Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

Certain coefficient inequalities for *p*-valent functions

Rahim Kargar^{*a*,*}, Ali Ebadian^{*a*} and Janusz Sokół^{*b*}

^a Department of Mathematics, Payame Noor University, I. R. of Iran.

^bDepartment of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

Abstract

www.malayajournal.org

In the present paper, applying lemmas due to Nunokawa et al. [3] and Jack's lemma we obtain some coefficient inequalities for certain subclass of p-valent functions.

Keywords: Analytic, univalent, p-valent, starlike and convex functions, Jack's lemma.

```
2010 MSC: 30C45.
```

©2012 MJM. All rights reserved.

1 Introduction

Let A_p denote the class of functions f(z) of the form:

$$f(z) = z^{p} + \sum_{n=p+1}^{\infty} a_{n} z^{n}, \qquad p \in \mathbb{N} := \{1, 2, 3, \ldots\},$$
(1.1)

which are analytic in the open unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. Put $A_1 = A$. The subclass of A consisting of all univalent functions f(z) in Δ is denoted by S. A function $f \in S$ is called starlike (with respect to 0), denoted by $f \in S^*$, if $tw \in f(\Delta)$ whenever $w \in f(\Delta)$ and $t \in [0, 1]$. A function $f \in S$ that maps Δ onto a convex domain, denoted by $f \in K$, is called a convex function. A function f(z) in A is said to be starlike of order $0 \le \gamma < 1$ if it satisfies

$$\mathfrak{Re}\left\{rac{zf'(z)}{f(z)}
ight\}>\gamma, \qquad z\in\Delta.$$

We denote by $S^*(\gamma)$ the subclass of A consisting of all starlike functions of order γ in Δ . Furthermore, let $\mathcal{M}(\beta)$ be the class of functions $f(z) \in A$ which satisfy

$$\mathfrak{Re}\left\{rac{zf'(z)}{f(z)}
ight\}$$

for some real number β with $\beta > 1$. The class $\mathcal{M}(\beta)$ was investigated by Uralegaddi, Ganigi and Sarangi [6].

Further, let $\mathcal{P}(\gamma, p)$ denote the subclass of \mathcal{A}_p consisting of functions f(z) which satisfy

$$\mathfrak{Re}\left\{rac{f(z)}{z^p}
ight\}>\gamma,\qquad z\in\Delta,$$

for some real $0 \le \gamma < p$. The class $\mathcal{P}(1/2, 1) \equiv \mathcal{P}(1/2)$ was studied by Obradović et al. in [5]. We remark that $\mathcal{K} \subset \mathcal{P}(1/2)$.

Nunokawa, Cho, Kwon and Sokół [3] obtained the following results.

^{*}Corresponding author.

E-mail address: rkargar1983@gmail.com (Rahim Kargar), ebadian.ali@gmail.com(Ali Ebadian), jsokol@prz.edu.pl (Janusz Sokół).

Lemma 1.1. Let B(z) and C(z) be analytic in Δ with

$$|\mathfrak{Im}\{C(z)\}| < \mathfrak{Re}\{B(z)\}.$$

If p(z) is analytic in Δ with p(0) = 1, and if

$$|\arg\{B(z)zp'(z) + C(z)p(z)\}| < \pi/2 + t(z),$$

where

$$t(z) = \begin{cases} \arg\{C(z) + iB(z)\} & \text{when } \arg\{C(z) + iB(z)\} \in [0, \pi/2] \\ \arg\{C(z) + iB(z)\} - \pi/2 & \text{when } \arg\{C(z) + iB(z)\} \in (\pi/2, \pi]. \end{cases}$$

then we have

$$\Re \{p(z)\} > 0, \qquad z \in \Delta$$

Lemma 1.2. Let B(z) and C(z) be analytic in Δ with

$$\mathfrak{Re}\left\{rac{C(z)}{B(z)}
ight\}\geq -1, \qquad z\in\Delta.$$

If p(z) *is analytic in* Δ *with* p(0) = 0*, and if*

$$|B(z)zp'(z) + C(z)p(z)| < |B(z) + C(z)|, \quad z \in \Delta,$$
 (1.2)

then we have

$$|p(z)| < 1$$
, $z \in \Delta$

In this paper, applying the Lemma 1.1, Lemma 1.2 and Jack's Lemma, we obtain coefficient conditions for some certain subclasses of *p*-valent functions.

