
Malaya J. Mat. 4(1)(2016) 25-36

On Optional Deterministic Server Vacations in a Batch Arrival Queueing

System with a Single Server Providing First Essential Service Followed

by One of the Two Types of Additional Optional Service

Kailash C. Madan
Ahlia University, PO Box 10878, GOSI Complex, Kingdom of Bahrain, kmadan@ahlia.edu.bh

Abstract

We analyze a batch arrival queue with a single server providing first essential service (FES) followed by one
of the two types of additional optional service (AOS). After completion of the FES, a customer has the option
to leave the system or to choose one of the two types of AOS and as soon as a customer leaves (either after the
FES or after completing one of the chosen AOS, the server may take a vacation or may continue staying in the
system. The vacation times are assumed to be deterministic and the server vacations are based on Bernoulli
schedules under a single vacation policy. We obtain explicit queue size distribution at a random epoch under
the steady state. In addition, some important performance measures such as the steady state expected queue
size and the expected waiting time of a customer at a random epoch are obtained. Further, some interesting
particular cases are also discussed.
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1 Introduction

Server vacations are a common phenomenon in many real life queueing situations. In recent years, research
on queueing systems with server vacations has acquired great importance. Queueing systems with a wide
variety of vacation policies have been studied by a large number of authors. Many researchers including
Borthakur and Choudhury [1], Choudhury [2, 3], Madan and Choudhury [15], Gaver [5], Kielson and Servi
[6], Lee and Srinivan [8], Rosenberg and Yechialli [18] and Tegham [22] have studied queues with Bernoulli
schedule vacations or modified Bernoulli schedule vacations. Among the authors who studied queueing
systems with vacation policies other than the Bernoulli type vacations, we mention Shanthikumar [19] who
studied generalized vacations, Takagi [20] and, Madan and Abu-Rub [12–14] who studied vacations based
exhaustive service and Madan [9] considered a priority queueing system with exhaustive service in which the
server cannot take a vacation till all priority units present in the system are served. Recently, Krishnamoorthy
and Sreeniwan [7] and Tao et al [21] studied queueing system with working vacations wherein they assume
that the server is on vacation but keeps working in the system at a lower arte. Further, most of the above-
mentined authors assumed that the server takes a single vacation and some, e.g. Choudhury and Madan [4]
studied a queueing system in which server may take multiple vacations. Further, majority of authors who
studied vacation queues assume that the server takes a vacation of random length. However, in many real
life situations, the server may take a break or a vacation of fixed lenghth as it happens in a factory, a bank,
a railway station and a post office etc.. In order to minimize uncertainty of availability of a server, a fixed
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length vacation is more realistic in many queueing situations. Madan [10, 16] studied queueing systems with
deterministic vacations. Further, Madan [11] introduced the idea of a second optional service in a single server
queue without server vacations. Very recently Madan [17] cosidered a queueing system which provides two
stages of general service followed by a third stage optional service with deterministic server vacations. In the
present paper, we study a queueing sytem with a single server providing the first essentail service followed
by one of the two types of additional optional service. This system allows deterministic server vacations. We
generalize results obtained by Madan [10], Madan [11] and Madan [16].

2 The Mathematical Model

Customers (units) arrive at the system in batches of variable size in a compound Poisson process. Let λci dt
(i = 1, 2, 3, · · · ) be the first order probability that a batch of i customers arrives at the system during a short

interval of time (t, t + dt], where 0 ≤ ci ≤ 1 and
∞
∑

i=1
ci = 1 and λ > 0 is the mean arrival rate of batches. There

is a single server which provides first essential service (FES) to every customer. We assume that
the first essential service (FES) time random variable SE follows a general probability law with the

distribution function B(SE) and the probability density function b(SE) with the k-th moment E(Sk
E),

(k = 1, 2, 3, . . .).
Let h(x) be the conditional probability of completion of FES during the interval (x, x + dx], given that the

elapsed service time is x, so that

h(x) =
h(x)

1− H(x)
, (2.1)

and therefore,

h(SE) = h(SE) exp
[
−
∫ s

0
h(x) dx

]
. (2.2)

After completion of his FES, a customer may opt to take one of the two kinds of additional optional service
(AOS) with probability α or else may leave the system with probability 1− α. Each customer opting for the
AOS has the option to choose type 1, AOS (1) with probability θ1 or type 2, AOS (2) with probability θ2, where
θ1 + θ2 = 1. We assume that the service time random variable Sj of type j, AOS (j) follows a general probability
law with Bj(Sj) as the distribution function, bj(Sj) as the probability density function and E(Sk

j ) as the k-th
moment (k = 1, 2, 3, · · · ) of the service time, j = 1, 2.

