Malaya J. Mat. 3(4)(2015) 540-553

Malaya
4 MM
Journal of an international journal of mathematical sciences with Y S
Matematik computer applications... e St
www.malayajournal.org |SSN : 2319-3786

On boundary value problems for fractional integro-differential

equations in Banach spaces

Sabri T. M. Thabet “* and Machindra B. Dhakne’

b Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, India.

Abstract

This paper aims to study the existence and uniqueness of solutions of fractional integro-differential
equations in Banach spaces by applying a new generalized singular type Gronwall’s inequality, fixed point
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1 Introduction

This paper deals with the existence and uniqueness of solutions of boundary value problems (for short
BVP) for fractional integro-differential equations given by

‘D*x(t) = f(t,x(t),(Sx)(t)),t € ] =1[0,T],a € (0,1], 1)

ax(0) +bx(T) =¢, '

where D* is the Caputo fractional derivative of order a, f : | x X x X — X is a given function satisfying
some assumptions that will be spec1f1ed later and a,b, c are real numbers with a + b # 0 and S is a nonlinear
integral operator given by (Sx)(t) = [, k(t,s,x(s))ds, where k € C(J x | x X, X).

The ordinary differential equations is considered the basis of the fractional differential equations. In the
last few decades, fractional order models are found to be more adequate than integer order models for some
real world problems. For more details about fractional calculus and its applications we refer the reader to the
monographs of Hilfer [6], Kilbas et al. [8], Miller and Ross [9], Podlubny [10], Samko et al. [11] and the
references given therein. Recently, some fractional differential equations and optimal controls in Banach
spaces were studied by Balachandran and Park [2], El-Borai [3], Henderson and Ouahab [4], Hernandez et al.
[5], Wang et al. [14] and Wang et al. [15][16]. Very recently, Karthikeyan and Trujillo [7] and Wang et al. [13]
have extended the work in [1] from real line R to the abstract Banach space X by using more general
assumptions on the nonlinear function f. Our attempt is to generalize the results proved in [1} 7, 13].

This paper is organized as follows. In Section 2, we set forth some preliminaries. Section 3 introduces
a new generalized singular type Gronwall inequality to establish the estimate for priori bounds. In Section
4, we prove our main results by applying Banach contraction principle and Schaefer’s fixed point theorem.
Finally, in Section 5, application of the main results is exhibited.

*Corresponding author.
E-mail address: th.sabri@yahoo.com (Sabri T. M. Thabet), mbdhakne@yahoo.com(Machindra B. Dhakne).
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2 Preliminaries

Before proceeding to the statement of our main results, we set forth some preliminaries. Let the Banach space
of all continuous functions from ] into X with the supremum norm ||x||e := sup{||x(t)|| : t € J} is denoted

by C(J, X). For measurable functions m : | — RR, define the norm [|m||»(;r) = (f] |m(t)|Pdt> 1< p < oo,
where L7 (], R) the Banach space of all Lebesgue measurable functions m with [|m/||»(; ) < co.

Definition 2.1. The Riemann-Liouville fractional integral of order « > 0 of a suitable function h is defined by

1

() = /ﬂt(t — §)*Th(s)ds,

where a € R and T is the Gamma function.

Definition 2.2. For a suitable function h given on the interval [a,b], the Riemann-Liouville fractional derivative of
order « > 0 of h, is defined by

(DR, h)(t) = % (i) / (= 5)" o Un(s)ds,

n—u)

where n = [a] + 1, [a] denotes the integer part of .

Definition 2.3. For a suitable function h given on the interval [a,b], the Caputo fractional order derivative of order
« > 0 of h, is defined by

(D%, 1) (t) = r(l) / (£ = 510 (5)ds,

n—uo

where n = [a] + 1, [a] denotes the integer part of «.

Lemma 2.1. (I8, [I7]) Let « > O; then the differential equation “D*h(t) = 0, has the following general solution
h(t) =co+cit +cot> + -+ cp1t" 1, wherec; € R, i =0,1,2,...,n — 1, where n = [x] + 1.

