Malaya Journal of Matematik		$\overline{\text { Q }}$
	$\mathcal{M J S}$ an international journal of mathematical sciences with computer applications...	
www.malayajournal.org		ISSN : 2319-3786

Certain coefficient inequalities for p-valent functions

Rahim Kargar ${ }^{a, *}$, Ali Ebadian ${ }^{a}$ and Janusz Sokór ${ }^{b}$
${ }^{a}$ Department of Mathematics, Payame Noor University, I. R. of Iran.
${ }^{b}$ Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

Abstract

In the present paper, applying lemmas due to Nunokawa et al. [3] and Jack's lemma we obtain some coefficient inequalities for certain subclass of p-valent functions.

Keywords: Analytic, univalent, p-valent, starlike and convex functions, Jack's lemma.
2010 MSC: 30C45.
(C) 2012 MJM. All rights reserved.

1 Introduction

Let \mathcal{A}_{p} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad p \in \mathbb{N}:=\{1,2,3, \ldots\} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. Put $\mathcal{A}_{1}=\mathcal{A}$. The subclass of \mathcal{A} consisting of all univalent functions $f(z)$ in Δ is denoted by \mathcal{S}. A function $f \in \mathcal{S}$ is called starlike (with respect to 0), denoted by $f \in \mathcal{S}^{*}$, if $t w \in f(\Delta)$ whenever $w \in f(\Delta)$ and $t \in[0,1]$. A function $f \in \mathcal{S}$ that maps Δ onto a convex domain, denoted by $f \in \mathcal{K}$, is called a convex function. A function $f(z)$ in \mathcal{A} is said to be starlike of order $0 \leq \gamma<1$ if it satisfies

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\gamma, \quad z \in \Delta
$$

We denote by $\mathcal{S}^{*}(\gamma)$ the subclass of \mathcal{A} consisting of all starlike functions of order γ in Δ. Furthermore, let $\mathcal{M}(\beta)$ be the class of functions $f(z) \in \mathcal{A}$ which satisfy

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\beta, \quad z \in \Delta
$$

for some real number β with $\beta>1$. The class $\mathcal{M}(\beta)$ was investigated by Uralegaddi, Ganigi and Sarangi [6].
Further, let $\mathcal{P}(\gamma, p)$ denote the subclass of \mathcal{A}_{p} consisting of functions $f(z)$ which satisfy

$$
\mathfrak{R e}\left\{\frac{f(z)}{z^{p}}\right\}>\gamma, \quad z \in \Delta,
$$

for some real $0 \leq \gamma<p$. The class $\mathcal{P}(1 / 2,1) \equiv \mathcal{P}(1 / 2)$ was studied by Obradović et al. in [5]. We remark that $\mathcal{K} \subset \mathcal{P}(1 / 2)$.

Nunokawa, Cho, Kwon and Sokół [3] obtained the following results.

[^0]Lemma 1.1. Let $B(z)$ and $C(z)$ be analytic in Δ with

$$
|\mathfrak{I m}\{C(z)\}|<\mathfrak{R e}\{B(z)\}
$$

If $p(z)$ is analytic in Δ with $p(0)=1$, and if

$$
\left|\arg \left\{B(z) z p^{\prime}(z)+C(z) p(z)\right\}\right|<\pi / 2+t(z)
$$

where

$$
t(z)= \begin{cases}\arg \{C(z)+i B(z)\} & \text { when } \arg \{C(z)+i B(z)\} \in[0, \pi / 2] \\ \arg \{C(z)+i B(z)\}-\pi / 2 & \text { when } \arg \{C(z)+i B(z)\} \in(\pi / 2, \pi]\end{cases}
$$

then we have

$$
\mathfrak{R e}\{p(z)\}>0, \quad z \in \Delta
$$

Lemma 1.2. Let $B(z)$ and $C(z)$ be analytic in Δ with

$$
\mathfrak{R e}\left\{\frac{C(z)}{B(z)}\right\} \geq-1, \quad z \in \Delta
$$

If $p(z)$ is analytic in Δ with $p(0)=0$, and if

$$
\begin{equation*}
\left|B(z) z p^{\prime}(z)+C(z) p(z)\right|<|B(z)+C(z)|, \quad z \in \Delta \tag{1.2}
\end{equation*}
$$

then we have

$$
|p(z)|<1, \quad z \in \Delta
$$

In this paper, applying the Lemma 1.1. Lemma 1.2 and Jack's Lemma, we obtain coefficient conditions for some certain subclasses of p-valent functions.

