x(s) + G(s )] is continuous on
(0,1].So t — [/ (log é)a_l [B(s)x(s) + G(s)] % is continuous on [0, 1] by defining

J{ (log 1)* " [B(s)x(s) + G(s)]£| =0, (31.21)

t=1

One sees that
t a—1 - 4 logs—1
Jo Qog £)" " (log ) ™" & by erpoel = u
= fol (1—uw)* P u%du =T(1 — a)T(a).

We have by Definition 2.6 and HI;"Jr CHDZ x(t) = HI{‘Jr [B(£)x(t) + G(t)]. So

i (log 1) [A(s)x(s) + F(s)] & = HI%, [B(£)x(t) + G(1)]

t -1 -
= ity i 08 )" |7ty 7 (log )" wr' ()] &

a—1 s s\ — s
=l Ji (og )" [ i (o 5) “x'<w>dw} .

= Ji ¥ (w)dw = x(t) = lim x(t) = x(t) — 7.

t—1+

Then x € C(1,¢] is a solution of (3.1.19).
On the other hand, if x € C(1,e] is a solution of (3.1.19), together with (3.1.20) implies lirlr}r (t) = 1.
t—

Furthermore, we have that
CHDY x(t) = ﬁ flt (log £) ™" sx/(s)4s
- 1 w)’
= riy Ji (log 2) ™ (n+ 1y Jf (108 )" [B(w)x(w) + Gw)) 42 ) ds

= i i (log D)™ (ks i (log 3)* " [B(w)x(w) + G(w)] %) ds

Ji (tog )" (e Ji (log ) [B(w)x(w) + Gw)] &)’ ds)

* (log £)" ! [B(w)x(w) + G(w)] 2|

wl
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T (tog ) [B(w)x(w) + Glao) s

Ji 15 (og )™ (tog £)* " £ [B(w)x(w) + G(w)]4] by (22 = u

flt fol (1 —u) *u*1du[B(w)x(w) + G(w)]d—w}/ by B(1 —a,a) =T(1 —a)l(a)

w

So x € C(1, ¢] is a solution of IVP(3.1.4). The proof is completed. O

Theorem 3.8. Suppose that (A4) holds. Then (3.1.4) has a unique solution. If B(t) = A and there exists constants
ky > —1,1, < Qwithly > {—a, —a« — kp} and Mg > 0 such that |G(t)| < Mgt*2(1 —t)2 forall t € (1,e), then
following special problem

CHDE x(t) = Ax(t) + G(t), t € (1,¢],
{ lim x(t =7 (3.1.22)
t—=1+
has a unique solution
x(t) = nEa1(A(log t)®) + [} (log £)" " Eua (A (log 1)") G(s)%, t € (1,¢]. (3.1.23)

Proof. From Claims 1,2 and 3, Theorem 3.7, (3.1.4) has a unique solution. From the assumption and A(t) = A,
one sees that (A4) holds with k; = I; = 0 and kp, I, mentioned. Thus (3.1.22) has a unique solution. We get
from the Picard function sequence that

“lGE)%

Pu(t) =1+ Ak [{ (10g 1) g 1(5)% + s i (log £)
=+ nAphy i (og )" L+ A2 [ (log 1)} (log £)* T o (w) &

a—1 sya—1 w ds a—1 s
Aty Ji (log ) [ (log )" Gw) & 4 s [} (log £)* G(s) %

=+ TIEIS 22 T (l0g 1) (l0g )" g a(w)

Aty Jo S (log £)* " (log )71 LF(w) L + L ff (log )" T F(s) &

20—1
= (14 5080 ) + 2y Y (log )™ gua(w) %

20—1 : -1
+A 213() Jo (log )™ G(w) &2 + r(lfx) Ji (log )™ G(s)%

1 1 M(lo
o5, sy (£ 40 oo
— 7Eg1(A(log t)%) + [} (log £)* " Eqa (A (10g§)“> G(s)%.
Then we get (3.1.23). The proof is complete. O

Theorem 3.9. (Schaefer’s fixed point theorem). Let E be a Banach spaces and T : E +— E be a completely continuous
operator. If the set E(T) = {x = 6(Tx) : for some 6 € [0,1],x € E} is bounded, then T has at least a fixed point in E.
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3.2 Exact piecewise continuous solutions of FDEs

In this section, we present exact piecewise continuous solutions of the following fractional differential
equations, respectively

CDE x(t) = Ax(t) + F(t), t € (t;,ti11],i € Ny, (3.2.1)
REDE x(t) = Ax(t) + F(t), t € (ti, tisa],i € No, (3.2.2)
RLEDE x(t) = Ax(t) + G(t), t € (si,si41],i € Ny, (3.2.3)
and
CHDE x(t) = Ax(t) + G(1), t € (si,si41],i € No, (3.2.4)

where A e R, 0=ty <t < - <ty <tyy1=1in(B21)and 3.22)and 1 =ty <t < - <ty < tui1=e
in (3.2.3) and (3.2.4). We say that x : (0,1] — R is a piecewise solution of (3.2.1) (or (3.2.2) if x € P,,C(0,1] (or
Py C1-4(0,1] and satisfies (3.2.1) or (3.2.2). We say that x(1,¢] — R is a piecewise continuous solutions of
(3.2.3) (or (3.2.4)) if x € LP,,C1_4(1,¢], (or LP,,C(1,¢]) and x satisfies all equations in (3.2.3) (or (3.2.4)).

Theorem 3.10. Suppose that F is continuous on (0,1) and there exist constants k > —1and 1 € (—a, —a — k,0]
such that |F(t)| < (1 —t)! forall t € (0,1). Then x is a piecewise solution of (3.2.1) if and only if x and there exists
constants ¢;(i € INy) € R such that

j t _ .
x(t) = ¥ coBy1(A(t—to)") + [o(t =) Eau(A(t —5)*)F(s)ds, t € (tj,tj41],j € No. (3.2.5)

v=0

Proof. Firstly, we have for t € (t;,t;,1] that

‘fg(t—s)“*lEa,a(A(t—s) ds’ < [H(t =) LBy g (A(t — 5)%)| E(s)|ds
< fo Y B0 (A(t —5)%)sK(1 —s)'ds
+oo ,
= ]+1 fo —5)%sK(1 —s)lds
o atl-1 wj ok
SZ(QTfot_S) (t —s)Yskds
j=
— Z T ]+ “)tvz-&-a]-&-k—i-lf w)ac+ocj+l—1wkdw

T A 1 _
<L gt [ (1= w) T Twkdw = B o (A#)B(a + Lk +1).

Then fo )* 1By o (A(t — s)¥)F(s)ds is convergent and is continuous on [0, 1]. If x is a piecewise continuous
solution of (3 2 5), then we know that x € P,,C(0,1] and lim+ x(t)(i € INp) exist. Now we prove that x satisfies
tst

i

differential equation in (3.2.1). In fact, for t € (#;,t;11](i € INp), we have that

i-1 .
CDE, x(t) = ﬁ Jo(t—s)=x/(s)ds = ﬁ jgo ftj’“(t — )7/ (s)ds + f;(t —5) 7%/ (s)ds
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/
= [Z ft’“ < Y exEu1(A(s — t0)*) + [5 (s = 0)* 1 Eaa(A(s — v)"‘)F(v)dv) ds

+ fé(t —5) (xio cxBa1 (A(s — 1)) + [o (s “E, f(A(s — U)“)F(U)d?}) ds}

i-1 4 j '
= i zoft;“a—s)“[zocma,wus—tm“)] ds

. !
+ﬁ fti(t —s5)7% L;O cxEy1(A(s — tK)"‘)] ds

e i (=) [ (s = 0)* " Eaa(A(s — 0)*) F(0)do]'ds

1

o

i

] _ +oo A (5—t, )M !
P ftﬁl ¢ LEO r((rsmxﬂ)] ds

i +0 amie 4 yma !
+ﬁK§0CK fti(t—S)_a |:m§0 %] ds

+°° m 12
+r(1lfa) =T océnJrl fo [ Jo (s —v)*tmelE(v)do] ds
i-1 ] + m ti
= r( Z E 21 r(/\mﬁn S (=) 7%(s — tx)™1ds
]: : =
m l
F(l ) Z FTnaaA-&-l ZOCK fti(t_s (s — t)m1ds + Z A"Dg. gimH)F( t)
m= K= m=0

]H

+oo m i— B -
(11704) L r(Amqu‘l E ): Cr(t— )" t/jtﬁ (1—w) " *w" 4w
- —tx

m i _ 1 _ _ +oo
P L e X aelt— b S (1= w)tw o+ E AR
= —fx m=

400 — i1t
_ 1 Ao . ma—ao = tx _ —a, ma—1
= iy mgl OTESY 2 c(t — te) Z ft (1—w) *w dw
= =" =g

fK

l"(l ) Z r(mm”‘;\+1 Z Cx(t*t vlm zxftl yx 7w)—zxwma—1dw

[

i m 1 _q Am=1(p_g)a(m—1)
+r(1c—a) mgl F(Tnaa/\ﬂ) Jo1= w"dw + f(t) + A fo = 1 —s)" 1%1:(5)‘15

i1
m _ 1 _ _
1 ) Z 1")1\1107?1 goc,((t—t,()"”‘ * Jo (1 —w) ™ w™ tdw

m g am—1p m—1)
T "rlrzﬂcoc)\+1 o = ldw + f(t) +/\fo :1 -7 (r(aZ) F(s)ds

= Ax(t) + EF(t).

We have done that x satisfies (3.2.1) if x satisfies (3.2.5).
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Now, we suppose that x is a solution of (3.2.1). We will prove that x satisfies (3.2.5) by mathematical
induction method. Since x is continuous on (#;, t;;1] and the limit lim x(t)(i € Np) exists, then x € P,,C(0,1].
bt

For t € (tg,t1], we know from Theorem 3.2 that there exists ¢y € IR such that
x(t) = coEq 1 (AMt") + fot(t —8)¥ 1B, 0 (A(t — 8)%)F(s)ds, t € (to, t1].

Then (3.2.5) holds for j = 0. We suppose that (3.2.5) holds forall j = 0,1, - - - ,i. We derive the expression of x
n (ti11,ti12]. Suppose that

x(t) = &(t) + Z cjEu1 (A(t )+ fo ) Enu (At —$)*)F(s)ds, t € (tij1,tital. (3.2.6)
=0

By CD6‘+x(t) —Ax(t) = f(t),t € (tiy1,tin], we get

F(b) +Ax(t) = “D§,x(t) = gy oy (E—5)~%x'(s)ds

= rim (io féﬂl(t—s)—axl(s)ds—I—féﬂ(t—s)—ax/(s)dS)
=

v

= lZ fﬂ“ (Z coBu1 (A(s — t0)*) + [o (s — u)* T Eau(A(s — u)"‘)F(u)du) ds
J

+ f;ﬂ(t —s) (@(s) + i coEy1(A(s —t)") + fo B, (A(s — u)“)F(u)du) ds]

v=0

= CD:‘+ qD( )+ r 1 o) [Z ftﬁl i’—S <i Can,l(/\(S_tv)a)> ds
)

i+1 =0

+ (=) (éochM(A(stv)a)) ds+ [ (=) (fs(s 1EM()\(su)"‘)F(u)du)'ds]

i ‘. '
= CD%, Ot + iy [Z Y oco )7 (t—5)7" <Z riuff) ) ds

i+1 j=00v=0

- Z o Jiy (E=9)7" (ji: Nr((s"“fl);a)/dsl

i [ =) (o s = 10 Baa(As — w)*) Fu)du)' ds)
CD?L@( )+ ri L—ioéocv ftim(t_s)w (E: W) ds

* Ll e (ffi’ “H) d

ey (=91 (Jo (s = )" Eaa (A(s — ) F(u)du) |

+(1—a fo (t—5)"" [o(s —u)* TBaa(A(s — u)"‘)F(u)duds}/
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= Cpe _1 L = b1, N—afa —1
Dt:H(I)(t) + I'(1—a) L‘;m;o Coy l; (%) ft], (t S) (S tv) ds
: 1
+ Z o Z r ) ftl+1 (s —t,)" " 1ds
/
trew {( %) Z F(IX(]H 7 Jo Jutt = (s—u)“f*“dsF(u)dJ
i oo At a(i-1) tip1—to
CD:ﬁr q)(t) —l— Z Cy Y, Z 7) r_j;y’v (1 —w)f"‘w“"fldw
i+1 =0 ] 0= t]ﬁﬁ)
i +oo
o B MR (1)t )
v=0 =1

+o0 . , ; '
ey | (1) T iy (0= 0 [0 (1= )0 o )

_Cpa d p Al(t—tv)® H—l vtu a—1
Dt’th)( )+ g Z Co E r(m) fo w) “w dw
i Al(t—ty) '
+ZEOCU El %IHH w(1—w) “wmldw] [Z ra]+1 fo )" F(u )d”}
] 400 o
=D @) + it [i o & Ll sl O w“"_ldw}
i+1 =1
/
Z r(a]+1 fo ) E( )d“]
—Cpx P(t d by A (t=to)*( oc] 1r(w)du
i ()+ZC'I/Z F((L 1)+1 +ZI‘ fO ()
i+1 v=0 =1

= F(t) + Ax(t) + ‘D, @(t) — AD(t).