Lemma 2.2. ([I8,[17]) Let « > 0, then
I*(°D*h)(t) = h(t) + co + c1t + cat> 4+ - -+t L,
forsomec; € R,i=0,1,2,...,n—1, where n = [a] + 1.

Definition 2.4. A function x € C'(], X) is said to be a solution of the fractional BVP if x satisfies the equation
‘D*x(t) = f(t x(t), (Sx)(t)) a.e. on ], and the condition ax(0) + bx(T) = c.

For the existence of solutions for the fractional BVP (1.1), we need the following auxiliary lemma.
Lemma 2.3. Let f : | — X be continuous. A function x € C(], X) is solution of the fractional integral equation

1

x(t) = I_(a)/ot(t—s)"‘_lf(s)ds— !

—3 {1"(boc) /OT(T —8)* 1 f(s)ds — c}, 22)

if and only if x is a solution of the following fractional BVP

{CD“x(t) =f(t),te]=[0,Tl,a € (0,1], 2.3)

ax(0) + bx(T) = c.

Proof. Assume that x satisfies fractional BVP (2.3); then by using Lemma [2.2]and Def. 2.1 we get

x(t) +co = I’(loc) /Ot(t —8)* " 1f(s)ds,
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where ¢y € R, that is: t
1 _
x(t) = ) /0 (t —5)*"1f(s)ds — co. (2.4)

By applying boundary condition ax(0) + bx(T) = ¢, we have

(a+ bb)l"(oc) /O.T(T =) f(s)ds — a i b’

Now, by substituting the value of ¢y in (2.4), we obtain

o =

1

x(t) = O] /Ot(t —5)* 1 F(s)ds — (CFDN0) :)r(a) /OT(T —5)* 1 (s)ds + ﬁ.

Conversely, it is clear that if x satisfies fractional integral equation (2.2), then fractional BVP (2.3) is also
satisfied. [

As a consequence of lemma 2.3} we have the following result which is useful in what follows.

Lemma 2.4. Let f : [ x X x X — X be continuous function. Then, x € C(], X) is a solution of the fractional integral
equation

x(t) = r(la) /ot(t — ) 1f(s,x(s), (Sx)(s)) ds -
- e [ T ), s0)is ]

if and only if x is solution of the fractional BVP (L.T).
Lemma 2.5. (Bochner theorem) A measurable function f : ] — X is Bochner integrable if || f|| is Lebesgue integrable.

Lemma 2.6. (Mazur theorem, [12]) Let X be a Banach space. If U C X is relatively compact, then conv(U) is relatively
compact and cono(U) is compact.

Lemma 2.7. (Ascoli-Arzela theorem) Let S = {s(t)} is a function family of continuous mappings s : [a,b] — X. If
S is uniformly bounded and equicontinuous, and for any t* € [a,b], the set {s(t*)} is relatively compact, then, there
exists a uniformly convergent function sequence {s,(t)}(n =1,2,...,t € [a,b]) in S.

Lemma 2.8. (Schaefer’s fixed point theorem) Let F : X — X be a completely continuous operator. If the set E(F) =
{x € X : x = nFx for some y € [0,1]} is bounded, then, F has fixed points.

3 A generalized singular type Gronwall’s inequality

Before dealing with the main reslts, we need to introduce a new generalized singular Gronwall type inequality
with mixed type singular integral operator.
We, first, state a generalized Gronwall inequality from [15].

Lemma 3.9. (Lemma 3.2, [15]) Let x € C(], X) satisfies the following inequality:

t T t
Ix(Ol <a+b [ x(@) a0 +c [ x(©)|2a0+a [ |xo]}a0
T
+e/0 ||x9||§4d9,t €],

where A, A3 € [0,1], A2, A4 € [0,1),a,b,c,d,e > 0 are constants and
lxollp = supg<s<g |x(s)||. Then there exists a constant L > 0 such that

[x(®)] < L.