Let µj(x) be the conditional probability of completion of AOS (j), j = 1, 2, during the interval (x, x + dx],
given that the elapsed service time is x, so that

µj(x) =
bj(x)

1− Bj(x)
, j = 1, 2, (2.3)

and therefore,

bj(sj) = µj(sj)

[
−
∫ s

0
µj(x) dx

]
, j = 1, 2, (2.4)

Next, we assume that as soon as the number of services required by a customer i.e. either FES alone or FES
followed by one of the two types of AOS are complete, the server may decide to take a vacation for a constant
duration d with probability δ or else with probability 1− δ may continue to be in the system, either providing
service to the next customer, if any or else remains idle and waits for the next batch of customers to arrive.

We further assume that whenever the server takes a vacation, it is always a single vacation. In other words,
on completion of a vacation, the server must be back to the system even if there is no customer present in the
system.

Finally, it is assumed that the inter-arrival times of the customers, the service times of each kind of service
and vacation times of the server, all these stochastic processes involved in the system are independent of each
other.
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3 Definitions and Notations

Assuming that the steady state exists, let PE
n (x) denote the steady state probability that there are n (≥ 0)

customers in the queue excluding one customer in FES and the elapsed service time of this customer is x.

Accordingly, PE
n =

∞∫
0

PE
n (x) dx denotes the corresponding steady state probability irrespective of the elapsed

service time x. Next, we define Pn,j(x) to be the steady state probability that that there are n (≥ 0) customers

in the queue excluding one customer in AOS (j) with elapsed service time x. Accordingly, Pn,j =
∞∫
0

Pn,j(x) dx is

the steady state probability that that there are n (≥ 0) customers in the queue excluding one customer in AOS
(j), irrespective of the elapsed service time x. Next, we define Vn as a steady state probability that there are n
(≥ 0) customers in the queue and the server is on vacation. Finally, let Q denote the steady state probability
that the system is empty, i.e., there is no customer either in queue or in service and the server is idle but
available in the system. We further assume that Kr is the probability of r arrivals during the vacation period
and therefore, ,

Kr =
− exp(λd)(λd)r

r!
, r = 0, 1, 2, . . . . (3.1)

In addition, we define the following probability generating functions (PGFs):

PE(x, z) =
∞

∑
n=0

PE
n (x)zn , PE(z) =

∞

∑
n=0

PEzn , (3.2)

Pj(x, z) =
∞

∑
n=0

Pn,j(x)zn , Pj(z) =
∞

∑
n=0

Pn,jzn , j = 1, 2 , (3.3)

K(z) =
∞

∑
n=0

Knzn =
∞

∑
n=0

exp(−λd)(λd)n

n!
zn = exp [−λd(1− z) ] , |z| ≤ 1 , (3.4)

C(z) =
∞

∑
n=0

cnzn , |z| ≤ 1 . (3.5)

Following the usual probability arguments, we obtain the following steady equations for our model.

4 Steady State Equations Governing the System
d

dx
PE

n (x) + (λ + h(x))PE
n (x) = λ

n

∑
i=1

PE
n (x) , n ≥ 1 , (4.1)

d
dx

PE
0 (x) + (λ + h(x))PE

0 (x) = 0 , (4.2)

d
dx

Pn,1(x) + (λ + µ1(x))Pn,1(x) = λ
n

∑
i=1

Pn−i,1(x) , n ≥ 1 , (4.3)

d
dx

P0,1(x) + (λ + µ1(x))P0,1(x) = 0 , (4.4)

d
dx

Pn,2(x) + (λ + µ2(x))Pn,2(x) = λ
n

∑
i=1

Pn−i,2(x) , n ≥ 1 , (4.5)

d
dx

P0,2(x) + (λ + µ2(x))P0,2(x) = 0 , (4.6)

Vn = δ(1− α)
∫ ∞

0
PE

n (x)h(x) dx + δ
2

∑
j=1

∫ ∞

0
Pn,j(x)µj(x) dx , n ≥ 0 , (4.7)

λQ = (1− δ)(1− α)
∫ ∞

0
PE

0 (x)h(x) dx + (1− δ)
2

∑
j=1

∫ ∞

0
P0,j(x)µj(x) dx + V0K0 . (4.8)



28 Kailash C. Madan / On Optional Deterministic Server Vacations ...

We will solve the above equations subject to the following boundary conditions:

PE
n (0) = (1− δ)(1− α)

∫ ∞

0
PE

n+1(x)h(x) dx + (1− δ)
2

∑
j=1

∫ ∞

0
Pn+1,j(x)µj(x) dx + V0Kn+1 (4.9)

+V1Kn + · · ·+ Vn+1K0 + λcn+1Q , n ≥ 1 , (4.10)

PE
0 (0) = (1− δ)

2

∑
j=1

∫ ∞

0
P1,j(x)µj(x) dx + V0K1 + V1K0 + λc1Q , n (4.11)

Pn,1(0) = αθ1

∫ ∞

0
PE

n (x)h(x) dx , n ≥ 0 , (4.12)

Pn,2(0) = αθ2

∫ ∞

0
PE

n (x)h(x) dx , n ≥ 0 . (4.13)

5 Steady State Solution in Terms of Probability Generating Functions

We multiply both sides of equation (4.1) by suitable powers of z, add equation (4.2) in the result and use (3.2)
and on simplifying we obtain,

d
dz

PE(x, z) + (λ− λC(z) + h(x))PE(x, z) = 0 . (5.1)

Similar operations on equations (4.3) and (4.4); (4.5) and (4.6); and (4.7) yield

d
dz

P1(x, z) + (λ− λC(z) + µ1(x))P1(x, z) = 0 , (5.2)

d
dz

P2(x, z) + (λ− λC(z) + µ2(x))P2(x, z) = 0 , (5.3)

V(z) = δ(1− α)
∫ ∞

0
PE(x, z)h(x) dx + δ

2

∑
j=1

∫ ∞

0
Pj(x, z)µj(x) dx . (5.4)

(5.5)

Yet again we use a similar operation on (4.9) and (4.10), use (4.8) and simplify. Thus we obtain

zPE(0, z) = (1− δ)(1− α)
∫ ∞

0
PE(x, z)h(x) dx + (1− δ)

2

∑
j=1

∫ ∞

0
Pj(x, z)µj(x) dx (5.6)

+V(z)K(z) + λ(C(z)− 1)Q . (5.7)

Finally, with the similar operations of (4.11) and (4.12), we obtain,

P1(0, z) = αθ1

∫ ∞

0
PE(x, z)h(x) dx , (5.8)

P2(0, z) = αθ2

∫ ∞

0
PE(x, z)h(x) dx . (5.9)

Next, we integrate equations (5.1), (5.2) and (5.3) between the limits 0 and x and obtain

PE(x, z) = PE(0, z) exp
[
−(λ− λC(z))x−

∫ ∞

0
h(t) dt

]
, (5.10)

P1(x, z) = P1(0, z) exp
[
−(λ− λC(z))x−

∫ ∞

0
µ1(t) dt

]
, (5.11)

P2(x, z) = P2(0, z) exp
[
−(λ− λC(z))x−

∫ ∞

0
µ2(t) dt

]
. (5.12)

where PE(0, z), P1(0, z) and P2(0, z) have been obtained above in (5.5), (5.6) and (5.7) respectively.
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We again integrate (5.8), (5.9) and (5.10) with respect to x and obtain

PE(z) = PE(0, z)
1− H(λ− λC(z))

λ− λC(z)
, (5.13)

P1(z) = P1(0, z)
1− B1(λ− λC(z))

λ− λC(z)
, (5.14)

P2(z) = P1(0, z)
1− B2(λ− λC(z))

λ− λC(z)
, (5.15)

where H(λ − λC(z)) =
∞∫
0

exp [−(λ− λC(z))x ] dH(x) is the Laplace-Stieltjes transform of SE, the service

time of FES and Bj(λ− λC(z)) =
∞∫
0

exp [−(λ− λC(z))x ] dBj(x) is the Laplace-Stieltjes transform of Sj, the

service time of AOS (j), j = 1, 2.
Now, we multiply equations (5.11), (5.12) and (5.13) by h(x), µ1(x) and µ2(x) respectively and integrate

them with respect to x and use (2.2) and (2.4). Thus we obtain∫ ∞

0
PE(x, z)h(x) dx = PE(0, z)H(λ− λC(z)) , (5.16)∫ ∞

0
P1(x, z)µ1(x) dx = P1(0, z)B1(λ− λC(z)) , (5.17)∫ ∞

0
P2(x, z)µ2(x) dx = P2(0, z)B2(λ− λC(z)) . (5.18)

We further use (5.14), (5.15) and (5.16) into equations (5.4), (5.5), (5.6) and (5.7), simplify and get

