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THE DOM-CHROMATIC NUMBER OF A GRAPH
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Abstract

For a given χ-coloring of a graph G = (V, E). A dominating set S ⊆ V(G) is said to be dom-coloring set if
it contains at least one vertex from each color class of G. The dom-chromatic number γdc(G) is the minimum
cardinality taken over all dom-coloring sets of G. In this paper, we initiate a study on γdc(G) and its exact
values for some classes of graphs have been established. Also its relationship with other graph theoretic
parameters are investigated.
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1 Introduction

All the graphs G = (V, E) considered here are simple, finite and undirected, where |V| = p denotes
number of vertices and |E| = q denotes number of edges of G. In general we use 〈X〉 to denote subgraph
induced by the set of vertices X and N(v) and N[v] denote open and closed neighborhood of a vertex v,
respectively. Let deg(v) be the degree of vertex v and usual δ(G) the minimum degree and ∆(G) the maximum
degree of a graph G. A subgraph H of a graph G is called a component of G, if H is maximally connected sub
graph of G. Any undefined term in this paper may be found in Harary [5].

A coloring of a graph G is an assignment of colors to its vertices. So, that no two adjacent vertices have the
same color. The set of all vertices with any one color is independent and is called a color class. An k-coloring of
a graph G uses k-colors. The chromatic number χ(G) is defined as the minimum k for which G has an k-coloring.
For complete review on theory of coloring we refer [8] and [10].

A set D of vertices in a graph G is a dominating set if every vertex in V −D is adjacent to some vertex in D.
The domination number γ(G) is the minimum cardinality of a dominating set of G. A minimum dominating set
of a graph G is called a γ-set of G. For more information on domination and its related parameters, we refer
[1], [6], [7] and [14].

Analogously, we initiate the study on domination and coloring theory in terms of dom-chromatic number
as follows: For a given χ-coloring of G, a dominating set S ⊆ V(G) is said to be dom-coloring set if it contains
at least one vertex from each color class of G. The dom-chromatic number γdc(G) is the minimum cardinality
taken over all dom-coloring sets of a graph G.

2 Bounds and characterization

First, we begin with couple of observations.

Observation 1. In a graph G with χ-coloring, not all dominating sets are dom-coloring sets.
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For example, consider a complete graph on five vertices say v1, v2, v3, v4, v5. The dominating set is v1,
which is not dom-coloring set. The set S = {v1, v2, v3, v4, v5} is the dom-coloring set.

Observation 2. Let G be a nontrivial graph with n ≥ 2 components. Then

γdc(G) ≤ γdc(G1) + γdc(G2) + · · ·+ γdc(Gn).

Theorem 2.1. For any graph G,

max{γ(G), χ(G)} ≤ γdc(G) ≤ γ(G) + χ(G)− 1.

The bounds are sharp.

Proof. Since every dom-coloring set is a dominating set of a graph G and hence γdc(G) ≥ γ(G). Then a dom-
coloring set contains at least one vertex from each color class, we have γdc(G) ≥ χ(G). Thus the lower bound
follows.

Since every minimum dominating set contains at least one vertex with any color classes say c1. Clearly,
S = D ∪ T is a dom-coloring set with |S| = γ(G)χ(G)− 1, where T consists of χ(G)− 1 vertices with distinct
colors, distinct from c1 used in D. Hence the upper bound.

The lower bound attains for Pp, p ≥ 2 vertices and upper bound attains for Kp or Kp.

To prove our next result we make use of the following definition.

Definition 2.1. In a graph G, the minimum dominating is said to be optimized dominating set if it contains maximum
number of vertices with distinct colors, where maximum is taken over all minimum dominating set. The optimized
dominating set denoted by Dµ, where µ is the number of colors used in the optimized dominating set.