Using the above generalized Gronwall inequality, we can obtain the following new generalized singular
type Gronwall inequality.
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Lemma 3.10. Let x € C(J, X) satisfies the following inequality:
T
Il < a+b/ 1 x(s) s +c (T —5) 1 x(s)]| s
0

T
b [ 0= s s e [T =) s,
(3.6)

where . € (0,1],A € [0,1— %)for some 1 < p < 1, ||xs|p = SUpg< o<, ||X(T)| and a,b,c,d,e > 0 are
constants.Then, there exists a constant L > 0, such that

lx(t)]| < L.
Proof. Let
1L, [x(n) <1,
t) =
v = i, Il o1
Using and Holder inequality, we get
lx(®)]l < Iy ()]
t T
<(a+1)+b / (=) ly(s) s+ [ (T =) ly(s) s
1 T 1 A
[ (6= sy yelids e [T =)y s

S(a+1)+b(/0t(t— ”‘1ds> </ llv(s) 7’3 )”p]
+c (/OT(T—S)’”(“‘”ds); (/ ly(s )IlpldS)pp

t T
llyslly [ (6= s el [ (T =5 as

pla-1)
S(a+1)+b<(t)+1> /||y )17 ds

1
TP(a=1)+1 Po,T Ap
+C<W> / [y ()17~ ds

T
+dHySHB +e||]/5||B( )

Bé

< (a+1) +dly 3= +€||ys||3( ]

Tp(a=1)+1 ? t Ap
AT ] /OIIy(S)IIHds

1

Tp(a71)+1 Po,T Ap

where 0 < -5 p 7 <L
Hence, by lemmathere exists a constant L > 0, such that ||x(#)|| < L.

4 Main results

For convenience, we list hypotheses that will be used in our further discussion.
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e (H1) The function f : | x X x X — X is measurable with respect to t on | and is continuous with respect to
xon X. .
e (H2) There exists a constant a1 € (0, «) and real-valued functions mq (t), my(t) € L% (J,R), such that

£ (£ x(8), (Sx)(8)) = f(£,y(8), (Sy) (Ol < ma(8) (I1x(£) = y(B)]| + 1Sx(£) — Sy(B)]]).,

Ikt 5,x(s)) = k(t,s,y(s)) | < ma(t)][x(s) = y(s)I,
foreachs € [0,t],t € Jand all x,y € X.

1
e (H3) There exists a constant ap € (0,a) and real-valued function h(t) € L%(]J,R), such that
£ (£, x(t), (Sx)(t))|| < h(t),foreacht € J,and all x € X.
For brevity, let M = ||mq +mymyT|| 1 and H = [|h]| 1
La

1(JR) L% (IIR)
e (H4) There exist constants A € [0,1 — %) forsomel < p < Ta and Ny, N > 0, such that
I (8, x(8), (Sx) ) ]| < Np(1+ [x(B)I* + [[(Sx) (D)),
k(t s, x(s)) Il < Ne(1+ [[x(s)[1"),

foreachs € [0,t],t € Jand all x € X.
e (H5) For every t € ], the set
Ky = {(t—5)*"1f(s,x(s),(Sx)(s)) : x € C(], X),s € [0,#]} is relatively compact.

Now, we are in position to deal with our main results.

Theorem 4.1. Assume that (H1)-(H3) hold. If

M Tv™ Ib|
Qur = ) (=) (1 + |a+b|> <1. 4.7)

Then, the fractional BVP (1.1) has a unique solution on J.