V(z) = δ(1− α)PE(0, z)H(λ− λC(z)) + P1(0, z)B1(λ− λC(z)) + P2(0, z)B2(λ− λC(z)) , (5.19)

zPE(0, z) = (1− δ)(1− α)PE(0, z)H(λ− λC(z)) + (1− δ)P1(0, z)B1(λ− λC(z)) (5.20)

+(1− δ)P2(0, z)B2(λ− λC(z)) + V(z)K(z) + λ(C(z)− 1)Q , (5.21)

P1(0, z) = αθ1PE(0, z)H(λ− λC(z)) , (5.22)

P2(0, z) = αθ2PE(0, z)H(λ− λC(z)) , (5.23)

Now, solving (5.17), (5.18), (5.19) and (5.20), utilizing (5.11), (5.12) and (5.13) and simplifying, we obtain

V(z) =
δ
[
(1− α) + αθ1B1(λ− λC(z)) + αθ2B2(λ− λC(z))

]
λ [C(z)− 1 ] H(λ− λC(z))Q

z−Ψ(z)H(λ− λC(z))
, (5.24)

PE(z) =

(
H(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (5.25)

P1(z) =
αθ1H(λ− λC(z))

(
B1(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (5.26)

P2(z) =
αθ2H(λ− λC(z))

(
B2(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (5.27)

where

Ψ(z) = (1− α)(1− δ) + (1− δ)αθ1B1(λ− λC(z)) + (1− δ)αθ2B2(λ− λC(z))

+δ
[
(1− α) + αθ1B1(λ− λC(z)) + αθ2B2(λ− λC(z))

]
K(z) .

Now, in order to determine the only unknown Q, we proceed as follows:

V(1) = lim
z→1

V(z)

= lim
z→1

δ
[
(1− α) + αθ1B1(λ− λC(z)) + αθ2B2(λ− λC(z))

]
λ [C(z)− 1 ] H(λ− λC(z))Q

z−Ψ(z)H(λ− λC(z))

=
δλE(I)Q

1− [ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ]
, (5.28)
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where E(I) is the average batch size, E(SE), E(S1) and E(S2) are the average service time of FES, AOS (1) and
AOS(2), respectively.

PE(1) = lim
z→1

PE(z) = lim
z→1

(
H(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))

=
λE(I)E(SE)Q

1− [ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ]
, (5.29)

P1(1) = lim
z→1

P1(z) = lim
z→1

αθ1H(λ− λC(z))
(

B1(λ− λC(z))− 1
)

Q
z−Ψ(z)H(λ− λC(z))

=
αθ1λE(I)E(S1)Q

1− [ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ]
, (5.30)

P2(1) = lim
z→1

P2(z) = lim
z→1

αθ2H(λ− λC(z))
(

B2(λ− λC(z))− 1
)

Q
z−Ψ(z)H(λ− λC(z))

=
αθ2λE(I)E(S2)Q

1− [ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ]
, (5.31)

Next, we use the results found in (4.37), (4.38), (4.39) and (4.40) in the normalizing condition:

Q + V(1) + PE(1) + P1(1) + P2(1) = 1 . (5.32)

On simplifying, (4.41) yields

Q =
1− [ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ]

1 + δλE(I)− δλd
. (5.33)

The result (4.42) gives the probability that the server is idle and the stability condition which emerges from
this equation is given by

[ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ] < 1 . (5.34)

Now, we define ρ, the utilization factor of the system as the proportion of time the server is providing any
kind of service and using results (4.38), (4.39) and (4.40) and simplifying, we get

ρ = PE(1) + P1(1) + P2(1) =
λE(I) [ E(SE) + αθ1E(S1) + αθ2E(S2) ]

1 + δλE(I)− δλd
. (5.35)

6 Steady State Average Queue Length and Average Waiting Time

Let PQ(z) be the steady state probability generating function for the number of customers in the queue so that
adding (4.37), (4.38), (4.39) and (4.40) we get

PQ(z) = V(z) + PE(z) + P1(z) + P2(z) =
N(z)
D(z)

. (6.1)

Next, we define Lq to be the steady state average number of customers in the queue. Then LQ = d
dz PQ(z) |z=1.