1+1

It follows that CD;’; 1dD(t) — AD(t) =0forall t € (tj;1,ti12]. By Theorem 3.2, we know that there exists ¢; 1 €

i+
R such that ®(t) = ¢;11Ey1(A(t —tip1)") for t € (ti4q,ti42]. Substituting ® into (3.2.6), we get that (3.2.5)
holds for j = i + 1. Now suppose that (3.2.5) holds for all j € INy. By the mathematical induction method, we

know that x satisfies (3.2.5) and x|, , 4] is continuous and hm x(t) exists. The proof is complete. O
st}

Theorem 3.11. Suppose that F is continuous on (0,1) and there exist constants k > —1and 1 € (—a, —1 —k,0]
such that |F(t)] < t5(1 —t)! forall t € (0,1). Then x is a solution of (3.2.2.) if and only if there exists constants
ci(i € INp) € R such that

X(t) = ¥ colt — to)* T Eaa(A(t — to)*) + [o (t = 5)¥ 1Ean(A(t —5)¥)F(s)ds, t € (tj,tj1],j € No. (327

Proof. Fort € (t,ti41](j € No), similarly to the beginning of the proof of Theorem 3.10 we know that

tl—lX

fg(t—s)"“lEM(A(tfs)”‘)F(s)ds’ < [y (t =)  TEqa(A(t —5)%)|F(s)|ds

<t ”‘f Y T By (A(t —8)*)s5(1 —s)'ds
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=l 2 T (]+1 fo S)“jsk(l _ S)lds
<# E reme Jo (£ =) (¢ = 5)stds
— fl-a Z 7 (]+1)0c) ttx+4x]+k+lf w)vc+ocj+l—1wkdw

00 i
< tl-a v r(()]ﬁl])a) patk+l fol(l . w)a+l—1wkdw _ t1+k+lEa,a()\ta)B([X +Lk+ 1).
j=0

So t1—¢ fot(t — 8)* 1B, 4 (A(t — 5)%)F(s)ds is convergent and is continuous on [0, 1].

If x is a solution of (3.2.7), we have x € P,,C;_,(0,1]. It follows for t € (t;, ;1] that
RLD& x(t) [fo (t—s) “x )ds}
k=0

i-1 4 j
=t ['Zo = ( L ex(s = 1)" Ean(A(s = 1))
]:

+ Ji (s = )" Eaa(A(s — 0)%)f (0)do) ds]’
BT {ftf(t‘s)_“ (Z r(t = 1)*  Ea(A(s — 1))

k=0

+ [3(s = 0)* 1Ewa(A(s — 0)*)F(0v)dv) ds]’

] /
vy lj x— A (s—ty
N ﬁ L;o Kgo cx ftf]H (t—5)7"(s — tx) ! Z (md))dsl

1 !
! t /\m —t)am
L [E -t £ ]

/
00 AM (g—p)am
+r(11—v<) |:f t— S fo mg() r(a((smj_)l))F(U>dUdS:|
+oo /
= it | ey I s o]
i 1
+r(1 ) l:z Cx Z T )r\rH»l ft f—i' )a+am—1d5:|

s (s—p)atam—1

!/
+r(1 «) LE (=) [ (r(a(),ﬁl))F(v)dvds}

/
+oo m i— - H—he
- [ )» r tx();ﬂjtl ) Z (t - tK le Z ft i tK 1 - w)awa+am1dw]

]KW

] I
i { ) Z Cie(t—)® /):Jrl ft ,K (1— wtx+am1dw]
m=0x=0



458 Yuji Liu et al. / Periodic boundary value problems for IFDEs

a (S v atam—1

Tt ot o (s— '
1—06) |:m§O/\ fO fv(tfs) Imdsp(v)dv]

+00 i—1 ti—tx

/
- ﬁ [mzo Wmﬂ)) ,EO et — 1) Jo (1= w)“w'H’mldw}

—+00
oo { ) ZZ cr(t — @ m+1) fz fK (1 —w) *w*r*m=1dy
+OO m !
+m§OCi(t— yam a)r‘nﬂ fo "‘w”‘*"‘m‘ldw}
1 +0oo Am ¢ P ‘Xm _n wttam=1 d r d !
T mEO Jo( ha T(am 1) 4wE (0)dv
_ 1 il w ¢ t am A oc-i—txm—ld /
T I(1-w) KEOCK mEO( ) T(a(m+1)) fO w w
1 . w ¢ t' am A a+1xm—1d '
oy |G mgo( — )" () fo fw w
1 to /\m t P zxm i tanm— 1 d P d !
traw | 2 A" ol Jo (1= w) = ey dwF (0)do

il 1t A T-w)am1)]
= rmw [Z e B =) ety T

+o0 m _ /
+r {Cimgo(t_ti)a l"(vc()r\n—&-l))r(l a%fugi;()mﬂ))}

+00 m — !
+r(11_4x) [mz r(a();n“))r(l a%{izq()wrl)) fot(tv)"‘mF(v)dv}

= Z Cx ): (i’ _ tK)otm 1(Dém)/\"l Zo:o(i’ _ ti)amflw

T'(am)

+OQ m
* ;1 (??;)n);) Jo(t = 0)¥"~1F(v)dv + F(t)

= F(t) + A iocK(t—tK)“‘lEa,a(A(t—tK) ) + z Tt Jo (£ = o)~ 1F(v)do
=F(t)+A i et —te)* T Ega (A(t — t)® +Af0 ) Ey o (A(t — 0)%)F(v)do
k=0

= Ax(t) + F(t),t € (t;, tipq]-

It follows that x is a solution of (3.2.2).

Now we prove that if x is a solution of (3.2.2), then x satisfies (3.2.7) and x € P,,C1_,(0, 1] by mathematical
induction method. By Theorem 3.4, we know that there exists a constant ¢y € IR such that

(1) = cot* VB u (M) + [ (t — 8)8  Equ(A(t — 5)*)F(s)ds, t € (to, t].

Hence (3.2.7) holds for j = 0. Assume that (3.2.7) holds for j = 0,1,2,--- ,i < m, we will prove that (3.2.7)
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holds for j = i + 1. Suppose that
x(t) = @(t) + ¥ cj(t — )" Eaa(A(t—t)") + fot(t — )" Ey o (A(t —8)*) f(s)ds, t € (tip1,tiya].

Then for t € (t;11,t;12] we have

!

F(t) + Ax(t) = REDg x(t) = ﬁ Léo ft§f+1(t — ) *x(s)ds + ft;l(t —s) *x(s)ds

k=0

= [ﬁ f]“( s)~" (i (s — 1) T Eaa(A(s — £)%)
+ 5 (s = 0)* Eqa(A(s — v)¥)F(0)dv) ds

t _ k _
+ fti+1(tL -5 (cp(g) + L ot = t)* Ena(A(s = t)")

k=0

55— 0 Ea (A5 — 0} E(0)0) ]

i ]
RLD‘t"+ d(t) + ﬁ L;O fti’“ (t—8)"% Y cx(s — t)* TEya(A(s — tc)*)ds

+ [ (=97 5 cul(t — b)) B a(A(s — t)*)ds

k=0
/
F =) 5 (s —0)* TBaa(Als —v)“)l—"(v)dvds} .
Similarly to the proof of Theorem 3.10 we can get that

F(t) +Ax(t) = RED§, x(t) = F(t) + Ax(t) + KDY, @(t) — Ad(t).

i+1

So RLD"‘ D(t) — AD(t) = 0 on (ti41,ti+2]. Then Theorem 3.4 implies that there exists a constant ¢;;1 € R

1+1
such that ®(t) = ¢;y1(f — ti41)" " Baa(A(E— ti41)") on (fig1, ti1o]. Hence
i+1
x(t) = X cj(t— tj)”‘flEa,,X(/\ (t—1)%) + fO Y E o (A(t—8)%) f(s)ds, t € (tiy1, tiga)-
=0

By mathematical induction method, we know that (3.2.7) holds for j € INg. The proof is complete. O

Theorem 3.12. Suppose that G is continuous on (1, e) and there exist constantsk > —landl € (—a, —1 —k, 0] such
that |G(t)| < (logt)¥(1 —logt)! forall t € (1,e). Then x is a solution of (3.2.3) if and only if there exists constants
ci(i € Np) € R such that

x(0)= ¥ (@) (log )" Eux (1 (10g:£)")

v=0

(3.2.8)
-1 ,
+ flt (log )" Eqa ()\ (logé)“) G(s)%,t e (tj, tjs1],j € No.
Proof. For t € (t,t;411](j € INp), similarly to the beginning of the proof of Theorem 3.10 we know that

(logt)l—= flt (log g)a_l Enn ()\ (log g)a> G(s)%

< (logt)l—= flt (log é)%l Enu (/\ (log é)’x> (logs)k(1 — logs)l%

+atl-1 1
< (log)!~* Z iy i (log £ (log s)F & by 1255 = w
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+00 L —
= (log )17 T iy (log )k [ (1 — )™ whd
1=0
< (log )y (A (log 1)") fy (1= )" whdw
= (log 1)+ E, ()\ (log g)“) B(a+Lk+1).
So [ (log é)“_l Euu (/\ (log é)a> G(s)% is convergent for all t € (1,¢] and
lirﬂ(log t)l-« flt (log g)'xil Enu (A (log é)a) G(s)4 exists.
t—

If x is a solution of (3.2.8), we have x € LP,,C;_,(1,e]. By using Definition 2.5, it follows for t € (t;,t;11]
that

—u /
REHDY x(t) = iyt [ff (log 1) x(s)%}
i-1 _ j 1 i
= it [ o) (o o5 2) " s (3 2
07 (g 3)* ™ B (1 (10g ) G ) &

0oty ((Eyere) om ) s (3 s )

=
~

m‘%
—_
~

+ 7 (1083)" ™ Euu (A (0 3)") Glu)

ot |0 5 e g ) o £)” e (3 8 )") #

j=02=0
) £ e og )™ (1og )" Eue (1 (5 )") &

_ _ !
+ J{ (1log £) ™ J; (log )" Eau (A (log 3)") Glu) 2] .
One sees that
_ -1
ftj (log i) * (log %)“ Enu (A (log %)a) %

ak+oa—1 1 —logty
= ¥ty i o) (log ) oy e

— 1 S| 1 - mc+acfld
Z r K+1 ) (Ogt ) flogriflogfv ( _w) w w

logt—logty

and

Jir (1o )" (1og )" Eua (1 (108 ))&

+oo logt;q—logty

_ K t aK log t—log ty o - ak+a—1
= &) M) (log )" funigh” (1= )™

log t—log ty
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Similarly
Ji (108 5) ™ Eaa (A (1o 1)") J; (log )" " Eua (4 (log 5)") Glu) s
= i Ji (0g ©)" " Eua (A (log £)") (log 3)" " Exa (1 (log 3)") £G(u) 4
= 1 (108 £ iy o (1= w0) ™ wee G ) 4

So

R 1 i—1 +o00 2K , ax i loi; f,+t llflotgtv . ;

LH o; og to - _
D%+X(t) I )t I (06) E OCU E ; 71_( CZsH) (]Og tv) 2 flogtg logi (1 ZU) wtae—14
= K=

j=v logt—Togty

@ L 60 ¥ ey (108 )" Sl (1 - ) 0l
=0 k=0 r( (K+l ) logtlflogty
1t log 1 ax+a—1y4 du /
+ go Ji (log )™ K+1 T(a(k+1)) Jo fw wG(u) 5

i aK 400 ax « ” !