Proof. By making use of hypothesis (H3) and Holder inequality, for each t € ], we have
t t
/O H(f*S)"‘_lf(s/x(S)/(Sx)(S))IIdSS/(f*S)”‘_lllf(SIX(S)r(SX)(S))HdS
< / ) h(s)ds
a1 l-ay /ot o
< (/ (t—s)F “2ds> (/ (h(s)) ds)
0 0
1—062
<

N—n
g
- (’X D‘Z)l oy
0 1 2%}
Thus, |(t —s)* 1f(s,x(s), (Sx)(s))| is Lebesgue integrable with respect to s € [0,t] for all t € ] and

x € C(J,X). Then, (t —s)*"1f (s, x(s), (Sx)(s)) is Bochner integrable with respect to s € [0, ] forall t € | due
to lemma[2.5l

N

a—1
—(t—s)T" i

Hence, the fractional BVP (1.1)) is equivalent to the following fractional integral equation

1) = g [ (0= (s x(0), (500 (9) s
T (4.8)
~ i T (sx(e), (53) () s — ],
Now, let B, = {x € C(], X) : ||x]|c < 7}, where
r> HT™ ™ + 1o «_ HT" ™ + el (4.9)
T T(a) (=)t Ja+bl o T(a)($2) e et bl :
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Define the operator F on B; as follows:

(F0 = gy [ (=315, 5(6), (509
(4.10)
- alﬂ [r(b“) /OT(T —5)* 1 (s,x(s), (Sx)(s) ) ds — c},t e]J.

Clearly, the solution of the fractional BVP is the fixed point of the operator F on B,. We shall use the
Banach contraction principle to prove that F has a fixed point. The proof is divided into two steps.

Step 1. F(x) € B, for every x € B,.
For every x € B, and § > 0, by (H3) and Holder inequality, we have
I(F(x)) (£ +6) = (F(x)) (1)l

= Hr(lw /OWOH =5)* f(s,x(s), (Sx)(s))ds
_F({X) /Ot(t—s)“‘lf(s,x(S)/(Sx)(S))dS

)= (- S)"“l} £ (s,x(s), (Sx)(s)) Ilds

IN
—_
53\_.*
+
<,
\
wn

T'(a)
+ T(la) ./tw(t +0—5)" £ (s, x(s), (5x)(s)) s
< r(loc) ot[(t+(5 — )" = (t =) "h(s)ds
1 t+0 1
T, s TR
1

1;—& 1;—& 17062 1;—& 17062 I;_i 1*0(2

H —61 t49)t—= H ti=n2 H ol-x

< r(lx) a—ap + ( txfzcz - r(a) a—ay + r(a) x—ay :
170(2 170(2 170(2 170(2

It is obvious that the right-hand side of the above inequality tends to zero as § — 0. Therefore, F is

continuous on J, that is, F(x) € C(J, X). Moreover, for x € B, and all t € ], by using (4.9), we have

rs [ =9 1 (s x(5), (52) ) s

T(a) Jo T

ol T (s, x), (52)(5) s +
la+b|T(a) Jo e

< r(llx) /Ot(t — o) (s)ds

+ L/T(T—s)“_lh(s)dswL el
la+b|T(a) Jo la+b|

< r(la) (/Ot(ts)l“‘»fzds)l_az (/Ot(h(s))“lzds>a2

i 1-ay
e (fa-ote) T ([Toe)

ICEC) (B

IN

|c|
la + b

N
QU
1)
~__
=
N
+
o
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HT® Ib| HT® Ic|

< +
_r(a)(%)lﬂxz \a+b| ()(’i‘:gi)lﬂxz |a + b|

<r.

Thus, ||F(x)||e < r and we conclude that for all x € B, F(x) € B,, thatis, F : B, — B,.

Step 2. F is contraction mapping on B;.
For x,y € B, and any t € ], by using (4.7), (H2) and Holder inequality, we have

I(EG)E = F@) O
t
< Fag o =9 I x(6), (50)(5)) = £(5,3(6), () 3)) | s

|b| T x—1
e o T A6, (59)(6) — £(5v(s) (59)(5) | d

< Fw [ =) )~y + 1(50)6s) ~ (Sy)(s) s

|b| T a—1
+W/o (T — )"y (s) (lx(s) =y ()l + [[(Sx)(s) — (Sy)(s)|l)ds

< vy o =9 )

(|x s)|| —|—/ |k(s, T, x(T)) —k(s, T, y(T ||d1')