2 Main results

Our first result is contained in the following:
Theorem 2.1. Assume that $f \in \mathcal{A}_{p}$. If

$$
\begin{equation*}
\left|\arg \left\{z^{1-p} f^{\prime}(z)-(p-1) \frac{f(z)}{z^{p}}-\frac{\gamma}{p}\right\}\right|<\frac{3 \pi}{4}, \quad z \in \Delta \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{f(z)}{z^{p}}\right\}>\frac{\gamma}{p}, \quad z \in \Delta \tag{2.4}
\end{equation*}
$$

where $0 \leq \gamma<p$, that is $f \in \mathcal{P}(\gamma / p, p)$.
Proof. Let $f(z) \neq 0$ for $z \neq 0$ and let $p(z)$ be defined by

$$
\begin{equation*}
\left(1-\frac{\gamma}{p}\right) p(z)+\frac{\gamma}{p}=\frac{f(z)}{z^{p}}, \quad z \in \Delta \tag{2.5}
\end{equation*}
$$

where $0 \leq \gamma<p$. Then $p(z)$ is analytic in $\Delta, p(0)=1$ and

$$
\left(1-\frac{\gamma}{p}\right) p(z)+\left(1-\frac{\gamma}{p}\right) z p^{\prime}(z)=z^{1-p} f^{\prime}(z)-(p-1) \frac{f(z)}{z^{p}}-\frac{\gamma}{p}
$$

If we put $B(z)=C(z)=1-\frac{\gamma}{p}$, from 2.3 and applying Lemma 1.1 we obtain 2.4 immediately.
If we take $p=1$ in Theorem 2.1. then it becomes the result from [4] of the following form:
Corollary 2.1. Let $f \in \mathcal{A}$. If

$$
\left|\arg \left\{f^{\prime}(z)-\gamma\right\}\right|<\frac{3 \pi}{4}, \quad z \in \Delta
$$

then

$$
\mathfrak{R e}\left\{\frac{f(z)}{z}\right\}>\gamma, \quad z \in \Delta
$$

Theorem 2.2. Assume that $f \in \mathcal{A}$. If

$$
\begin{equation*}
\left|z^{1-p} f^{\prime}(z)-(p-1) \frac{f(z)}{z^{p}}-\frac{\gamma}{p}\right|<2\left(1-\frac{\gamma}{p}\right), \quad z \in \Delta, \tag{2.6}
\end{equation*}
$$

then $f \in \mathcal{P}(\gamma / p, p)$, where $0 \leq \gamma<p$.
Proof. For $0 \leq \gamma<p$, let $p(z)$ be defined by (2.5). Then from (2.6 and applying Lemma 1.2, we can obtain the result.

Putting $p=1$, in Theorem 2.2., we have:
Corollary 2.2. Let $f \in \mathcal{A}$. If

$$
\left|f^{\prime}(z)-\gamma\right|<2(1-\gamma), \quad z \in \Delta,
$$

then

$$
\mathfrak{R e}\left\{\frac{f(z)}{z}\right\}>\gamma, \quad z \in \Delta .
$$

Putting $\gamma=1 / 2$, in Corollary 2.2, we have:
Corollary 2.3. Let $f \in \mathcal{A}$. If

$$
\left|f^{\prime}(z)-\frac{1}{2}\right|<1, \quad z \in \Delta,
$$

then $f \in \mathcal{P}(1 / 2)$.
The following Lemma (popularly known Jack's lemma (see [1])) will be required on our present investigation.