However, since PQ(z) = 0/0 at z = 1, we use double differentiation and obtain

LQ = lim
z→1

d
dz

PQ(z) = lim
z→1

D′(z)N′′(z)− N′(z)D′′(z)

2 (D′(z))2 =
D′(1)N′′(1)− N′(1)D′′(1)

2 (D′(1))2 , (6.2)

where primes mean derivatives with respect to z and after a lot of algebra and simplification, we obtain

LQ =
(λE(I))2 [ E(S2

E) + αθ1E(S2
1) + αθ2E(S2

2) + 2(E(SE) + αθ1E(S1) + αθ2E(S2))
]

2 {1− [ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ]}

+
2δλ2dE(I) [ E(SE) + αθ1E(S1) + αθ2E(S2) ] + δλ2d

2 {1− [ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ]}

+
[ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ] E(I(I − 1))

2 {1− [ λE(I) {E(SE) + αθ1E(S1) + αθ2E(S2)}+ δλd ]} , (6.3)
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where E(S2
E), E(S2

1) and E(S2
2) are the second moments of the FES, AOS (1) and AOS (2) service times

respectively and E(I(I − 1)) is the second factorial moment of the batch size.
Note that using Lq obtained in (6.3) into Littles formulae, we can obtain the following:

The steady state average number of customers in the system is

L = Lq + ρ . (6.4)

where ρ is given by (5.32). Further, the steady state average waiting time in the queue is

Wq =
Lq

λ
. (6.5)

The steady state average waiting time in the system is

W =
L
λ

. (6.6)

7 Particular Cases

Case 1: We assume single Poisson arrivals with FES, AOS (1) and AOS (2) all having exponential
distribution

In this case we have E(I) = 1, E(SE) = 1/h, E(S2
E) = 2/h2, E(S1) = 1/µ1, E(S2

1) = 2/µ2
1, E(S2) = 1/µ2,

E(S2
2) = 2/µ2

2, and E(I(I − 1)) = 0. Furthermore,

H [ λ− λC(z) ] =
h

h + λ− λC(z)
, B1 [ λ− λC(z) ] =

µ1

µ1 + λ− λC(z)
and B2 [ λ− λC(z) ] =

µ2

µ2 + λ− λC(z)
.

Consequently,

1− H [ λ− λC(z) ]
λ− λC(z)

=
1

h + λ− λC(z)
,

1− B1 [ λ− λC(z) ]
λ− λC(z)

=
1

µ1 + λ− λC(z)
,

and
1− B2 [ λ− λC(z) ]

λ− λC(z)
=

1
µ2 + λ− λC(z)

.

Substituting these values in the main results, we obtain:

V(z) =
δ
[
(1− α) + αθ1

(
µ1

µ1+λ−λC(z)

)
+ αθ2

(
µ2

µ2+λ−λC(z)

) ]
λ [C(z)− 1 ]

(
h

h+λ−λC(z)

)
Q

z−Ψ(z)
(

h
h+λ−λC(z)

) , (7.1)

PE(z) =

(
h

h+λ−λC(z) − 1
)

Q

z−Ψ(z)
(

h
h+λ−λC(z)

) , (7.2)

P1(z) =
αθ1

(
h

h+λ−λC(z)

) (
µ1

µ1+λ−λC(z) − 1
)

Q

z−Ψ(z)
(

h
h+λ−λC(z)

) , (7.3)

P2(z) =
αθ2

(
h

h+λ−λC(z)

) (
µ2

µ2+λ−λC(z) − 1
)

Q

z−Ψ(z)
(

h
h+λ−λC(z)

) , (7.4)

where, in this case,

Ψ(z) = (1− α)(1− δ) + (1− δ)αθ1

(
µ1

µ1 + λ− λC(z)

)
+ (1− δ)αθ2

(
µ2

µ2 + λ− λC(z)

)
+δ

[
(1− α) + αθ1

(
µ1

µ1 + λ− λC(z)

)
+ αθ2

(
µ2

µ2 + λ− λC(z)

) ]
K(z) .
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and

Q =
1− λ

[
1
h + αθ1

µ1
+ αθ2

µ2
+ δd

]
1 + δλ− δλd

. (7.5)