" i +o0 ak—1 400 _ X u
= F(t) +t [r(t ) Ug ; <logt ) +K§1 [} (log £)™ ! F&K)G(u)du}

= /\X(t) + F(t),t S (tir ti+1]'
It follows that x is a solution of (3.2.3).

Now we prove that if x is a solution of (3.2.3), then x satisfies (3.2.8) and x € LP,,C;_,(1, ] by mathematical
induction method. By Theorem 3.6, we know that there exists a constant ¢y € IR such that

x(t) = co(logt)* Eyq(A(log t)%) + f1 (log & )‘H Ey o (A (g)“) E(s)ds,t € (to, t1]-

Hence (3.2.8) holds for j = 0. Assume that (3.2.8) holds for j = 0,1,2,--- ,i < m, we will prove that (3.2.8)
holds for j = i + 1. Suppose that

x(t) = ®(t) + Zl‘, col' () (log é)“_l Eur (/\ (log é)“)

v=0
-1
+ flt (log £)*"" Eqa (/\ (log é)'x) G(s)%,t € (tir1,tiya).
Then for t € (t;11,t;12] we have

/

F(t) + Ax(t) = RLHDY x(t) = 1.(1 ) lZ ft’“ (log £) ™" x(s)% —I—ft]+1 (log £) ™" x(s) %
J
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- £ s (0 (52 s (052
+ J5 (1og 3)" ™" Eaa (A (log 3)") Gu) % ) 2

#05, og)™ (96)+ £ eor(@) (tom )" Ean (3 (08 2)")

v=0

07 (og )" Eua (1 (083)") G0 %) &)

fti'm (log )™ (Z col' () (bg%)a_l Ene ()\ (log%)a)

- RLD?% D(t) + r(llﬂx) l

i
i+1 j=0
+ 7 (log 3)" " Eaa (A (10g £)*) Gy ) &
+ Ji, (log )™ (zéo el (@) (10g £)" Eaa (A (log £ )")

— /
+ J; (log £)* " Eua (A (log 3)") G(u) ) ] .
Similarly to above discussion we can get that

F(t) + Ax(t) = REIDY x(t) = F(t) + Ax(t) + READY, @(t) — AD(1).

i+1

So RLH DY, ®(t) —A®(t) = 0on (41, ti+2]. Then Theorem 3.6 implies that there exists a constant ¢;1 € R

i+1
x—1 i3
such that ®(t) = ¢;1 1T (a) (log ﬁ) Eup ()& (ﬁ) ) on (ti11,ti12]. Hence
i+1 x—1 i3
— t +t
x(t) = vgo cpl' () <log tp) Enu (/\ <log tp) )
-1

+ flt (log £)* " Exa (/\ (log é)“) G(s)%,t € (tiy1, tisal.

By mathematical induction method, we know that (3.2.8) holds for j € INy. The proof is complete. O

Theorem 3.13. Suppose that G is continuous on (1,e) and there exist constants k > —land | € (—a, —a + k, 0] such
that |G(t)| < (logt)¥(1 —logt)! forall t € (1,e). Then x is a piecewise solution of (3.2.4) if and only if x and there
exists constants c;(i € INg) € IR such that

j o o— o .
X(t) = % coan (A (1og é) )+ J! (log 1Y Eya (A (log t) )G<s)%,te (i tialj€Ng.  (329)

Proof. Fort € (t,tj;1](j € No), similarly to the beginning of the proof of Theorem 3.12 we know that

| (log )"~ Eaa (A (108 £)") G(s)%

< (log t)* ™ Ey o (A (log ﬁ)“) B(a+1,k+1).
So [ (log é)'x_l Enn (/\ (log é)“) G(s)% is convergent for all t € (1,¢] and

s

lim [/ (log é)“il Euu (A (log é)“) G(s)% exists.

t—1+



Yuji Liu et al. / Periodic boundary value problems for IFDEs 463

If x is a solution of (3.2.9), we have x € LP,,C(1,e]. By using Definition 2.6, it follows for t € (t;, t;,1] that

CHDE, x(t) = iy Ji (logh) ™" sx/(s) %
(1—a)

+ J; (log £)* " Eua (A (log 3)") G(u)di‘)/dS}
~ it Lz £ o (o) (Ean (1 (105 £)"))
+Ué0 Co ftf (log )™ (Ea,l (/\ (log %)N))/ds

+ i (og )™ (J (10g %) " Eua (A (10g 3)") c<u>d;’)’ds] :

One sees that

t £y s V49 t py—a (£ g )
fti (log £) (Ea/l (/\ <logg> )) ds = fti (log £) <K§0r(”"‘+1) <logg> ) ds

A xa—1 400 A a(x—
Z F((iﬂ;é()Jrl) f (log ) -« (1og %) ds = Kgl F((;;D:c)+1) (logé) ff tv (1- w1dw
and
i - ayy/ too K ax—1 w B
Ji (og )™ (Buw (A (log ) ) ) ds = I 5 (log ) Juyhrs” (1)l
K= logt—logty
Similarly

!

Ji (10g )™ (5 (10g:3)" " Eaa (A (log 3)") Glu)d4 ) ds

it [ 108 )" (I 082"~ Fu (1 105 3)°) G004

= 5 | log )™ ( (log £)* " Eua (A (l0g:2)°) Gl %)

— s N— o u /
+(1—a) f{ (log £) ™ [; (log £)" " Equ (4 (log £)") Gla) 4%
e o s\ ak+a—1 g du !

Z ;<+1 T(a(xk+1)) fl f (108 ) " (log ;) TG

e K oK — _ !
- [ ity i Gog )" i (1) "t auG )

K=

P<>+tz T [ (log 1) fy (1 )t wA e G (u)
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So
. a—1 loig tHll—log ty
CH _ IIK ogt—logt —u —1
D%—%—x(t) - ( Z E Co E T 1XK+1 (log ty ) logti—logtyv (1 - w) wﬂlK dw
=00v=0 k=1 Tog t—Tog fy
d i (ra) A" (e we— 1
+ Lo &ty (log ) ft W (1—w dw
v=0 k=1 [

+E(t) +t Z Fagery Ji (10g £) " fy (1 —w) ™" G (u) 4

= Ax(t) + E(t),t € (; tipr).

It follows that x is a solution of (3.2.4).
Now we prove that if x is a solution of (3.2.4), then x satisfies (3.2.9) and x € LP,,C(1, ¢] by mathematical
induction method. By Theorem 3.8, we know that there exists a constant ¢y € IR such that

x(t) = coEaa(A(log )*) + [! (log £)* " Ega (A(g)“)F(s)ds,te(to,tl].

Hence (3.2.9) holds for j = 0. Assume that (3.2.9) holds for j = 0,1,2,--- ,i < m, we will prove that (3.2.9)
holds for j = i + 1. Suppose that

x(t) = ®(t) + i CoEan (/\ (log i)a) + flt (logé)l"_1 Enu (/\ (logé)‘x> G(s)%,t € (tit1, tita)-

Then for t € (t;11,t;12] we have

!/

E(t) +Ax(t) = “HDY.x(1) = g [-io S log )™ ¥ (e)ds + | (log )" x’(s)ds}
]:
e | 0 ) (o (3 (108 £)") - )" e (1 00)%) G )

; _ i o 1 !
+ ffm (log £)™* (CID(S) + ZEOCUEM (/\ <log %) ) + J7 (log £)* Eau (/\ (logﬁ)“) G(u)dj") ds} :
Similarly to above discussion we can get that

F(t) + Ax(t) = MDYy x(t) = F(t) + Ax(t) + FDs, (1) — Ad(#).

1+1

So MDY, @(t) — AD(t) = 0 on (11, ti12]. Then Theorem 3.8 implies that there exists a constant ¢;;; € R

1+1

4
such that ®(t) = ¢; 1 1Eq (A (ﬁ) ) on (tj1,ti1o]. Hence

i+1 14 -1
X() = Y cobua (1 (10 £)") + J1 (log )" Exa (1 (108 1)") G52, € (t101, b,
v=0
By mathematical induction method, we know that (3.2.9) holds for j € INy. The proof is complete. O

3.3 Preliminary for BVP(1.7)

In this section, we present some preliminary results that can be used in next sections for get solutions of
BVP(1.7). For ease expression, denote

Sup(t,s) = (t—5) " Ega(A(t —5)%),

A=-1+ r(a)éa,)\(ll 0) + r(DC)Z(Sa//\(tl,O)éa,)\(l, tl)'
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Lemma 3.1. Suppose that A # 0and o : (0,1) — R is continuous and satisfies that there exist numbers k > —1 and
max{—a, —k — 1} <1 < 0such that |o(t)| < t*(1 —t)! forall t € (0,1). The x is a solutions of

RLD& x(t) = Ax(t) = o(t),t € (tj,tisa],i = 0,1,
x(1) — lir%tl_"‘x(t) = ay, 11m 1 (- t) % x(t) — x(t) = Iy (3.3.1)
t— St

ifand only if x € PyC1_,(0,1] and

T2l Ty — ()80 (1, t)Io — fo dan(1,8)(s)ds
—T(a)3y 0 (1, 11) [ (5M(t1,s)a(s)ds] + [o ant,s)o(s)ds, t € (0,1],
PO [ay — P()3r (L 1) o = fo ua(L,s)o(s)ds

x(t) = (3.3.2)
T (@80 (1, 11) f3* 0 (b, )0 (s)ds | + 222 [T()o, 1 (11, 0)ag

+(T(2)d4,2(1,0) = 1)Ip —T(a)dy2(t1,0 fo wr(1,8)o(s)ds

(0 ()61 (1,0) — 1) [ %(tl,s)a(s)ds} + [y dap(t,s)o(s)ds, t € (ty,1].
Proof. Let x be a solution of (3.3.1). By Theorem 3.11, we know that there exist numbers Ay, A; € IR such that
x(#) = AoT (@) Egu (AF) + [ (t — ) "Equ(A(t —5)*)o(s)ds, t € (to, 1] (3.3.3)

and
x(t) = AT (a)t¥ TEy o (M%) 4+ AT (&) Eg o (A(t — £1)%) (£ — £1)* !
(3.34)

+ fo Y E 0 (A(t —8)*)o(s)ds, t € (t, ).