L T -
+|a+b|F(a)/() (T — )% Ly (s)

X (|x(s) —y(s)| + /OS |k(s, T, (7)) —k(s, T, y(7))|| dT)
< vy o 9 )

< (16) = yls) + [ ma(s) Ix(o) vt ) s
M',f"r() s )
< (1) = v+ [ male) [(7) — y(o) ) s

<t t(f_s) () (1% = ylleo + m2(5) Tl = yeo) s

|a+|lf||l"( >/ (T = 5)* " 1 () (I1x = ylleo + ma(s)Tllx = yllos) ds

”x yHoo 1 1-aq t 1
/ (t—s) 1ds /O(ml(s)‘f'ml(s)mz(S)T)“lds
|b| T fi;ld 1-mm
+|a+b|r<a>(/o 7 -9fias)
T L \m
x (/O (my(s) +my(s)ma(s)T) ™ ds>
a—ag \ 1= N
< Ml =yl (70} Mibx e (T
=" T(a) T4 la+ b|T(a) e

M T 1+ |b|
I'(a) ()t |a+ b

= Qu1l[x = Yllo-

+

(5]

<

1% = ¥lleo-
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Thus, we have

IF(x) = F(W)lleo < Qa,7[|x = Ylloo-
Since O, r < 1, F is contraction. By Banach contraction principle, we can deduce that F has a unique fixed

point which is the unique solution of the fractional BVP (L.I). O

Our second main result is based on the well known Schaefer’s fixed point theorem.
Theorem 4.2. Assume that(H1), (H4) and (H5) hold. Then the fractional BVP has at least one solution on | .

Proof. Transform the fractional BVP into a fixed point problem. Consider the operator
F:C(],X) — C(J, X) defined as (4.10). It is obvious that F is well defined due to (H1), Holder inequality and
the lemma 2.5

For the sake of convenience, we subdivide the proof into several steps.
Step 1. F is continuous operator.
Let {x,} be a sequence such that x, — x in C(J,X). Then for each t € ], we have

[ (F(xn))(t) = (F(x)) ()|
< 1"(104) /Ot(t — )21 £ (s, xn(s), (Sxn)(s)) — f(s,x(s), (Sx)(s))|| ds

+ |a+bb||1"@c) /OT(T—S)"‘_1 £ (s, xn(s), (Sxn)(s)) — f(s,x(s), (Sx)(s)) || ds

<1700 (590 = £ 0, (S gy (¢ =) s

‘b| T a—1
+ £ Coxn(), (Sxn) () = £(x (), (S2) () o, W/o (T —s)*ds
< IO (850)0) ~ £ 50,0
+ £ Coxn (), (S20) () = £ 20, (52)0)) | |a+bb||FM)7¢;

TIX
Srwm(”my)\\ﬂ xu(2), (Sx) () = £ (x(), (S0 () |-

Taking supremum, we get

||Fxn — Fx|oo

TOC
<ty (1 g ) G (830 0) = F(x0 50O

since f is continuous, we have

|[Fx; — Fx|lco — 0 as n — oo.

Therefore, F is continuous operator.

Step 2. F maps bounded sets into bounded sets in C(], X).
Indeed, it is enough to show that for any #* > 0, there exists a I > 0 such that for each
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X € By = {x € C(J,X) : ||x]|o <5*}, wehave |Fx|leo < 1.
For each t € |, by (H4), we get

mnmxwlSFSLWU—QWWV@JSXS@“»WS
. - c
ol Jo (T Il (S0 s+ 2o
Sﬁb%@_M1MO+W@W+M“WHW
b [N I+ S0+ L
< o [Ny (1 I+ [ G x(0) e ) s