Further,

V(1) =
δλ

1 + δ− δλd
, (7.6)

PE(1) =
λ

h(1 + δ− δλd)
, (7.7)

P1(1) =
αθ1λ

µ1(1 + δ− δλd)
, (7.8)

P2(1) =
αθ2λ

µ2(1 + δ− δλd)
, (7.9)

LQ =

λ2
[

2
h2 +

2αθ1
µ2

1
+ 2αθ2

µ2
2
+ 2

(
1
h + αθ1

µ1
+ αθ2

µ2

) ]
2− 2λ

[
1
h + αθ1

µ1
+ αθ2

µ2
+ δd

] +
2δλ2d

[
1
h + αθ1

µ1
+ αθ2

µ2

]
+ δλ2d

2− 2λ
[

1
h + αθ1

µ1
+ αθ2

µ2
+ δd

]
+

λ
[

1
h + αθ1

µ1
+ αθ2

µ2

]
2− 2λ

[
1
h + αθ1

µ1
+ αθ2

µ2
+ δd

] . (7.10)

Next, the steady state average number of customers in the system,

L = Lq + ρ , (7.11)

where

ρ =
λ
[

1
h + αθ1

µ1
+ αθ2

µ2

]
1 + δλ− δλd

. (7.12)

Further, the steady state average waiting time in the queue is

Wq =
Lq

λ
. (7.13)

The steady state average waiting time in the system is

W =
L
λ

. (7.14)

Case 2: The first essential service is compulsorily followed by one of AOS (1) or AOS (2)

The results corresponding to this particular case can be obtained by putting α = 1 in the main results.

V(z) =
δ
[

θ1B1(λ− λC(z)) + θ2B2(λ− λC(z))
]

λ [C(z)− 1 ] H(λ− λC(z))Q
z−Ψ(z)H(λ− λC(z))

, (7.15)

PE(z) =

(
H(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (7.16)

P1(z) =
θ1H(λ− λC(z))

(
B1(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (7.17)

P2(z) =
θ2H(λ− λC(z))

(
B2(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (7.18)
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where

Ψ(z) = (1− δ)θ1B1(λ− λC(z)) + (1− δ)θ2B2(λ− λC(z))

+δ
[

θ1B1(λ− λC(z)) + θ2B2(λ− λC(z))
]

K(z) ,

Q =
1− [ λE(I) {E(SE) + θ1E(S1) + θ2E(S2)}+ δλd ]

1 + δλE(I)− δλd
, (7.19)

ρ =
λE(I) [ E(SE) + θ1E(S1) + θ2E(S2) ]

1 + δλE(I)− δλd
, (7.20)

LQ =
(λE(I))2 [ E(S2

E) + θ1E(S2
1) + θ2E(S2

2) + 2(E(SE) + θ1E(S1) + θ2E(S2))
]

2 {1− [ λE(I) {E(SE) + θ1E(S1) + θ2E(S2)}+ δλd ]}

+
2δλ2dE(I) [ E(SE) + θ1E(S1) + θ2E(S2) ] + δλ2d

2 {1− [ λE(I) {E(SE) + θ1E(S1) + θ2E(S2)}+ δλd ]}

+
[ λE(I) {E(SE) + θ1E(S1) + θ2E(S2)}+ δλd ] E(I(I − 1))

2 {1− [ λE(I) {E(SE) + θ1E(S1) + θ2E(S2)}+ δλd ]} , (7.21)

Case 3: No AOS(1): MX/(GE, G2)/D/1 Queue

In this case we put θ1 = 0 in the main results (5.20) to (5.23), (5.30), (5.31) and (6.2) to obtain

V(z) =
δ
[
(1− α) + αθ2B2(λ− λC(z))

]
λ [C(z)− 1 ] H(λ− λC(z))Q

z−Ψ(z)H(λ− λC(z))
, (7.22)

PE(z) =

(
H(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (7.23)

P1(z) = 0 , (7.24)

P2(z) =
αθ2H(λ− λC(z))

(
B2(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (7.25)

where

Ψ(z) = (1− α)(1− δ) + (1− δ)αθ2B2(λ− λC(z)) + δ
[
(1− α) + αθ2B2(λ− λC(z))

]
K(z) ,

Q =
1− [ λE(I) {E(SE) + αθ2E(S2)}+ δλd ]

1 + δλE(I)− δλd
, λE(I) {E(SE) + αθ2E(S2)}+ δλd < 1 , (7.26)