Note Eq,t(0) = gy It follows from the boundary conditions and the impulse assumption in (3.3.1) that
Aol (&) Ega(A) + A1T (@) Ena (A (1 — £1)*) (1 — t1)* 7
+ Jy (1= )" Eaa(A(1 = )" (s)ds — Ag = ag,
Ay — [Aor(“)t'f*lEa,a()\f’f) + foH (1 = 8)¥  Egu(A(t — S)“)J(S)ds} = .
Then
Ay =} [ao —T(@)(1 = 1) Eaa(A(L = 11)*) g — f5 (1 = 8)*  Eqa(A(1 — 5)*)c(s)ds
~T(w) (1= 1) Eaa(A(L = 1)) [y (1 = )" Eaa(A(k — 5)")o(s)ds |
A1 = & [T Ean (M0 + (T(@) Exa(A) = 1)o (33.5)
(@)t Ega (AL [i (1 —8)* Eqa(A(1 — 5)%)o(s)ds
+(T(@)Ea(A) = 1) fo! (1 =) Ena(A(ts = 5))o(s)ds] .

Substituting Ap, A; into (3.3.3) and (3.3.4), we get (3.3.2) obviously.

On the other hand, if x satisfies (3.3.2), then x|, and x|, 1) are continuous and the limits }irré Hax(t)
—
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and t11nt1 (1 —t1)!=*x(t) exist. So x € P;C;_,(0,1]. Using (3.3.5), we rewrite x by
—h

AT (@) Eg o (AF) + [ (E— ) Equ(A(t — 5)*)0(s)ds, t € (0, 1],
x(t) = AOF( )t"“lEM(/\t"‘) + AT () Eqa(A(t — 1)*) (£ — )81
+f0 VL E 0 (A(t —8)%)o(s)ds, t € (t,1].

Since ¢ is continuous on (0,1) and |o(t)| < t*(1 — t)!, one can show easily that x is continuous on
(ti, ti41](i = 0,1) and using the method at the beginning of the proof of this lemma, we know that both the

limits lirn+ t1=%x(t) and 1irr}r (t —t1)17*x(t) exist. So x € P;C;_,(0,1]. Furthermore, by direct computation,
t—0 t—t]

we have x(1) — Pn& t1=%x(t) = ag, and linl(t — 1)1 %x(t) — x(t1) = Ip. One have from Theorem 3.12 easily
— t—t]

for t € (to, t1] that D§, x(t) = Ax(t) + o(t) and for t € (t1, t2] that
RLya 1 t —u !
Dy x(t) = riay [fo(t —s) x(s)ds}
- ﬁ [ Otl (t—s)7* (Aol (a)s* 1Eq 0 (As™) + fos(s —w)* 1Ey 0 (A(s — w)")o(w)dw) ds

+ ffl (t—5)7% (AT ()5 1Eqa(As®) + ArT () Ega(A(s — t1)*) (s — )%

+ Jo (s = w)* g (A(s — w)*)o(w)dw) ds)'

= r( [Aor w) [3(t—5) "% T Eq 0 (As®)ds + AT (a ft (t—8)“Ena(A(s — t1)%) (s — t1)*1ds
/
T fO (t=s) fo “Ea(A(s — w)“)U(ZU)dwds} .
One has by variable transformation w = tl and B(1 —a,ja+a) = W that

+o0 i )
JE (=) Eaa(A(s = t1)*)(s — 1) ds = ]-Eo iy Jiy (= )7 (s — )t ds

i e (t—t)
; ]+1 )(t_fl ]“ fo (1 —w) *whr® ldw = Zo r]a+11) I'(1—a).

Then

RLD8‘+X( ) =

« 400 4 joc
AoT () z rﬁj;;l) (1-a) +A1r<a)]§0 T (1 —a)

F(l o)

+o0 : 4
+]§O o) Jo J(t = 5)7%(s — w)/*+*Adso (w)dw

F( o) I'(ja+1) T'(ja+1)

+o00 400 . i
Aol () Lr M1 — ) + AT (a) r MUt)TE] )
j= =
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/
+ 2 r(a(]+1 ) fO )]‘X fOl(l — u)_“uja+a—1dMU(W)dw1 by i:% =u
It N (t—ty)
= g | Aol (@) Z I“/)at-i-l) (1_“)+A1F(“)j§o F((jtx—i-ll)) I(1-a)
/
+ Z r]a+1 fo (w)dwr (1 —0‘)]
+00 ;i ; /
AT () Z r?;fil +AT(@) T Mub) z i (¢ — )i (w)du
]:

= Ax(t) + o (t).

So x is a solution of (3.3.1). The proof is completed. O

For ease expression, denote for a function H : (0,1) x R — R that Hy(t) = H(t,x(t)). Define the nonlinear
operator T on P;C;_,(0,1] for x € P;C1_,(0,1] by

PO [ 11 p(5) Ga(5)ds — T ()8 r (1 1) Ee() = Jy S (1,5)p(s) fuls)ds

—mwaﬂuxnﬁ?@mn»wwvxwwyaﬁaﬁﬁwmgﬂwnﬁxe<am,
HSa 80) [ (1 p(5)Gs)ds — T@)oaa (1 )T {E1) = fy o (L5)p()fels)ds

—r<a>5a,A<1,t1>fgl5,1,A<t1,s>p<s>fx<s>ds}+w[r Sun(t1,0) L o ds

+(T (@), (1,0) = 1)Lx(t1) =T (@) a(t1,0) fy Gun(1,5)p(s) fu(s)ds

F D@30 (1,0) = 1) i 60, (t1,5)p(s) fe(5)ds] + [ 80 (t,5)p(5) fels)ds, £ € (1,1].

Lemma 3.2. Suppose that (a)-(e) hold, A # 0, and f,G are impulsive II-Carathéodory functions, I a discrete
II-Carathédory functions. Then x € P;Cy_,(0,] is a solution of BVP(1.7) if and only if x € PyC1_,(0,1] is a fixed
point of T, T : PyC1_4(0,1] — P1C1_4(0, 1] is well defined and is completely continuous.

Proof.  Step (i) Prove that T : P,,C1_,(0,1] — Py C1—4(0,1] is well defined.

It comes from the method in Theorem 3.12 that Tx|(y,}, Tx|(, 1)(i = 0,1) are continuous and the limits
yn& t1=%(Tx)(t) and lin}r(t — t1)17%(Tx)(t) exist. We see from Lemma 3.3.1 that x € P;C;_,(0, 1] is a solution
- t—t]

of BVP(1.7) if and only if x € P;Cy_,(0,1] is a fixed point of T in P;C;_,(0, 1].

Step (ii) We prove that T is continuous.

Let x, € P1C1_4(0,1] with x, — xp as n — +oco. We can show that Tx, — Tx( as n — o0 by using the
dominant convergence theorem. We refer the readers to the papers [65] 77, 81].

Step (iii) Prove that T is compact, i.e., prove that T(Q) is relatively compact for every bounded subset
Q C PC1_4(0,1].
Let Q) be a bounded open nonempty subset of P;C;_, (0, 1]. We have

[|x]| = max{ sup (t—t)17%|x(t)] i = 0,1} <r < 4o, (x,y) € Q. (3.3.6)
te

(titi1]

Since f, G are impulsive II-Carathéodory functions, I ia a discrete II-Carathéodory function, then there
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exists constants M r My, Mg > 0 such that
f(x(®)] = |f (& (=) 1t =) % (t)) | < My, t € (b, ti4q],i = 0,1,
|G (t,x(t))| < MG,t S (tir fi+1],i =0,1, (337)

I (t1,x(t1))| = [I(t1, ¥ 1t} "x(t1))| < M.

This step is done by three sub-steps:
Sub-step (iiil) Prove that T(Q) is uniformly bounded.
Using (3.3.2) and (3.3.7), we have for t € (0,#;] that

F0] (T) ()] < HOEa ) []] ][y Mo + T ()80 (1, 1) | My

+f0 (1—s)*1 Z rv )))Mfs (1—s)lds

—O—F(oc)éa//\(l,tl)fotl (t; —s)* ! Z A tlvfl))Mfs (1—s)ds

+ V(p_ o\&v
—O—Mftl”" ZEO ?(éévj)l)) fot(t —5)aH—1gkgs

< HEa A8 11161 |, Mg + T ()80, (1, £1) | My

= [A]
+Mf Z e )fO av+a+l 1 kds
+I(a) Mgy ,2(1,11) Z FatorD) fo (tp —s)rotati=lskgs

—+o0
_ AP t -1k
—‘r-Mftl o UEO Tl TT)) fO (t _ S)m}+n¢+ 1S ds

2 2(1_.ya—1
S r(“)ll¢‘|‘[l\l‘3aﬁ(|/\‘)MG + r(a‘) Ea,a(||)‘[|\)‘ (1 tl) ‘Ml

«)? 3(1_t, ya—1atk+l
+ (F(a)Ea/,{«l(/\l)z 4 @ E:x,lx(‘/\|)|/(\1| b)) +Ea,A(|/\|)) B(a+1k+1).

For t € (t1,t;], we have similarly that

(t— 1)1 )(Tx) (1)] < D@Eeall2D 1161, Mg + T(a) (1 — 11) 2 Ena (A ) My

1Al

+ E F(a(v-i—l fO 1 —S thraJrl 1g kdst

+r( )(1—t1)"‘ 1Eu¢a(|}\‘) Z l“(uc(v—i—l) fO zxv—i—a—i—l 1 kdst
o HlEea QO [T () Ena (ADI9] Mo

+oo v
+(T(@)Eaa(JA]) + 1)M; +T ()8 Equ(|A]) L oy Jo (1= s)sreri=Tskds vy
=

+(0()Eqa(JA]) +1) z rtey i (k=)o -lgkdo M
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+Mf(t* tl) —u Z r(“(v+1 fo tis)av—&-tx—&-l 1 de

< Haa ) [}1]|; Mg + T(2) (1 — 1) Exa(IA)M
+Ena(|A])B(a + 1k + 1) My

T (@) (1 — t) R E L (JA])?B(0 + Lk + 1)Mf]

+ L0l T ()~ Eqa (A1l 1 Mg

+(T(@)Ena(|A]) + 1)Mp +T(a)t{  Enu(|A])*B(a + 1k + 1) M
(T (&) Ena(JA]) + 1) Ey (A B + LK + 1)Mf}

+M(t = t) T E L (JA)B(a+ 1k + 1)

M@ Eua (Al TP Ena (Aol
= ( At Al Mg

F(@)?Eaa(A)2(0—1)" | T@)(T(@)Exa (1A +1) Eqa(]A])
+( A + A ) Mi

T(0)Eau([A)? | T(@)?Eaa(ADPA—t)* 1 T(a)2Ean(JA)%H
+< ar ot VI

2 ja+-k+1
+r(‘)‘)(r("‘)Ea,a(lA“)X‘l)Ea,a(MD 51 + Ea,a(/\|)) B(IX + l,k + 1)Mf

From above discussion, we get

&) Eau 2 o0
T < [H Bl HoP 4)1} )

P()2Ean (A2 | T(0)(T(0) Eaa (M) +1) EneJA])
* [ N [A] ] My

(3.3.8)

C()Eun(A)? | D@ Eua (IMP(A=t) 1 L) Ena (A7
+< A 7 Y

2 j0+-k+1
+ H T e (Rt DEn (R Ea,a(AI)) B(x+ Lk +1)M;.

From above discussion, T(Q}) is uniformly bounded.
Sub-step (iii2) Prove thatt — (t —t;)!7*T(Q) is equi-continuous on (t;,t;,1](i = 0,1).