b T e
o b T

x Ny (1 + [|x(s)||* + /OS |k(s, T, x(T)) ||dT) ds + |a—T—b|
(

1 ¢ _ s
SFMLAU_”“”%<L+M@HA+AZWO+MerMm)¢
0| T a
o b T

Ny (1 I+ [Nl ol ) s+ 1
1

t
< — _ o)1 A A
—u@A“ $)* T INg (14 [[x |5 + Ni(1 + [|x[|5%) T)ds

|| T a
+m+bwmyé(T*” 1

Cc
N1+ [ + N+ )T + L

< Nf<1+(’7;)(/;>(1+NkT) /t(i’ )a lds
(1+(;7*) (14 N, T) |b|

['(a)|a+ b |a + bl
Np(1+ (7)) (1 + N T) 4
(a

~—

+

‘ ~~

—
~—

~ 2

N+ A+ NDII TS | e
I'(a)|a+ 0| x  |a+Db

|b] ™ " "
S mrn) Tarn VA 0)DA+NT) +

where

p= (14 2 DN+ () (4 M) +
la+b[) T(w+1)"/
Thus, we have
I(F(x))(£)|| <!and hence |[Fx[lo < 1.

Step 3. F maps bounded sets into equicontinuous sets of C(J, X).
Let0 <t; <, <T,x € By+. Using (H4), again we have
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= r(luo ./Otl [(tz—s) L (t—s)* 1] Np (14 [|lx(s)[I* + 11 (Sx)(s)1])
+ r(la) /tf(fz—s)“ NP+ [lx(8) |2+ [[(Sx)()])
< i [ [ =9 = (= N (Ul + N1+ ) T) s
+ r(la) :(tz — ) INF (T4 [|x 1% + Ne(1+ [[x[| &) T)ds
*\A t
= ne (’71")(&))(1 L /0 {(fz =) —(t — S)'X*l} ds
*\A t
* Nf(l - (ﬂf)(a))(l D) /t1 (tp — S)mflds
Nf(1+ (7")") (1 + N T)

= Tt 1) (5= 1)

As t; — ty, the right-hand side of the above inequality tends to zero and since x is an arbitrary in By, F is
equicontinuous.

Now, let {x,},n =1,2,... be a sequence on By, and

(Fxn)(£) = (Fuxn)(£) + (F2x0)(T), £ € ],

where

(Frxq)(t) = I—'(llx) /Ot(t — S)ailf(s,xn(s), (an)(s))ds,t €],
(Ban)(T) = —Wb)m) /OT(T—S)“*lf(s,xn(s), (Sxu)(s))ds + HCW

In view of hypothesis (H5) and lemma 2.6 the set co77oK is compact. For any t* € ],

= F(lﬂé)/o <t* — S)uilf(sl xn(S>, (an)(s))ds

F(loc) ]HOOZ t; (t* — i;:)alf (i;:,xn(i;:)/ (an)(ilt:)>
- Fago

(Frxn)(t7)

where

it* it* it* it*

Gn = lim Z (t — ) lf (k’xn(k)'(sx”)(k)> :

Now, we have {(Fix,)(t)} is a function family of continuous mappings Fix, : ] — X, which is uniformly
bounded and equicontinuous. As convK; is convex and compact, we know (, € convKj. Hence, for any
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t* € J = [0,T], the set {(Fix,)(t*)}, is relatively compact. Therefore by lemma every {(Fix,)(t)}
contains a uniformly convergent subsequence {(Fix,,)(t)},k = 1,2,..., on J. Thus, {Fix : x € By} is
relatively compact. Similarly, one can obtain {(Fx,)(t)} contains a uniformly convergent subsequence
{(Bxy,)(t)},k=1,2,...,0on J. Thus, { bx : x € By} is relatively compact. As a result, the set {Fx : x € B« }
is relatively compact.

As a consequence of steps 1-3, we can conclude that F is continuous and completely continuous.

Step 4. A priori bounds.
Now it remains to show that the set

E(F)={x € C(J,X) : x = nFx forsome 5y € [0,1]},

is bounded
Let x € E(F), then x = yFx for some 7 € [0,1]. Thus, for each t € ], we have

x(t) =1 (r(l) [ =9 s x(6), (53)(9)ds

- (a+bb)r(w) /OT(T — )" 1 f (s, x(s), (Sx)(s))ds + a—T—b) .