For illustrative example of optimized dominating set Dµ. We consider a cycle C4 with vertices in the form
of {v1v2v3v4v1}. The set of all minimum dominating sets are D1 = {v1, v2}, D2 = {v2, v3}, D3 = {v3, v4},
D4 = {v4, v1}, D5 = {v1, v3} and D6 = {v2, v4}. Among all above said the minimum dominating set we can
take any of D1, D2, D3 and D4 as Dµ. Since these contains vertices with two colors. D5 and D6 can not be
taken as Dµ. Since these contains vertices with only one color.
Note: In any nontrivial graph G, µ ≥ 1.

Theorem 2.2. For any graph G,
γdc(G) ≤ γ(G) + χ(G)− µ.

Proof. Let G be any nontrivial graph with optimized dominating set Dµ. We claim S = Dµ ∪ T is a dom-
coloring set, where T is the set of vertices with all distinct colors which are not used in Dµ. Since Dµ ⊆ S,
clearly S is a dominating set and also S contains at least one vertex from each color class. Hence, S is a dom-
coloring set. The number of vertices in S is given by |S| = |Dµ|+ χ(G)− µ. Hence the result follows.

Theorem 2.3. For a graph G, γdc(G) = 1 if and only if G = K1.

Theorem 2.4. For any graph G, γdc(G) = p if and only if G ∼= Kp or Kp.

Proof. Suppose γdc(G) = p. On the contrary, if G 6= Kp or Kp, then the following cases arise.
Case 1. G is a connected graph.
In G, there exist at least two non adjacent vertices say u, v and each with degree at least one which receive
same color. Hence, the set V(G)− {u} is the dominating set which contain at least one vertex from each color
class. Hence, γdc(G) < p, a contradiction.
Case 2. G is a disconnected graph.
Suppose G contains n components, say G1, G2, . . . , Gn and let Gj be the component which uses maximum
number of colors in the χ-coloring of G. The set V(Gj)− {u} ∪ S is the dominating set, where u is any vertex
in Gj and S is the union of all components other than Gj. There fore, γdc(G) < p, a contradiction. Hence
G = Kp or Kp.
Conversely, suppose G = Kp then χ(G) = p. Hence γdc(G) = p. Now suppose G = Kp then γ(G) = p. Thus
γdc(G) = p.
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Theorem 2.5. Let G be a connected graph of order at least three with δ(G) ≥ 2. Then γdc(G) = p− 1 if and only if G
is a noncomplete graph containing Kp−1 as its induced subgraph.

Proof. Let G be a connected graph of order at least three, δ(G) ≥ 2 and γdc(G) = p − 1. On the contrary
suppose G contains no Kp−1 as its induced subgraph then there exist at least four vertices v1, v2, v3 and v4
such that the edges e1 = (v1v2) and e2 = (v3v4) does not belongs to G. Hence by assigning the same color,
say, c1 to the vertices v1, v2 and by assigning the same color say c2 to the vertices v3, v4, we get a k ≤ p− 2
coloring of G. The set V(G)− {v1, v3} is a dominating set containing at least one vertex from each color class.
Hence γdc(G) ≤ p− 2, which is a contradiction.
Conversely, suppose G is a non complete graph containing Kp−1 as its induced subgraph. The graph G require
exactly p− 1 colors. Thus the set V(Kp−1) is a minimum dom-coloring set. Hence the proof.

Theorem 2.6. Let G be a connected graph with p ≥ 4 vertices. If δ(G) ≥ 2 satisfying the following conditions:
(i) G contains Kp−2 as its induced subgraph.
(ii) G contains four vertices v1, v2, v3 and v4 such that the edges e1 = (v1v2) and e2 = (v3v4) does not belongs to G,
then γdc(G) = p− 2.

Proof. Let G be a connected graph of order at least four vertices with δ(G) ≥ 2. Then by condition (i) the
vertices of Kp−2 require p− 2 colors and dominate other two vertices say v1 and v3 and by condition (ii) the
colors given to v1 and v3 are already used in V(Kp−2). Thus, V(Kp−2) is the minimum dom-coloring set with
cardinality p− 2 vertices. Hence the result follows.