Let
R (= 1)1 (T (1) (), £ € (8 ],
(t=t:) " (Ti(x,y))(H) = { lim (£ — £)1%(Ty (x,y)) (£), t = t;.
t—tt
Then t — (t —t;)'=%(Tx)(t) is continuous on [t;,t;;1]. Let sy < s; and sy, € [fo,t1]. By AscoliCArzela
theorem on the closed interval, We can prove that

‘5% “(Tx )(51)*52 “(Tx)(s )‘%0unoformlyasslﬁsz

and for s, < s1 and s1, 52 € (#1, 1], we have

](sl — 1) (T (s1) — (52 — t1)1%(Tx) (52)‘ — 0 unoformly as s; — s,.
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Then t — (t —t;)17*T(Q) is equi-continuous on (t;,t;,1](i = 0,1). So T(Q) is relatively compact. Then T is
completely continuous. The proofs are completed. O

3.4 Preliminary for BVP(1.8)

In this section, we present some preliminary results that can be used in next sections for get solutions of
BVP(1.8).

Lemma 3.3. Suppose that E,1(A) —1 # 0and o : (0,1) — R is continuous and satisfies that there exist numbers
k> —landl < Owithl € (max{—a, —a — k},0] such that |o(t)| < t*(1 —t) forall t € (0,1). The x is a solutions
of

CDE x(t) — Ax(t) = o(t),t € (ti, tis1],i = 0,1,

(3.4.1)
x(1) = limx(t) = ap, lim x(t) —x(t) = Iy
t—0 t—tf
if and only if x and

EE:;l((/\A)t )1 [ao E,1(A(1—1t1)") ] —fo ar(1,8)0( )ds}
—i—fo wA(ts)o(s)ds, t € (0,t]

x(t) = (3.4.2)
Eiff(%tf)l {uo — Eqd(A(1 = 1)) o — fy Sap(1,5) (s)ds}

FE i (At — 1)) o + [y S (E,5)0(s)ds, t € (t1,1].
Proof. Let x be a solution of (3.4.1). We know by Theorem 3.10 that there exist numbers Ay, A; € R such that
(1) = AgEn1 (MY) + [5 6, (t,5)a(s)ds, t € (to, 1] (3.4.3)
and
x(t) = AgEq1 (M%) + A1Eg 1 (A(t — )% +f0 (t —8)* TEy o (A(t — 5)¥)o(s)ds, t € (t,ta]. (3.4.4)

Note E,1(0) = 1. It follows from (3.4.3), (3.4.4), the boundary conditions and the impulse assumption in
(3.4.1) that

A0Eu1(A) + A1Eg1 (A1 —1)%) + fo ) E (A1 —8)%)o(s)ds — Ag = ag,
A= .
Then
Ao = iy [0 = Bt (A1 = )T — f (1= 5)*  Eaa(A(1 = 5))r(s)ds ] (3.4.5)

Substituting Ap, A; into (3.4.3) and (3.4.4), we get (3.3.2) obviously.

On the other hand, if x satisfies (3.4.2), then both x|, and x|(, 1) are continuous and the limits 1irré x(t)
—

and thrrtl x(t) exist. So x € P;C(0,1]. Using (3.4.5) and A; = Iy, we rewrite x by
—ih
AgE 1 (M) + [ (t = 8) T Eqa(A(t —5)%)o(s)ds, t € (0, 1],
x(t) =
AQE1 (M) + AtEg i (A(E— 1)) + [3 (t = 8)8 Equ(A(t —5)*)o(s)ds, t € (f1,1].

Since ¢ is continuous on (0,1) and |o(t)| < t*(1 — t)?, one can show easily that x is continuous on (t;, t;1](i =
0,1) and using the method at the beginning of the proof of this lemma, we know that both the limits liré}r x(t)
t—

and hm x(t) exist. So x € P;C(0,1]. Furthermore, by direct computation, we have x(1) — }in& x(t) = ap, and
t—>t -
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hm x(t) — x(t1) = Ip. One have easily from Theorem 3.2.1 for t € (to, 1] that CD8‘+x(t) = Ax(t) + o(t) and

tst]
fort € (ty, tp] that

CD'X s)ds
1 o) fO )

= iy Jo (E= )" (AoEe1(As") + 5 (s = )" 1 Eqa (A(s — w)*)o(w)dw)  ds

i o (¢ * (AgEn1(As%) + A1Eq1(A(s — 1)%) + [o (s — 0)* 1Equ(A(s — w)®)o(w)dw)' ds
= s fa = 9) " (Bua (AsY) ds + s [ (= 5) ™ (Ba (A(s — t1)%)) ds
s Jo(E=9) 7 (Jo (s —w)* 1EM<A<s—w>“>a<w>dw)’ds
At (¥ _ /d W ju /d

rray Jo(t =) EO | 4t ft1 EO Flasn (5 — 1) s

+o0 , !
+ s Jolt—s)7" ( Jo (s —w)*! Eo Wfﬂ))(s — w)f"‘a(w)dw> ds

A °° %Y i— A R (@pu i
- r(l_o j= IX—H fO (t—s) s tds + T(l—]a) jg F((’;gc—&-l ftl (£ =s)7"(s — )" tds
+ B - , ,
+F(11—oc) frt ]+1 ) fo “(Jo (s —w)* (s —w)*o(w)dw) ds

W ajma (1 %Y a1 e
r(1 a) Z l"jgc—&—l t fo (1= w) it 1dw—|—r1 ) ; Z F%H (t— 1) o (1 —u)~"*ul®"1du

. /
1 ) Z e ]+1 [(jo+ o) fot(t—s)_“ <Igi+“0(s)) ds
One has by B(1 — «, ja) = 1"(1—_067)1;%) that

T (wj)Ai [(1—a)L(j
“D.x(t) = mity X whent " H e

(aj)\J W T(1— +
1 uc) Z 1“7;-4—1 (t—t1)Y~ G Di)) ’+ Z NEDS, (11” aU(t))

Hoo .
= AAQEy 1 (M*) + AAE 1 (At —1)%) +o(t) + LT )ulgia(t)
j=1

= /\AOEa,l(/\ta) + )\AlEa,l()\(t — t1)a) + 0’ —|- A fO a 1E,X,x()\(t — S) )O'(S)ds

= Ax(t) +o(t).

So x is a solution of (3.4.1). The proof is completed. O
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Define the nonlinear operator Q on P;C(0, 1] by Qx for x € P;C(0, 1] with

alw UO ds — Eq1(A(1 — 1)) Le(01) — [ a0 (1,5)p (s)fx(s)ds}

+ fé Sur(t,5)p(s) f(s)ds, t € (0,11],
(Qx)(t) =

a]

£ [y #(9)Gx(5)ds = Eaa (AL = 1)) L(t1) = fo 600 (1,5)p(s) fu(5)ds |

FE 1 (A(E— 1)) o + [y Sar(t,5)p(s) fx(s)ds, t € (t1,1].

Lemma 3.4. Suppose that (b), (c), (f)-(g) hold, E,1(A) —1 # 0 and f, G are impulsive I-Carathéodory functions,
I a discrete I-Carathédory function. Then x € P1C(), 1] is a solution of BVP(1.0.8) if and only if x € PyC(0,1] isa
fixed point of Q, Q : PyC(0,1] — Py C(0, 1] is well defined and is completely continuous.

Proof. The proof is similar to that of Lemma 3.2 and is omitted. O

3.5 Preliminary for BVP(1.9)

In this section, we present some preliminary results that can be used in next sections for get solutions of
BVP(1.9). For ease expression, denote

0un(ts) = (1og1)" " Eua (2 (l0g1)"),

Ar = —1+T(a)oga(e t1) +T(@)%00(t, 1)an (e, 1).

Lemma 3.5. Suppose that A1 # 0 and o : (0,1) — IR is continuous and satisfies that there exist numbers k > —1
and 1 < 0 with | > max{—w«, —k — 1} such that |o(t)| < (log t)k (1—1log t)lfor all t € (1,e). The x is a solutions of

RLHD®, x(t) — Ax(t) = o(t),t € (tj, ti11],i = 0,1,

. N1 (3.5.1)
x(e) — lim (log)' ™ x(t) = aq, Jim (log £) " x() —x(t1) = I
ifand only if x € LPC1_,(1, ] and
%’;\(u)[ao_r( )thx\(el f] Qa)\es) ( )ds
+T(w)eua (e 1) J)! Qa,A(fLS)U(S)?} + Jo qua(t5)o(s)E,t € (1,1],
%/IA(“) {ﬂo —T(a)oa (e, 1)Ip — [} 0 (e 5)o(s) L
()= +T(@aua(e,1) i ety s)o(s) ] (352)

+ Rt (1(4) g, 4 (1, 1)ap — (1~ T(a)un(e, 1) o

T (@)0u (1, 1) J§ 0 (e,5)0(s) % + (1= T(@)aua(e,t)) [ 0unltr,s)o(s)%]

+ Jo Gua(ts)o(s) 2, t € (1,e].

Proof. Let x be a solution of (3.5.1). We know from Theorem 3.12 that there exist numbers Ay, A1 € R such
that

x(t) = AoT(@)0a (8, 1) + [{ 0an(t,5)0(s) %, t € (to, 1] (35.3)

and
x(t) = AoT(@)0ap (1, 1) + AT (@)0gr (t 1) + [{ 0 (t,s)o(s)E, 1 € (1, 2. (3.5.4)
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It follows from (3.5.3), (3.5.4), the boundary conditions and the impulse assumption in

Note E ,(0) = F(luc)'
(3.5.1) that
(=14 T(@)eua(e 1)) Ao +T(a)aw(e, 1) A1 = ag — [} aule,5)o(s) %,

—T(@)0un (h1, 1) Ao+ Ay = Io — [{V gua(tr,5)0(s) 2.

Then
Ag= A {ﬂo —T(@)aua(e, 1)lo — [ 0un(e,5)o(s) % +T(@)ouale, 1) [ Qualts, s)o(s)E
(3.5.5)

A = 2 [T(@)@u(t1,1)a0 — (1 = T(@)ga(e 1)) Io

—T'(a)oan(t1,1 f1 0u,A(€,8)0 (S)% + (1 =T(a)oux(e t1)) fltl Qﬂl,)\(tlls)o-(s)d?} .

Substituting Ag, A into (3.5.3) and (3.5.4), we get (3.5.2) obviously.

On the other hand, if x satisfies (3.5.2), then x|, and x|y . are continuous and the limits
lim+(log £)1=*x(t) and lirrk(logt —log t1)!~*x(t) exist. So x € LP;C1_,(1,¢]. Using (3.5.5), we rewrite x by
t=1 t—t]

AOF(“)Q&,A(tr 1) + f1t Qa,A(t,S)U(S)%,t € (0, t1],
x(t) =
AT (@) @u (1) + AT (@)0aa (t 1) + J{ Gua (t5)0(5) %, t € (11, 1].
Furthermore, by direct computation, we have x(e) — lirln+(log ) *x(t) = ag, and lim+(log t—logty) ~%x(t) —
t— bt
(t1) = lp. One have from Theorem 3.2.3 easily for t € (to, t1] that RMDS, x(t) = Ax(t) + o(t) for t € (to, t1].