Using (H4), for each t € ], we have

<0l < IE@)O
< iy o =Ny (1 I [N+ () P ) s

.
e b T

< N, <1 I+ [N+ |x(T)|)‘)dT> ds +

1
I'(w)

.
e b T

C
X N (1+ ()| + Ni(1+ el ) T)ds + —LL

|c|
|a + b

<

[ =9 N (1 I+ N1+ [ [T s

|a + b
< FIEZ) /Ot(t —5)* lds + FIEZ) /Ot(t — )" H|x(s)||Mds
- I\g(Nak)T /Ot(t—s)“‘lds+ I\E(NJ)T /Ot(t—s)“‘l\lxsllﬁds
T
i Jy 7o
bt T s
T
|Lb'+N£|¥'EZ>/O (T —5)"ds
+ |Lb|+N5|¥’EZ> /()T(T_S)a_l|‘x5||§ds+ |a|—T—|b|
_ NyT® N NyNT*H N |b|NsT® N |b|NgNT*+1 N Ic|
“T(a+1)  T(a+1) la+bT(a+1) |a+0bT(a+1) |a+D|

Nf ! a— ‘b|Nf T o
i L= s+ s [Tt )



Sabri T. M. Thabet and M. B. Dhakne / On boundary value problems for fractional integro-differential equations... 551

NANT gt BINGNGT T
o o M slds + s [T =) s

By lemma [3.10} there exists a N > 0 such that ||x(t)|| < N, t € J.

Thus for every t € ], we have ||x||c < N. This show that the set E(F) is bounded.

As a consequence of Schaefer’s fixed point theorem, we deduce that F has a fixed point that is solution of
fractional BVP (L.1). O

5 Examples

In this section, we give one example to illustrate the usefulness of our main results.

Example 5.1.

1 e x(t (s+]x(s)])
{CDZX(t) = 15 (1+x\x(t)| + fo 2+ts fj\x( )|)ds> te e (0], (5.11)
x

where o > 0 is constant.

Take X7 = [0,00),J; =[0,1] andso T = 1.
Set

s+ [x(s)]
(24121 +x(s)])

Fle (0, 520(0) = 1 (O + (59)(0)) a5, 3(5) =

Let x1,x2 € C(J1,X1) and t € [0,1], we have

1
(2+1)?

(1 =) (Jxa(s)] = [xa(s)])
(1 [x1(s) (1 + [x2(5)])

< (e - ()

< () -l

|k1(t,S, X1 (S)) - kl(t/ S, XZ(S))‘ <

and

|fr(tx1(8), (Sx1)(8)) — fa(t x2(t), (Sx2) ()|

et (| |u(t)] a(1)]
i (‘1+Tx1<t>| = T 0| T[S0 - <Sx2><t>\)
e ()] — [x2(8)]
=7 ((1+|x1<t>)(1+|x2<t)|) +!<5x1><t>—<8x2><t>)>

e—at

() — 0| + |52~ (sx)0))

IN

Also, for all x € C(J1, X1) and each t € J;, we have

o0t s+ |x(s)]
|f1(t,x(t),(5x)(f))| < 1+t (‘1+|x |‘ 2+t )2(14 |x(s)])

S)=()5

.

IN
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Forte J;,B € (0, %),we have
e 1 1
m(t) = S5~ € LE(J1,R), ma(t) = } € LF (Jy, R), h(t

5 e*tft 1 5 e—m‘
=(3)5% € LF(J,R dM=| (3
(4) 2 (J1,R) an | (4) 2 ||L%(MR)

Nl—=

Choosing some ¢ > 0 large enough and g = } € (0, }), one can arrive at the following inequality

_l"z(\g)(§—1>11 <1+;> <1

Q

N|—
N,
i

,_.
i

All the assumptions in Theorem 4.1 are satisfied, and therefore, the fractional BVP has a unique solution
on h.
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