Definition 2.2. A dominator coloring of a graph G is a proper coloring of G in which every vertex dominates every
vertex of at least one color class. The minimum number of colors required for a dominator coloring of G is called the
dominator chromatic number of G and is denoted by χd(G).

To prove our next result we make use of the following result.

Theorem 2.7. [4] Let G be a connected graph. Then

max{χ(G), γ(G)} ≤ χd(G) ≤ χ(G) + γ(G).

The bounds are sharp.

Theorem 2.8. Let G be a connected graph with χ(G) = χd(G). Then

γdc(G) = χd(G).

Proof. Suppose χ(G) = χd(G), then by Theorem 2.7, we have for each color class of G, let xi be a vertex in
the class i, where 1 ≤ i ≤ χd(G). We show that the set S = {xi : 1 ≤ i ≤ χd(G)} is a dominating set. Let
v ∈ V(G). Then v dominates a color class i, for some i (1 ≤ i ≤ χ(G)). Clearly, D is also a dom-coloring set,
which can not be minimized further as it contains exactly one vertex from each color class. Hence the result
follows.

3 Bipartite graph

Theorem 3.9. For any bipartite graph, with p ≥ 2 vertices,

2 ≤ γdc(G) ≤ d p
3
e.

Further, lower bound exists if in each partite set there exists a vertex with degree equal to cardinality of the other set and
upper bound exist if the graph is isomorphic with path Pp, p ≥ 2 vertices.

Observation 3. If G is isomorphic to P2 or P3, then γdc(G) 6= γ(G).

Theorem 3.10. For any path Pp with p ≥ 4 vertices,

γdc(Pp) = γ(Pp).
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Proof. Let a path Pp, p ≥ 4 be labeled as 1, 2, 3, . . . , p. First we prove γdc(Pp) = γ(Pp) for p ≥ 6. We know that
γ(Pp) = d p

3 e for p ≥ 1, and hence it is true for p ≥ 6 is also. Now we show the existence of dom-coloring set
with cardinality equal to d p

3 e. Here two cases arise.
Case 1. p is a multiple of 3.
The set D = {3m− 1/1 ≤ m ≤ p

3 } is the minimum dominating set which contains at least one vertex from
each color class. Hence, γdc(Pp) = γ(Pp).
Case 2. p is not a multiple of 3.
Take a largest subpath P

′
of order multiple of 3, starting from the first vertex of Pp. Form minimum dominating

set D
′

of this path P
′

as defined in the above case. The set D = D
′ ∪ {v} is the minimum dominating set of

Pp with cardinality d p
3 e, where v is the any vertex of Pp not in P

′
. The set D contains at least one vertex from

each color class. Hence, γdc(Pp) = γ(Pp).
Now we prove the result is true for p = 4, 5.
For p = 4, D = {v2, v3} is the minimum dominating set of P4 which is also dom-coloring set. Then γdc(P4) =

γ(P4).
For p = 5, D = {v2, v5} is the minimum dominating set of P5 which is also dom-coloring set. Then, γdc(P5) =

γ(P5).

Theorem 3.11. For any cycle C2p with p ≥ 2 vertices,

γdc(C2p) = γ(Cp).

Theorem 3.12. For any complete bipartite graph Km,n with 2 ≤ m ≤ n vertices,

γdc(Km,n) = γ(Km,n).

Proof. By taking one vertex from each partite set. We get a minimum dominating set of Km,n with 2 ≤ m ≤ n
vertices, which is also dom-coloring set of Km,n. Thus the result follows.

4 Splitting graph

Definition 4.3. The splitting graph S
′
(G) of a graph G is obtained by adding a new vertex v

′
corresponding to each

vertex v of G such that N(v) = N(v
′
), where N(v) and N(v

′
) are the neighborhood sets of v and v

′
respectively in

S
′
(G).

Theorem 4.13. For any non trivial graph G,

γdc(S
′
(G)) ≤ 2γdc(G).