For t € (t1,t,], we have by Definition 2.5 that
¢ -~ /
MDY x(t) = r(1t—a) (fl (log 5) ax(s)%)

= iy [ (og 1) ™" (AT (@)aua(s,1) + f; o (s w)er(u) &) &

+ fy (log 1) ™" (AT (@)gun(s,1) + AT (@)Qun (5, 1) + f; Qua(s,u)or(u)de ) |

= @) Ao Ji (log £) " eua(s, )% + [ (log ) ™ [7 ewals, u)ou) 4 &

= r(1ia) [F

_ /
@)A1 [}, (log 1) " gua (s t) %]
du

) A i (l0g £) " 0up (s D% + [ [ (log §) ™" Quals, u) o) &

= {1‘
t P\ —& ds /
) Ay ftl (log ) " Qaals, tl)?}

One finds that
fu (logg) “Q“//\(S'”)dss = fu (logé) : (log ) Ez %ﬁg)@i

a1 logs—1
Z I( ]+1)a)f (log )" (log 3 )a] b 18?2 1Z§Z =w

= Z I ]+1)a) (log ;; )a] fo “rw

+o0 i —o)T (e (7
r( _a)]z T(Ga+1) +1) (log )" by B(1 —a,a(j+1)) = W
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So
RLHDiﬁrx(t) = 71"(1t—rx) T'(a)Al(1—a) 2 F]:x+1) (logt)
+ 7/
(0] . B{/
AT 8 i Qo) o0 @m0 £ it (o )|
) A 1 A i—1
= [ OZr]aH)(lgta] + o) +1 flzrﬁﬂ (log Y™ o(u)
A ()N aj—1
+H L it (g ) ]=Aaw+au»
So x is a solution of (3.5.1). The proof is completed. O

Define the nonlinear operator R on LP;C;_,(0,1] for x € LP;C;_,(0,1] by (Rx)(t) by
HOGAD T 11 9 (5) Ga(s)ds — T(@)aua (e DI(t) = Jf 0ua(e,s)p(s) fls) &
+NWm@Uﬁ@MmW$M®ﬂ

+ﬁ%MWW@h@%JHLM

QM (t1) [fo s)ds — T(a)0x (e, 1) Ix(t1) — [ 0an(e,s)p (S)fx(S)%
+WWm&Dﬁ@M%W@M@ﬂ
+%ﬁ\(t'tl) { QD‘A tl’ fO dS - (1 - F(“)le,/\(e/ tl)) Ix(tl)

~T(@)eun(t1,1) J§ 0an(e,8)p(s) fx(5)% + (1= T(@)oun(e 1)) [ Qan (b1, 8)p (S)fx(S)?]

+ i aua(£:5)p(s) fe(s) %, t € (1e].

Lemma 3.6. Suppose that (h), (i) and (j) hold, Ay # 0, and f,G are impulsive III-Carathéodory functions, |
a discrete III-Carathédory function. Then R : LPyC1_,(1,e] — LP1C1_4(1, €] is well defined and is completely
continuous.

Proof. The proof is similar to that of the proof of Lemma 3.2 and is omitted. O

3.6 Preliminary for BVP(1.10)

In this section, we present some preliminary results that can be used in next sections for get solutions of
BVP(1.10).

Lemma 3.7. Suppose that E,1(A) —1 # 0and o : (0,1) — R is continuous and satisfies that there exist numbers
k> —landl < Owithl € (max{—a, —a — k},0] such that |o(t)| < (logt)*(1 —1logt)! forall t € (0,1). The xisa
solutions of
CHDY, x(t) — Ax(t) = o(t),t € (ti, tiy1],i = 0,1,
(3.6.1)

x(e) — lim x(t) = ap, lim x(t) —x(t1) =Dy
t=1+ t—tf
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if and only if x € PC(1, e| and
«1(A(log )®
Eag R L2 — Eat (A1 = log 1)) o — [ 00 (e5)0 ()%
a—1 « s
+ [ (log H)* ™ Eqa ()\ (log i) ) o(s)%,t € (0,4],

x(t) = (3.6.2)
Eag QU980 g — Eea (A(1 = logt1)) o — [} dua(e,)o(s) 2]

+Eqn ()t <log %)a) Ip+ [ (log %)a_l Eux ()\ (log g)a> o(s)%,t € (ty,e].

Proof. Let x be a solution of (3.6.1). We know by Theorem 3.13 that there exist numbers Ay, A; € R such that
x(t) = AoEu1(A(log £)*) + [} (log 1) Ean (A (10g 1)) o(s)%, £ € (1o, 1] (3.6.3)

x(t) = AgEq1(M(logt)*) + A1Eq1(A(logt —log t1)%) + [} 0ua(t,5)o(s)%, t € (ty, o). (3.6.4)
Note E,1(0) = 1. It follows from (3.6.3), (3.6.4), the boundary conditions and the impulse assumption in
(3.6.1) that
AoEa1(A) + A1Eg1(A(1 —log t1)%) + [{ Ga (e, 5)0(s)ds — Ag = ag, Ay = Io.
Then
Ay = W {ao —Ep1(A(1 —logty)*)]p — ff 5“/,\(6,5)0(5)%} . (3.6.5)
Substituting Ag, A; into (3.6.3) and (3.6.4), we get (3.6.2) obviously.

On the other hand, if x satisfies (3.6.2), then x|(; ;) and x|, 1) are continuous and the limits lim+ x(t) and
! ! t—1

hrn x(t) exist. So x € P;C(1,e]. Using (3.6.5) and A1 = Iy, we rewrite x by

>t

-1
AoEy1(A(logt)®) + fl (log )" Eqn ()\ (logé)a) o(s)%,t € (1,4)],
x(t) =
ApEy1(A(logt)*) + A1Ey 1 (A(logt —log ty)* +f1 wA(t,8)o(s )%,t € (ty,¢€].
One have from Theorem 3.2.4 easily for t € (to, t;] that ¥ D%, x(t) = Ax(t) 4+ o(t) and for t € (t1, t,] that

CHDR. x(t) = gy Ji (log £) " /()%
_ _ !
= miay i (10g ) ™" (A1 (Allogs)®) + [ (10g3)" ™" Eua (A (log 3)") o(u)e ) &

- s u ! s
+ﬁ fttl (log i) (AOEall(/\(logs)“) + A1Eq1 (/\ (logt ) ) +f1 wr (s, u)o (u)du) %

= Ax(t) +o(t).

So x is a solution of (3.6.1). The proof is completed. O

Define the nonlinear operator | on LP;C(1,¢| by (Jx) by

Eog OB | fy p(5)Gx(s)ds — Eaa (A(1 = log 1)) x(t1) = [ (e, 5)p(s) fuls) &
+ [ (log 1) Eqe (/\ (log 1)") p(s)fx(s) %, £ € (0,1],

Eg ) [y () Gals)ds — Eaa (A(1 —log )" Lx(t1) — [ b (e,8)p(s) fi(s) 2]

+Eus (A (108 g)“) Le(t) + Jf (log £)" " Ena (A (log 1)) p(s)fu(s) 2, £ € (1]

Lemma 3.8. Suppose that (k), (1) and (m) hold, E, 1(A) —1 # 0, and f, G are impulsive I-Carathéodory functions,
I a discrete I-Carath6dory function. Then R : LPyC(1,e] — LP;C(1, e] is well defined and is completely continuous.

Proof. The proof is similar to that of the proof of Lemma3.2 and is omitted. O
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4 Solvability of BVP(1.7)-BVP(1.10)
Now, we prove that main theorems in this paper by using the Schaefer’s fixed point theorem [57].

(B1) there exists nonnegative a constant Iy, nondecreasing functions b, B,B : [0, +o0) — IR, bounded
continuous functions ¢, ¢ : (0,1) — IR such that

[f(8 (E =) 1) = p(8)] < b(|x]), t € (ti,ti1],i=0,1,x € R,
IG(t, (t— £)*1x) — p(t)| < B(|x|),t € (t;,tir1],i = 0,1,x € R,

[I(ty, 5 x) — I] < B(|x]),x € R.

Let
SO T 1 p(s)p(s)ds = T(@)Gua (L t)Io = fo Sua(1,5)p(s)p(s)ds
—T()d 0 (L, 11) fy! 5a,A<t1,s)p<s>¢(s>ds} + Jo Sun(t,5)p(s)(s))ds, t € (0, 1],
w {f()l(p(s)tp(s)ds— I'(a)dan(1,t1)]1 fo aA(1,8)p(s)p(s)ds
O(t) =

me@mﬁmmm@wmhwﬁﬁ%ranbk

+(T()8,1 (1,0) = ) Ip =T ()3 (11,0) fy S (1,5)p(s)p(s)ds

D@7 (1,0) = 1) i 60, (t1,5)P(S)P(S)s] + f3 8 (1,5)p()p(s)ds, € (11, 1].

Theorem 4.14. Suppose that (a)-(e), (B1) hold, A # 0. Then BVP(1.7) has at least one solution if there exists a rg > 0

such that
A1B(ro-+]|P|)+A2B(ro+||P)+Asb(ro+IPl) - 4 (4.1)
) 4

where , ,
_ T@Ewa(ADI$lh | T(@)*Ean(AD$l1
A= [A] + | AJE ’

 T(Ean(A? | T()(() Eqa (M) +1)Eaa([A])
A2 = TNt T A '

(T@EL (A | TPE (AP (-t 6 TP B (A4
A3—< At e VY

2 ja4-k+1
+r("‘)(F("‘)Ea,a(|)\|‘)X|1)Ea,a(|)‘|) 51 + Ea,tx(|/\|)) B(OL + l,k—‘r 1)

Proof. From Lemma 3.1, Lemma 3.2, the definition of T, x € P;C;_,(0, 1] is a solution of BVP(1.7) if and only
if x € P;C1_,4(0,1] is a fixed point of T in P;C;_,(0,1]. Lemma 3.2 implies that T is a completely continuous
operator.

Forr > 0, denote Q) = {x € P;C1_,(0,1] : ||[x — ®|| < r}. For x € O, we get ||x|| < ||x — D]+ ||P|| <
r + ||®|| Then (B1) implies that

f(tx(t) — ()] = (¢ (= 1)t — 1) *x(t)) — p()] < b(I(t—t:)'*x(1)])
b([|x[]) < b(r+[|@[]), t € (ti, tia],i = 0,1,
Gt x(8)) —(8)| < B(|[x[]) < B(r+ |[®|]), t € (£, tia],i = 0,1,

|1(t1, x(t1)) — Io| < B(||x[[) < B(r + [|®|]), t € (0,1).
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By the definition of T and the method used in Step (iiil) in the proof of Lemma 3.2, we have

v, 2 0,0 2
I Tx|| < {r(a)Ea'ﬁ\/\)WHl + I'(a) E‘A‘E\?L) 4’1} B(r+[|®]))

T(@)?Ea(A)? | T(@)(C(@)Eaa(A)+DEaa(A) ] 7
+ [T + K B+ |}

F(@Eea (M) | T@)Eaa(ADP(A-t)" 1B T(@)2Ey (A4
+< L [ —— A

2 ja+-k+1
PGIUGLC e R sl Ea,a<|A|>) Bla+1k+1)b(r + [|®]])

= A1B(r + [|®l]) + A2B(r + [|®|[) + Asb(r + ||®]]).

From (4.1), there exists a constant ry > 0 such that A1B(rg + ||®||) + A2B(ro + ||®@]|) + Aszb(ro + ||®||) < 7o.
Choose () = {x € P;C1_,(0,1] : ||x — ®@|| < rp}. For x € 9Q), we see easily that x =# A(Tx) forall A € [0,1].
In fact, if x = Tx for some x € dQ and A € [0,1], then rg = ||x|| = A||Tx|| < ||Tx|| < A1B(ro + ||P]]) +
ApB(rg + ||®@|]) + Asb(ro + ||®|]) < 7o, a contradiction. So Lemma 3.9 implies that T has at least one fixed
point in (). Then BVP(1.7) has at least one solution. The proof is complete. O

Theorem 4.15. Suppose that A # 0,0 > 0, ()| < By, |¢(t)| < by forallt € (0,1) and b(x) = byx?, B(x) = Byx?
and B(x) = Bx? in (B1). Then BVP(1.7) has at least one solution if one of the following item holds:

(1) 0 €[0,1);

(i) 0 = 1 with A{B+ AyBr+ Asb < 1;

(iii) 6 > 1 with (A1B1 + AyBy + Asby)(A1By + As|lo| + Asby) < (6-1)°1

9o

Proof. 1t is easy to see that & € P;Cy_,(0,1]. By using the method in Step (iii2) in the proof of Lemma 3.2,
we get ||®|| < AyBy + Az|Ip| 4 Azby. By Theorem 4.1, we know that BVP(1.0.7) has at least one solution if
there exists rg > 0 such that (4.1) holds.