2 Main results

Our first result is contained in the following:

Theorem 2.1. Assume that $f \in A_p$. If

$$\left|\arg\left\{z^{1-p}f'(z)-(p-1)\frac{f(z)}{z^p}-\frac{\gamma}{p}\right\}\right|<\frac{3\pi}{4},\qquad z\in\Delta,$$
(2.3)

then

$$\Re \mathfrak{e}\left\{\frac{f(z)}{z^p}\right\} > \frac{\gamma}{p}, \qquad z \in \Delta,$$
(2.4)

where $0 \leq \gamma < p$, that is $f \in \mathcal{P}(\gamma/p, p)$.

Proof. Let $f(z) \neq 0$ for $z \neq 0$ and let p(z) be defined by

$$\left(1-\frac{\gamma}{p}\right)p(z)+\frac{\gamma}{p}=\frac{f(z)}{z^p},\qquad z\in\Delta,$$
(2.5)

where $0 \le \gamma < p$. Then p(z) is analytic in Δ , p(0) = 1 and

$$\left(1-\frac{\gamma}{p}\right)p(z) + \left(1-\frac{\gamma}{p}\right)zp'(z) = z^{1-p}f'(z) - (p-1)\frac{f(z)}{z^p} - \frac{\gamma}{p}$$

If we put $B(z) = C(z) = 1 - \frac{\gamma}{p}$, from (2.3) and applying Lemma 1.1 we obtain (2.4) immediately.

If we take p = 1 in Theorem 2.1, then it becomes the result from [4] of the following form: **Corollary 2.1.** Let $f \in A$. If

$$|\arg\{f'(z) - \gamma\}| < \frac{3\pi}{4}, \qquad z \in \Delta,$$

$$\mathfrak{m} \left\{ f(z) \right\} > \mathfrak{m} \quad z \in \Lambda$$

then

$$\mathfrak{Re}\left\{rac{f(z)}{z}
ight\}>\gamma, \qquad z\in\Delta$$

Theorem 2.2. Assume that $f \in A_p$. If

$$\left|z^{1-p}f'(z) - (p-1)\frac{f(z)}{z^p} - \frac{\gamma}{p}\right| < 2\left(1 - \frac{\gamma}{p}\right), \qquad z \in \Delta,$$
(2.6)

then $f \in \mathcal{P}(\gamma/p, p)$, where $0 \leq \gamma < p$.

Proof. For $0 \le \gamma < p$, let p(z) be defined by (2.5). Then from (2.6) and applying Lemma 1.2, we can obtain the result.

Putting p = 1, in Theorem 2.2, we have:

Corollary 2.2. *Let* $f \in A$ *. If*

$$|f'(z) - \gamma| < 2(1 - \gamma), \qquad z \in \Delta,$$

then

$$\mathfrak{Re}\left\{rac{f(z)}{z}
ight\}>\gamma, \qquad z\in\Delta$$

Putting $\gamma = 1/2$, in Corollary 2.2, we have:

Corollary 2.3. *Let* $f \in A$ *. If*

$$\left|f'(z)-\frac{1}{2}\right|<1, \qquad z\in\Delta,$$

then $f \in \mathcal{P}(1/2)$.

The following Lemma (popularly known *Jack's lemma* (see [1])) will be required on our present investigation.

Lemma 2.3. Let the (nonconstant) function w(z) be analytic in Δ with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a the point $z_0 \in \Delta$, then

$$z_0w'(z_0)=cw(z_0),$$

where *c* is a real number and $c \ge 1$.