Proof. Let G be any graph with χ(G)-coloring and D = {v1, v2, . . . , vγdc(G)} be the minimum dom-coloring

set of G. The splitting graph S
′
(G) can also be colored with χ(G)-colors by assigning each v

′
, as that of its

the same color corresponding copy in G. In S
′
(G), D dominates all the vertices except possibly the copies

v
′
1, v

′
2, . . . , v

′
γdc(G) of the vertices in D. Hence, D ∪ {v′1, v

′
2, . . . , v

′
γdc(G)} dominates all the vertices of S

′
(G).

Also D ∪ {v′1, v
′
2, . . . , v

′
γdc(G)} contains at least one vertex from each color class as D contains so. Hence,

γdc(S
′
(G)) ≤ |D ∪ {v′1, v

′
2, . . . , v

′
γdc(G)}| = 2γdc(G).

Observation 4. If G is isomorphic to C3 or C4 or C5 then, γdc(S
′
(G)) = γdc(G).

Theorem 4.14. For any cycle Cp, p ≥ 6 vertices,

γdc(S
′
(Cp)) =


2γdc(Cp), if p = 3n + 3, n ≥ 1
2γdc(Cp)− 1, if p = 3n + 5, n ≥ 1
2γdc(Cp)− 2, if p = 3n + 4, n ≥ 1

Proof. Let Cp be labeled as v1, v2, . . . , vp. Here three cases arise.
Case 1. p = 3n + 3, n ≥ 1.
Subcase 1.1. p is even.
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Here the cycle Cp is bi-colorable and hence S
′
(Cp) is also bi-colorable. The set D = {v3m−2/1 ≤ m ≤ n + 1}

is the minimum dominating set of Cp. Clearly the set D contains at least one vertex from each color class,
D dominates all the vertices of S

′
(Cp) except D

′
= {v′3m−2/1 ≤ m ≤ n + 1}. Since there exist no common

neighbor (v ∈ V(Cp) of any two of the vertices in D
′
, to dominate the vertices of D

′
we must include all the

vertices of D
′
into the dominating set. That is Ds = D∪D

′
, hence Ds is the minimum dominating set of S

′
(Cp)

containing at least one vertex from each color class. Hence γdc(S
′
(Cp)) = 2γdc(Cp).

Subcase 1.2. p is odd.
Here the cycle Cp is 3-colorable and hence S

′
(Cp) is also 3-colorable. Let the first vertex v1 be colored with

color 3, then the set Ds = D ∪D
′

is the minimum dominating set of S
′
(Cp) containing at least one vertex from

each color class, where D and D
′

are the sets as defined in the above subcase. Hence γdc(S
′
(Cp)) = 2γdc(Cp).

Case 2. p = 3n + 5, n ≥ 1.
Subcase 2.1. p is even.
Here the cycle Cp is bi-colorable and hence S

′
(Cp) is also bi-colorable. The set D = {v3m−2/1 ≤ m ≤ n + 2}

is the minimum dominating set of Cp. Clearly, the set D contains at least one vertex from each color class, D
dominates all the vertices of S

′
(Cp) except D

′
= {v′3m−2/1 ≤ m ≤ n + 2}. There exists a common neighbor

vp of the vertices v
′
p−1 and v

′
1, hence we take vp into dominating set and there exist no common neighbor of

other vertices of D
′
. We must include the vertices of D

′
except v

′
1 and v

′
p−1 into the dominating set, That is

Ds = D ∪ {vp} ∪ D
′\{v′1, v

′
p−1} is the minimum dominating set of S

′
(Cp) containing at least one vertex from

each color class. Hence, γdc(S
′
(Cp)) = γdc(Cp) + 1 + γdc(Cp)− 2 = 2γdc(Cp)− 1.