When 6 € [0,1), we have

inf
re(0,4-00)

A1 B(r+||®[])+A; B(r+]|P|]) + Asb(r+||®]|)
r

= inf < 1.

re(0,4c0)

A By [r+[@][1°+ A2 Ba [r+[| P[]+ Asby [r+] @[] _ 0
T

Then Theorem 4.1 implies that BVP(1.7) has at least one solution.
When 6 = 1, we have from A;B 4+ A,Br + Azb < 1 that
inf AlB[VH\¢|H+A2§[V;H\©|I]+A3b[r+H¢|H <1
r€(0,+00)

Then there rg > 0 such that (4.1) holds. Then Theorem 4.1 implies that BVP(1.7) has at least one solution.
When 6 > 1, it is easy to see that (A1By + AyBq + Asb1)(A1By + Az |lo| + Asby) < (9_919)671
(A1B1 + AB1 + Asby)||®]| < (9*91#' Choose ry = %. It is easy to check that

implies that

A1By (ro-+]|®])"+A2By (ro-+|P[) + Asby (o +|P[)° 4
) —

Then Theorem 4.1 implies that BVP(1.7) has at least one solution. The proof of Theorem 4.2 is complete. O

Remark 4.1. (i) When « € (0,1), G(t,x) = 0, and replace 1(t1,x) in (1.0.7) by 1(x) — x, we see that BVP(1.7)
becomes BVP(1.3). According Theorem 4.2, BVP(1.3) has at leat one solution if both f and I are bounded.

(ii) When « € (0,1), one chooses G(t,x) = 0, f(t,x) = 1+#>+ (t —t;)!*x for t € (t;,t;1](i = 0,1),
0=ty <t =1 <ty=1andI(t;,x) = 0, then BVP(1.7) becomes BVP(1.3) with I(x) = x. According Theorem
4.2, BVP(1.3) has at least one solution. But The results in [[69]] can not be applied.
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Theorem 4.16. Suppose that (b), (c), (f), (§) hold, E1(A) —1 # 0, and
(B2) there exist nondecreasing functions b, B, B : [0, +00) +— IR such that
[f(&x)] <b(lx]),t € (0,1),x € R,
|G(t,x)| < B(|]x]),t € (0,1),x € R,
|I(t1,x)| < B(]x]),x € R.
Then BVP(1.8) has at least one solution if there exists ro > 0 such that

1 (ADL4 ] Ep1 (ADEgs (1D -
ST B(ro) + ((EoElBafml + B (1AD) Blro)

(42)
o (BBl 4 B (JAD)) Be 4 LK+ 1)b(ro) < ro.

Proof. From Lemma 3.3, Lemma 3.4 and the definition of Q, x € P;C(0,1] is a solution of BVP(1.8) if and only
if x € P1C(0,1] is a fixed point of Q. Lemma 3.4 implies that Q is a completely continuous operator. From
(B2), we have for x € P;C(0,1] that

(& x(O)] <b([x(8)]) < b([[x]]),t € (0,1),
Gt x(8))] < B([[x]]), £ € (0,1),

[1(t1, x(t1))| < B(||x]])-

We consider the set O = {x € P;C(0,1] : x = A(Tx), for some A € [0,1]}. For x € O3, we have for t € (g, 1]
that

1(QN)(1)] < 2t (11l B(I]]) + Eat (ADB(l])

+ Z a v+l) fo (1 —s)*@ta=1sk(1 —s)ldsh(||x||)

+ Z Fatoray Jo (F =) 165 (1 = s)ldsb([x]])

s\,;;l—“'l,mw lx[[) + Eq1 (A B(|x]])

FEaa(IA))B(a + Lk +1)b(|[x][)] + Eaa([A[)B( + 1k +1)b([[x]])

«, Al) a, (JA]) «, Al)
= Eg ORIk B ) + Ee Pt A ()

+ (%EM(IM) + Ea,a(IAI)) B(a+1k+1)b(||x]]).

For t € (t1,t;], one has that
[(Q)(0)] < SR B([|x]]) + (Eaf20Bai2 4 By (121)) B(l11)

o, /\ o0 )\
+ (EepP2eat D B (JAD)) Ba+ L+ 1)b([]))-

It follows that

] = M| Tx|| < [Tl < Bl By + (Eeg 20t 4 p (1)) B 1)

 (EualPDEaAD 4 By (1])) Ba 4+ LK+ 1)b(][x])-
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From (4.2), we choose () = {x € P;C(),1] : ||x|| < rp}. For x € Q), we get x # A(Tx) for any A € [0,1] and
x € Q).

As a consequence of Schaefer’s fixed point theorem, we deduce that Q has a fixed point which is a solution
of the problem BVP(1.8). The proof is completed. The proof of Theorem 4.3 is complete. O

Theorem 4.17. Suppose that (h), (i), (j) hold, A1 # 0, and
(B3) there exist nondecreasing functions b, B, B : [0, +o0) — R such that
[f(t, 57 1x)| < b(|x]),t € (t, ti1],i=0,1,x €R,
IG(t,t*"1x)| < B(|x]),t € (t,ta],i=0,1,x € R,
|I(t1,t‘i‘_1x)\ < B(]x]),x € R.

Then BVP(1.9) has at least one solution if there exists a constant ro > 0 such that

B1B(rg) + B2B(rg) + B3b(ro) < ro, (4.3)

where

_ T@EaalADl | T()EwallA)2lIgll (log )™
By = A + A :

[(0)?Exa((A)? | T(®)Eaa(|A]) |1—F(Dc)(1—log tl)“flEa,a(‘/\m

B p—
2 T TAT] ’

_ r(”‘)Ea,a(‘/\‘)z r(“)ZEa,zX(‘MP(lOgtl)(HkH r("‘)zEtx,a(‘/\Ds(log’v‘l)ai1
By = (MR + IS + A

&) B, 211-T(a)(1— a=1 - a+k+1
+r( )Eaa (JA)?[1-T (%) (1 l<|>[g\1t‘1) Ea(|A])](log 1) —|—E,XI,X(|/\|)> B(a+1,k+1).

Proof. From Lemma 3.5, Lemma 3.6 and the definition of R, x € LP;C;_,(1, ] is a solution of BVP(1.9) if and
only if x € LP;C1_,(1, ] is a fixed point of R. Lemma 3.6 implies that R is a completely continuous operator.

From (B3), we have for x € LP;C;_4(1, ¢] that
FE )] = |f (¢t (og )" (10g 1) ™ (1)) < b (| (1og 1) ™ x(8)]) < b(I[xI),t € (titina)i = 0,1,
G(t, x(t))] < B(|[x[]),t € (1),

[I(t1, x(t1))| < B(||x]])-

We consider the set O = {x € LP{C;_4(0,1] : x = A(Rx), forsome A € [0,1]}. For x € ), we have for
te (to, tl] that

[(log#)!~* (Rx) (1)| < "2 0B {1161 (] x]) + (@) B (1) B )
+ J5 (10g£)" " Ean (2 (10g £)") (logs)* (1 — logs)! &b(|x[|)

(@) Eaa(N) J{ (1og2)" v (1 (10g2)") (logs)5(1 — logs)' (|

+ (log )™ 1 (10g £)" " Eua (1 (log £)") (logs)*(1 ~ logs)! b (] ]))
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< Tl (110}, B(Jx][) + T(@) Exa (V) Ix]])

too v e av+a+1—
+ L ity Ji (10g €)™ (log ) b (]Ix1))
wvt+a+1—1
HTWE () T iy S (log ) (logs)*4=b(( ||

70‘—&-00 v -1
+(0g )" L oy i (log )™ (logs) a(]Ix]))
< L e [}1]| B(][x]]) + T (&) Eua (A)B( )
+Zr Ay Jo (1= @)™ wkdaob (| |x])

to v —
FT(@)Ea(d) & Sty (log t1)* a1 [1(1 — )™ wkduwb(|[x]|)
V=

_a v -
+(og '™ &y (log ) 54 fy (1= )™ wkdwb(||x]))
=l

< D@L (D0l | |y][) 4 P Eea (M) (]

2 3 i3
+ (”"‘)Egj(“ + TP Eual]) oy 70 +E,x,,x(|A|)> B(+Lk+1)b(||x]]).

For t € (t1,t], one has that
](logta)” (Rx)(t)] < TP A [}y B([]]) + T () Ena (| A1 B |]])
FEan(JADB(@ + Lk +1)b(]|x|]) + T(a) Ena (JA])2(log t1)* B + 1, k + 1)}
L8 e LA 1 () (1og 1) B (IA1) 1 B(I|]]) + |1 = T (@) (1~ log 1)~ Eqa (1A1)] B(||]])
+T(a)(log t1)* ' Egu (JA])?B(a + Lk + 1)b(]|x]|)

+[1=T(a)(1 ~logt1)* ' Exa(|A])] (log t1)* H En o (|A])B(a + 1,k + 1)b(]|x] I)}

£\1e atk+1
+(log £) " (log )"+ Eg (JA])B(a+ Lk + 1)b( x|

o0 2 an 2 1 ot
< (Mep Dl TP En APl gt

T(a)2Ens (JA)? | T(@)Eaa(JA])|1-T(2)(1-logt1)* ' Ega(|A])
(B 1-Te)t togt SEED

P(@)Eaa (M2 |, T Eua(A)(log#)**4*! | T(a)*Eua(1A)* log)*"
+( AT ATl Al

201 _ “lo a—1 o o a+k+1
e en AT gt B DRSNS 1, (101 ) B+ L+ Db 1)

= B1B(||x||) + B2B(|[x]]) + Bsb(]|x]).
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It follows that
[Jx[| = Al[Rx|| < [[Rx|| < B1B(||x|[) + B2B(||x|]) + Bsb(]|x]]).

From (4.3), we choose () = {x € LP;C1_,(0,1] : ||x|| < ro}. For x € 9Q), we get x # A(Rx) for any A € [0,1].
In fact, if there exists x € 9Q) such that x = A(Rx) for some A € [0,1]. Then rg = ||x|| = A||Rx|| < ||Rx|| <
B1B(rg) + B2B(rg) + Bsb(ro) < ro, a contradiction.

As a consequence of Schaefer’s fixed point theorem, we deduce that R has a fixed point which is a solution
of the problem BVP(1.9). The proof is completed. The proof of Theorem 4.4 is complete. O

Theorem 4.18. Suppose that (k), (1), (m) hold, E, 1(A) —1 # 0, and
(B4) there exist nondecreasing functions b, B, B : [0, +00) — R such that

[f(t,x)] <b(|]x]),t € (t;,ti1],i=0,1,x € R,
|G(t,x)| < B(|x]),t € (t;ta),i =0,1,x € R,
[I(t1,x)| < B(]x]),x € R.