Theorem 2.3. Assume that $f(z)/z^p \neq \gamma$ and that $f \in A_p$ satisfies the inequality

$$\mathfrak{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > p + \frac{\gamma - 1}{2(\gamma + 1)}, \qquad z \in \Delta,$$
(2.7)

then $f \in \mathcal{P}(\frac{1+\gamma}{2}, p)$, where $0 \leq \gamma < p$.

Proof. Define the function w(z) by

$$\frac{f(z)}{z^p} = \frac{1 + \gamma w(z)}{1 + w(z)}, \qquad (w(z) \neq -1, |z| < 1),$$
(2.8)

where $0 \le \gamma < p$. Because $f(z)/z^p \ne \gamma$, then w(z) is analytic in Δ and w(0) = 0. From (2.7), some computation yields

$$\frac{zf'(z)}{f(z)} = p + \frac{\gamma z w'(z)}{1 + \gamma w(z)} - \frac{z w'(z)}{1 + w(z)}.$$
(2.9)

Suppose there exists a point $z_0 \in \Delta$ such that

 $|w(z_0)| = 1$ and |w(z)| < 1 when $|z| < |z_0|$.

Applying Lemma 2.3, then we have

$$z_0 w'(z_0) = c w(z_0) \quad (c \ge 1, w(z_0) = e^{i\theta}, \theta \in \mathbb{R}).$$
 (2.10)

Thus, by using (2.9) and (2.10), it follows that

$$\begin{aligned} \mathfrak{Re}\left\{\frac{z_0f'(z_0)}{f(z_0)}\right\} &= p + \mathfrak{Re}\left\{\frac{c\gamma e^{i\theta}}{1+\gamma e^{i\theta}}\right\} - \mathfrak{Re}\left\{\frac{\gamma e^{i\theta}}{1+e^{i\theta}}\right\} \\ &= p + \frac{c\gamma(\gamma + \cos\theta)}{1+\gamma^2 + 2\gamma\cos\theta} - \frac{c}{2} \\ &\leq \frac{(2p+1)\gamma + (2p-1)}{2(1+\gamma)}, \end{aligned}$$

which contradicts the hypothesis (2.7). It follows that |w(z)| < 1, that is,

$$\left|\frac{(f(z)/z^p) - 1}{\gamma - (f(z)/z^p)}\right| < 1, \qquad (z \in \Delta, \ 0 \le \gamma < p)$$

This evidently completes the proof of Theorem 2.3.

If we take $\gamma = 0$ and p = 1, in Theorem 2.3, we get:

Corollary 2.4. Let $f \in A$. If

$$\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \frac{1}{2}, \qquad z \in \Delta$$

then $f \in \mathcal{P}(1/2)$, that is $\mathcal{S}^*(1/2) \subset \mathcal{P}(1/2)$.

Theorem 2.4. Assume that $f \in A_p$ satisfies the inequality

$$\Re e\left\{\frac{zf'(z)}{f(z)}\right\}
(2.11)$$

then

$$\left|\frac{f(z)}{z^p}-1\right|<|1-\gamma|,\qquad z\in\Delta,$$

where $0 \leq \gamma < p$.

Proof. Let us $f(z)/z^p \neq \gamma$. Consider the function w(z) defined by

$$\frac{f(z)}{z^p} = 1 + (1 - \gamma)w(z), \qquad |z| < 1,$$
(2.12)

where $0 \le \gamma < p$. Then w(z) is analytic in Δ and w(0) = 0. From (2.12), some computation yields

$$\frac{zf'(z)}{f(z)} = p + \frac{(1-\gamma)zw'(z)}{1+(1-\gamma)w(z)}.$$
(2.13)

Suppose there exists a point $z_0 \in \Delta$ such that

 $|w(z_0)| = 1$ and |w(z)| < 1 when $|z| < |z_0|$.