Subcase 2.2. p is odd.
Here the cycle Cp is 3-colorable and hence S

′
(Cp) is also 3-colorable. Let the first vertex v1 be colored with

color 3, then the set Ds = D ∪ {vp} ∪ D
′\{v′1, v

′
p−1} is the minimum dominating set of S

′
(Cp) containing at

least one vertex from each color class, where D and D
′

are the sets as defined in the above subcase. Hence,
γdc(S

′
(Cp)) = 2γdc(Cp)− 1.

Case 3. p = 3n + 4, n ≥ 1.
Subcase 3.1. p is even.
Here the cycle Cp is bi-colorable and hence S

′
(Cp) is also bi-colorable. The set D = {v3m−2/1 ≤ m ≤ n + 2} is

the minimum dominating set of Cp. Clearly the set D contains at least one vertex from each color class. The set
D dominates all the vertices of S

′
(Cp) except D

′\{v′1, v
′
p} = {v

′
3m−2/1 ≤ m ≤ n + 2}\{v′1, v

′
p} = {v

′
3m−2/2 ≤

m ≤ n + 1}. Since there exist no common neighbor of any of the vertices in D
′\{v′1, v

′
p}, we must include the

vertices of D
′\{v′1, v

′
p} = {v

′
3m−2/2 ≤ m ≤ n + 1} in to the dominating set. i.e., Ds = D ∪ D

′\{v′1, v
′
p} is the

minimum dominating set of S
′
(Cp) containing at least one vertex from each color class. Hence, γdc(S

′
(Cp)) =

γdc(Cp) + γdc(Cp)− 2 = 2γdc(Cp)− 2.
Subcase 3.2. p is odd.
Here the cycle Cp is 3-colorable and hence S

′
(Cp) is also 3-colorable. Let the first vertex v1 be colored with

color 3, then the set Ds = D ∪ D
′\{v′1, v

′
p} is the minimum dominating set of S

′
(Cp) containing at least

one vertex from each color class, where D and D
′

are the sets as defined in the above subcase 3.1. Hence,
γdc(S

′
(Cp)) = 2γdc(Cp)− 2.

5 Mycielski’s graph

Definition 5.4. From a simple graph G, Mycielski’s construction produces a simple graph µ(G) containing G. Begining
with G having vertex set V = {v1, v2, . . . , vp}, add vertices U = {u1, u2, . . . , up} and one more vertex w. Add edges
to make ui adjacent to all of NG(vi), and finally let N(w) = U.

To prove our next result we make use of the following results.

Theorem 5.15. [9] If G is any graph, then

χ(µ(G)) = χ(G) + 1.

Theorem 5.16. [3] If G is any graph, then

γ(µ(G)) = χ(G) + 1.
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Theorem 5.17. For any nontrivial graph G,

γdc(µ(G)) = γdc(G) + 1.

Proof. If T is a dom-coloring set of G then in µ(G), T ∪ {w} is the dom-coloring of set. Since w dominates the
vertices of U and the vertices in U receives the same color as that of their respective preimages in V. Thus,

γdc(µ(G)) ≤ γdc(G) + 1.

Let D be a γdc-set of µ(G). Clearly, D contains w. Then D
′
= D − {w} dominates V, since Nµ(G)(vi) =

NG(vi) ∪ B, where B is the set of all mirror images of neighbors of vi. The set D
′

contains at least one vertex
from each color class except the color used for w. Let D

′
(G) consists of those vertices vi where either vi ∈ D

′
or

ui ∈ D
′
. Thus D

′
(G) is dom-coloring set. Hence

γdc(G) ≤ |D′(G)| ≤ |D
′ | = γdc(µ(G))− 1

γdc(G) + 1 = γdc(µ(G)).

By virtue of the above facts, we have
γdc(µ(G)) = γdc(G) + 1.

Figure 1: Mycielski’s graph of µ(C5)

For example, consider µ(C5) as shown in Figure 1. The minimum dom-coloring set in C5 is {v1, v3, v5}
and the minimum dom-coloring set in µ(C5) is {v1, v3, v5, w}. Hence γdc(C5) = 3 and γdc(µ(C5)) = 4.
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