Then BVP(1.10) has at least one solution if there exists a constant ro > 0 such that

Ey1(|A Eq1(|A])? —
LA BUo) + (£ + Eaa (A1) Blo)
(4.4)
w1 (A
+(%+Eaa(|/\| ) Dé+l,k+1)b(7‘0) < 190.
Proof. From Lemma 3.7, Lemma 3.8 and the definition of J, x € LP;C(1,e] is a solution of BVP(1.10) if and
only if x € LP;C(1,¢] is a fixed point of R. Lemma 3.8 implies that | is a completely continuous operator.
From (B4), we have for x € LP;C(1,¢] that
Lf(&x(O)] <b(x(B)]) <b([|x[]),# € (ki tia],i = 0,1,
Gt x(1)] < B(|[xI),t € (Le),

[1(ty, x(t2))| < B([[x]])-

We consider the set ) = {x € LP;C(0,1] : x = A(Jx), for some A € [0,1]}. For x € 3, we have for t € (tg, t1]
that

())<= 111 B xI1) + Eat (ADB(Ix]])
py v e e\ xu+a+l— s
+ 3 oy Ji (108 €)1 (logs) (] x])

Pt -1
+ L atory S (og )" (logs) (i)

< ST Bl + i Bl

+(%+EM(IAI)) (+Lk+1)b(]]x]])

For t € (t1,t;], one has that
() ()] < Ed DI B ) 4 (el 4 By (A1) B( ]

2
(5 + B (1A)) Bla+ Lk +1)b(][x])).
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It follows that

x|l = A[Rx|| < [|Rx]| < Slrdel () x])) + (20 + Ear (M) BO )

2
+ (% + Ea,a(IAI)) B(a+1,k+1)b(||x]]).

From (4.4), we choose Q) = {x € LP;C(0,1] : ||x|| < ro}. For x € 0Q), we get x # A(Jx) forany A € [0,1]. In
fact, if there exists x € dQ) such that x = A(]Jx) for some A € [0,1]. Then

ro = 1xl] = AllJal| < |17l < BB B(rg) + (2B + B, (1AD)) Bro)

2
T (% + Em(IAD) B(a+1,k+1)b(rg) < ro,

a contradiction.
As a consequence of Schaefer’s fixed point theorem, we deduce that R has a fixed point which is a solution
of the problem BVP(1.10). The proof is completed. The proof of Theorem 4.5 is complete. O

5 Applications

In [33} 78] [89], authors studied the existence and uniqueness of solutions of BVP(1.1). It was proved in [33]

, 1%7} and L >0
such that |f(¢,x)| < L(1+ |x|X] foreacht € [0,T] and x € R. Then BVP(1.1) has at least one solution. It seems
that the solvability of BVP(1.1) is not related to the impulse function I. For periodic boundary value problem,

this is not true. For example, the following problem

that if f is a jointly continuous function and there is a constant A € {0, 1-— H for some p € (1

CDO+x( ) =1,t € (t;,ti11]),i € No, x(0) = x(T), Ax(t;) = I; > 0,i € Ny,

1
has no solution. In fact, from Theorem 3.10 and CDéer(t) = 1,t € (t,ti41], we get that there exist constants

co(i € INp) such that x(t) = Z cj+ r2t1//2) By x(0) = x(T), we know ¢y = Z ¢+ % From Ax(t;) = I,
we see that ¢; = I;. Thus Z I + 2(T1 //22) = 0, a contradiction.

Consider the followmg perlodlc boundary value problem of fractional differential equation

CDg x(t) = p()f(t,x(1), £ € (ti tia],i = 0,1,
Ax(t1) = byx(tr) + I(t1, x(t1)), (5.1)
x(0) = x(T) + fy ¢(s)G(s,x(s))ds,

where tg = 0 < t; < tp = T, by € Rwithb; # 0,¢ : (0,T) — Rwith ¢ € L'(0,T), p: (0,T) — Riis

continuous and there exist numbers k > —1,1 € (—a, —a — k,0] such that |p(t) < t*(T —t)! forall t € (0, T),

f:(0,T] x R+ Risall-Carathéodory function, I : {t;, }, xIR — IR is a discrete II-Carathéodory function.
If x is a solution of (5.1), then by Theorem 3.1, we see that there exist constants ¢, ¢; such that

x(t) = 2q+& I () f(s,x(3))ds, € (b tigal, i = 0,1.

By x(0) = x(T) + fOT (s)G(s,x(s))ds, wegetco = co+c1 + fOT (T;(SDET] p(s)f(s,x(s))ds + f0T<p(s)G(s,x(s))ds.
Socp = — fOT (T;(si;_l (s)f(s,x(s))ds — fOT<p(s)G(s,x(s))ds. By Ax(t1) = bix(t1) + L1 (t1, x(t1)), we get ¢q =
by (co + [ %p(s)f(s,x(s))ds) +1(ty,x(t1)). The g = — [} %p(s)f(s,x(s))ds — A1k, x(h)) —
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_o)a—1
%foT (Tr(sgz) p(s)f(s,x(s))ds — - fo x(s))ds. So

—gd%%iWW@am@_%wwwm—%k”ﬁzﬂmvaamm

_% foT4’(5) ))ds + ft (= S p(s)f(s,x(s))ds,t € (0,t1],

—ﬁ”%ﬁ*m»ﬂ <»m——<m<hn—@+%>T”S p(s)f (s, x()ds

1

— (14 4) Jo #(5)G(s,x())ds + fy Crh=p(s)f (s, x(s))ds, t € (11, T).

It is easy to show that if x satisfies above integral equation, then x is a solution of (5.1).
Define the operator T : P;C(0, T] — P;C(0, T| by

—g@%%$¥@v< ©(s))ds — g1t x(0) = g o TR p(9)f (s, x(s)ds

-1

fO dS + fO F 0c p(s)f(s,x(s))ds,t € (0/ tl]/

a—l

—(?ﬁﬁ%iﬂgﬂ&mﬂws_fum (1) = (1+ &) o Sri—p(s)f(s,x(s))ds

— (14 ) J) o (5))ds + fy CELp(s) (s, x(s))ds, t € (11, T].

Theorem 5.19. T : P;C(0, T] — PyC(0, T] is well defined and is completely continuous. x is a solution of mentioned
problem (5.1) if and only if x is a fixed point of T in PyC(0, T}.

Proof. 1t follows from Theorem 3.10 and the details are omitted. O
Theorem 5.20. Suppose that there exist nondecreasing functions b, B, B : [0, +00) — R such that
|f(t,x)] <b(]x]),t €(0,1),x €R,

|G(t,x)| < B(|x|),t € (0,1),x € R,

|I(t1,x)| < B(|x|),x € R.
Then problem (5.1) has at least one solution if there exists ro > 0 such that

(1+ 1) B(ro) + 1B (r0)
(5.2)

gtk 1\ Ttk etk

Proof. In fact, for x € PyC(0,T], we have |f(t,x(t))| < b(||x||),|G(t,x(t))| < B(|x||) and |I(t1,x(t1))] <
B(]|x||) forall t € (0, T]. Then

T2l < (1+ Y0 ) B(lll) + 2 BClx)

gtk Ttk etk
+ <1W) +(1+ &) T + T ) B(x + 1,k +1)b(]|x[]).
The remainder of the proof is similar to the proof of Theorem 4.3 and is omitted. O

Example 5.1. Consider the following problem

RLDE, x(t) — Ax(t) = t~3(1 — )5 (2 + arctan x(£)), € (t;, ti11],i = 0,1,

x( ):tlggg Hvx(t), (5.3)
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wherea € (0,1),0 =t

0 < % =1t < tp =1, A € Rare fixed constant. Corresponding to BVP(1.7), we have ¢(t) = 0
G(t,x) =0and I(t1,x) = 0.

It is easy to see that (a), (b) and (c) hold. p(t) = t_%(l — t)_% satisfies (d) with k = —; l =—z. f(t,x) =
t2 + arctan x. One sees that f, G, I satisfy (e). Choose ¢(t) = t?, (t) = 0 and Iy = 0. Then (B1) holds with
B(x) = B(x) = 0 and b(x) = Z. Thus by Theorem 4.1, we know BVP(5.3) has at least one solution since there
exists a constant rp > 0 such that (4.1) holds obviously.

According to the results in [69], BVP(5.3) can not be solved since the nonlinearity
p(H)f(t,x) = t’%(l - t)_%(t2 + arctanx) is unbounded and the impulse function I(x) = x is also
unbounded.

Example 5.2. Consider the following BVP

RLDR, x(t) — Ax(t) = t4(1 — )75 (2 + =) (D) L€ (bt i =01,
6

x(1) = flim £70x(0) = fysmH(1=s) 0ls+ /= BTG ds, 5.4)
lim (t —t1)'7%x(t) — x(t) = 8 + ¢/t “x(t1),

+
t—t]

wherea € (0,1),0 =1ty < % =1t <ty =1, A € Rare fixed constant.

1

Corresponding to BVP(1.7), we have ¢(t) = t 2(1 — t)’%, G(t,x) = t+ /(t—t)1" x| and

I(t;,x) = 8 + V/x. It is easy to see that (a), (b) and (c) hold.p(t) = _i(l - t)_% satisfies (d) with
k=—11=-1 f(t,x) =12+ Y t—t I-ay, One sees thatf G, I satisfy (e). Choose ¢(t) = 2, ¢(t) = t and
Iy = 8 Then (Bl) holds with B(x \/ |x],B(x) = ¢/x and b(x) = ¢/x. Thus by Theorem 4.1, we know

BVP(5.4) has at least one solutlon since there ex1sts a constant rp > 0 such that (4.1) holds obviously.

Example 5.3. Consider the following BVP

»N»—‘

CDR x(t) = 3 (1— ) 5 Y/x(b),t € (b, tia],i = 0,1,
x(0 ) x(1) = fls—z(l—s) 5 3/x(s)ds, (5.5)
Ax(t) = x(t7) — x(t1) = x(t1) +8,

wherea € (0,1),0 =1y < % =t < tp = 1are fixed constant.

Corresponding to BVP(5.1), we have ¢(t) = £ (1- t)_%, G(t,x) = ¢/xand I(t1,x) = 8. It is easy to see
that (a), (b) and (c) hold.p(t) = t’%(l - t)’% satisfies (d) withk = 1 ,1 = —1 f(t,x) = ¢/x. One sees that
f,G, I satisfy (e). Then (B1) holds with B(x) = ¥/]x|,B(x) = 8 and b(x) \f Thus by Theorem 5.0.2, we
know BVP(5.5) has at least one solution since there exists a constant o > 0 such that

1/25/6 tw+k+l 1 1
(1+ Tl ){‘/7+|bl+< ) (2+W)W B(a+1Lk+1) YR < 1.

holds obviously.

Example 5.4. Consider the following periodic boundary value problem

CDIX (t) = (t) te (tl/tz+1] i € Ny,
{ (() N (T() = (5.6)

where 0 = tg, < ) < -+ <ty <ty =T, a € (0 1), : (0, T) — IR satisfies that there exist constants k > —1
andl € (—a, —a — k, O] such that [r(t)] < (T —t)! forall t € (0,T), b; € R(i € IN). Then BVP(5.6) has a unique

solution if and only if Z b; H (1+b;) #0.
i=

) —x(t1) = bix(t;),i € N,
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By Theorem 3.10, we see that there exist constants c;(i € INg) such that

i —s)e1 .
x(t) = ‘ZOCZ‘ +f (tr(,l) r(s)ds, t € (ti, ti1],i € No.
]:

By x(0) = x(T), we get

So

m _g)a—1
Lo=- Jo Trth—r(s)ds. (5.7)
By Ax(t;) = bix(t1), we get
_ oc 1
(Z cj —l—fo tr(sar(s)ds> .

Then

i=co+ ft] L);lr(s)ds,

6 _ . i (t—s)*"! ;
p= }21 bij +co+ o ) r(s)ds,i € N.
]:

Thus

%:lﬁ(l—i—b)co—i—z H (14 by) ft L lx) r(s)ds.
b=l j=00=j

Substituting c; into (5.7), we get

igl bi <IH (]‘ + b )CO + i H 1 +bz; ft 1 tx) r(s)ds) = — fOT (T;(s;;_lr(s)ds.

=1 j=00=j

i—1
It is easy to see that if (5.6) has a unique solution if and only if f b; ZH (1+ b]-) £ 0.
=1 j=1
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