Applying Lemma 2.3, then we have

$$z_0 w'(z_0) = c w(z_0) \quad (c \ge 1, w(z_0) = e^{i\theta}, \theta \in \mathbb{R}).$$
 (2.14)

Thus, by using (2.13) and (2.14), it follows that

$$\begin{aligned} \mathfrak{Re}\left\{\frac{z_0f'(z_0)}{f(z_0)}\right\} &= p + \mathfrak{Re}\left\{\frac{c(1-\gamma)e^{i\theta}}{1+(1-\gamma)e^{i\theta}}\right\} \\ &= p + \frac{c(1-\gamma)(1-\gamma+\cos\theta)}{1+(1-\gamma)^2+2(1-\gamma)\cos\theta} \\ &\geq \frac{(2p+1)-\gamma(p+1)}{2-\gamma}, \end{aligned}$$

which contradicts the hypothesis (2.11). It follows that |w(z)| < 1, that is,

$$\left|\frac{f(z)}{z^p} - 1\right| < |1 - \gamma|, \qquad (z \in \Delta, 0 \le \gamma < p)$$

This evidently completes the proof of Theorem 2.4.

Corollary 2.5. Assume that $f \in A$. If f satisfies the inequalities

$$\mathfrak{Re}\left\{rac{zf'(z)}{f(z)}
ight\} < 1 + rac{1-\gamma}{2-\gamma}, \qquad z \in \Delta,$$

then

$$\mathfrak{Re}\left\{rac{f(z)}{z}
ight\}>\gamma, \qquad z\in\Delta,\ 0\leq\gamma<1.$$

Taking $\gamma = 1/2$ in Corollary 2.5, we have:

Corollary 2.6. Assume that $f \in A$. If f satisfies the inequalities

$$\mathfrak{Re}\left\{rac{zf'(z)}{f(z)}
ight\}<rac{4}{3},\qquad z\in\Delta$$

then

 $f \in \mathcal{P}(1/2), \qquad z \in \Delta,$

that is, $\mathcal{M}(4/3) \subset \mathcal{P}(1/2)$.

Combining Corollary 2.4 and 2.6, we have:

Corollary 2.7. Assume that $f \in A$. If f satisfies the following two-sided inequality

$$rac{1}{2} < \mathfrak{Re}\left\{rac{zf'(z)}{f(z)}
ight\} < rac{4}{3}, \qquad z \in \Delta,$$

then

$$f \in \mathcal{P}(1/2), \qquad z \in \Delta$$

that is, $S(1/2,3/4) \subset P(1/2)$, where the class $S(\alpha,\beta)$, $\alpha < 1$ and $\beta > 1$, was recently considered by K. Kuroki and S. Owa in [2].

References

- [1] I. S. Jack, Functions starlike and convex of order alpha, J. London Math. Soc. 3(2)(1971), 469-474.
- [2] K. Kuroki and S. Owa, New class for certain analytic functions concerned with the strip domains, *Advances in Mathematics: Scientific Journal* 2(2)(2013), 63–70.
- [3] M. Nunokawa, N. E. Cho, O. S. Kwon and J. Sokół, On differential subordinations in the complex plane, *Journal of Inequalities and Applications*, (2015) 2015:7.
- [4] M. Nunokawa, S. Owa, K. Kuroki and J. Sokół, Some generalizition properties of analytic functions concerned with Sakaguchi result, *Tamkang Journal of Mathematics*, 46(2)(2015), 143–150.
- [5] M. Obradović and S. Ponuusamy and N. Tuneski, Radius of univalence of certain combination of univalent of analytic functions, *Bull. Malays. Math. Sci. Soc.*, 35(2)(2012), 325–334.
- [6] B. A. Uralegaddi, M. D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients, *Tamkang J. Math.*, 25(1994), 225–230.

Received: June 28, 2015; Accepted: August 23, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/