LQ =
(λE(I))2 [ E(S2

E) + αθ2E(S2
2) + 2(E(SE) + αθ2E(S2))

]
2 {1− [ λE(I) {E(SE) + αθ2E(S2)}+ δλd ]}

+
2δλ2dE(I) [ E(SE) + αθ2E(S2) ] + δλ2d

2 {1− [ λE(I) {E(SE) + αθ2E(S2)}+ δλd ]}

+
[ λE(I) {E(SE) + αθ2E(S2)}+ δλd ] E(I(I − 1))

2 {1− [ λE(I) {E(SE) + αθ2E(S2)}+ δλd ]} . (7.27)
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Case 4: No AOS (2): MX/(GE, G1)/D/1 Queue

In this case we put θ2 = 0 in the main results (5.20) to (5.23), (5.30), (5.31) and (6.2) to obtain

V(z) =
δ
[
(1− α) + αθ1B1(λ− λC(z))

]
λ [C(z)− 1 ] H(λ− λC(z))Q

z−Ψ(z)H(λ− λC(z))
, (7.28)

PE(z) =

(
H(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (7.29)

P1(z) =
αθ1H(λ− λC(z))

(
B1(λ− λC(z))− 1

)
Q

z−Ψ(z)H(λ− λC(z))
, (7.30)

P2(z) = 0 , (7.31)

where

Ψ(z) = (1− α)(1− δ) + (1− δ)αθ1B1(λ− λC(z)) + δ
[
(1− α) + αθ1B1(λ− λC(z))

]
K(z) ,

Q =
1− [ λE(I) {E(SE) + αθ1E(S1)}+ δλd ]

1 + δλE(I)− δλd
, λE(I) {E(SE) + αθ1E(S1)}+ δλd < 1 , (7.32)

LQ =
(λE(I))2 [ E(S2

E) + αθ1E(S2
1) + 2(E(SE) + αθ1E(S1))

]
2 {1− [ λE(I) {E(SE) + αθ1E(S1)}+ δλd ]}

+
2δλ2dE(I) [ E(SE) + αθ2E(S1) ] + δλ2d

2 {1− [ λE(I) {E(SE) + αθ1E(S1)}+ δλd ]}

+
[ λE(I) {E(SE) + αθ1E(S1)}+ δλd ] E(I(I − 1))

2 {1− [ λE(I) {E(SE) + αθ1E(S1)}+ δλd ]} . (7.33)

Case 5: None of the AOS: MX/GE/D/1 Queue

In this case we put α = θ1 = θ2 = 0 in the main results (5.20) to (5.23), (5.30), (5.31) and (6.2) to obtain

V(z) =
δλ [C(z)− 1 ] H(λ− λC(z))Q

z− {1− δ + δK(z)}H(λ− λC(z))
, (7.34)

PE(z) =

(
H(λ− λC(z))− 1

)
Q

z− {1− δ + δK(z)}H(λ− λC(z))
, (7.35)

P1(z) = 0 , (7.36)

P2(z) = 0 , (7.37)

where

Q =
1− λE(I)E(SE)− δλd

1 + δλE(I)− δλd
, λE(I)E(SE) + δλd < 1 , (7.38)

LQ =
(λE(I))2 [ E(S2

E) + 2E(SE)
]

2 {1− [ λE(I)E(SE) + δλd ]} +
2δλ2dE(I)E(SE) + δλ2d

2 {1− [ λE(I)E(SE) + δλd ]}

+
[ λE(I)E(SE) + δλd ] E(I(I − 1))

2 {1− [ λE(I)E(SE) + δλd ]} . (7.39)
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Case 6: No Server Vacations: MX/GE/1 Queue

In this case we put δ = 0 and d = 0. Consequently K(z) = 1 in the results of case 4 and obtain

V(z) = 0 , (7.40)

PE(z) =

(
1− H(λ− λC(z))

)
Q

z− H(λ− λC(z))
, (7.41)

P1(z) = 0 , (7.42)

P2(z) = 0 , (7.43)

Q = 1− λE(I)E(SE) , λE(I)E(SE) < 1 , (7.44)

LQ =
(λE(I))2 [ E(S2

E) + 2E(SE)
]
+ λE(I)E(SE)E(I(I − 1))

2[1− λE(I)E(SE)]
. (7.45)

The results of this case are known results of the ordinary MX/G/1 queue.
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