Lemma 2.3. Let the (nonconstant) function $w(z)$ be analytic in Δ with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a the point $z_{0} \in \Delta$, then

$$
z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right),
$$

where c is a real number and $c \geq 1$.
Theorem 2.3. Assume that $f(z) / z^{p} \neq \gamma$ and that $f \in \mathcal{A}_{p}$ satisfies the inequality

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>p+\frac{\gamma-1}{2(\gamma+1)}, \quad z \in \Delta, \tag{2.7}
\end{equation*}
$$

then $f \in \mathcal{P}\left(\frac{1+\gamma}{2}, p\right)$, where $0 \leq \gamma<p$.
Proof. Define the function $w(z)$ by

$$
\begin{equation*}
\frac{f(z)}{z^{p}}=\frac{1+\gamma w(z)}{1+w(z)}, \quad(w(z) \neq-1,|z|<1) \tag{2.8}
\end{equation*}
$$

where $0 \leq \gamma<p$. Because $f(z) / z^{p} \neq \gamma$, then $w(z)$ is analytic in Δ and $w(0)=0$. From (2.7, some computation yields

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=p+\frac{\gamma z w^{\prime}(z)}{1+\gamma w(z)}-\frac{z w^{\prime}(z)}{1+w(z)} . \tag{2.9}
\end{equation*}
$$

Suppose there exists a point $z_{0} \in \Delta$ such that

$$
\left|w\left(z_{0}\right)\right|=1 \text { and }|w(z)|<1 \text { when }|z|<\left|z_{0}\right| \text {. }
$$

Applying Lemma 2.3, then we have

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right) \quad\left(c \geq 1, w\left(z_{0}\right)=e^{i \theta}, \theta \in \mathbb{R}\right) \tag{2.10}
\end{equation*}
$$

Thus, by using (2.9) and 2.10, it follows that

$$
\begin{aligned}
\mathfrak{R e}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\} & =p+\mathfrak{R e}\left\{\frac{c \gamma e^{i \theta}}{1+\gamma e^{i \theta}}\right\}-\mathfrak{R e}\left\{\frac{\gamma e^{i \theta}}{1+e^{i \theta}}\right\} \\
& =p+\frac{c \gamma(\gamma+\cos \theta)}{1+\gamma^{2}+2 \gamma \cos \theta}-\frac{c}{2} \\
& \leq \frac{(2 p+1) \gamma+(2 p-1)}{2(1+\gamma)}
\end{aligned}
$$

which contradicts the hypothesis 2.7. It follows that $|w(z)|<1$, that is,

$$
\left|\frac{\left(f(z) / z^{p}\right)-1}{\gamma-\left(f(z) / z^{p}\right)}\right|<1, \quad(z \in \Delta, 0 \leq \gamma<p)
$$

This evidently completes the proof of Theorem 2.3
If we take $\gamma=0$ and $p=1$, in Theorem 2.3. we get:
Corollary 2.4. Let $f \in \mathcal{A}$. If

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\frac{1}{2}, \quad z \in \Delta,
$$

then $f \in \mathcal{P}(1 / 2)$, that is $\mathcal{S}^{*}(1 / 2) \subset \mathcal{P}(1 / 2)$.
Theorem 2.4. Assume that $f \in \mathcal{A}_{p}$ satisfies the inequality

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<p+\frac{1-\gamma}{2-\gamma}, \quad z \in \Delta \tag{2.11}
\end{equation*}
$$

then

$$
\left|\frac{f(z)}{z^{p}}-1\right|<|1-\gamma|, \quad z \in \Delta
$$

where $0 \leq \gamma<p$.
Proof. Let us $f(z) / z^{p} \neq \gamma$. Consider the function $w(z)$ defined by

$$
\begin{equation*}
\frac{f(z)}{z^{p}}=1+(1-\gamma) w(z), \quad|z|<1 \tag{2.12}
\end{equation*}
$$

where $0 \leq \gamma<p$. Then $w(z)$ is analytic in Δ and $w(0)=0$. From 2.12, some computation yields

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=p+\frac{(1-\gamma) z w^{\prime}(z)}{1+(1-\gamma) w(z)} \tag{2.13}
\end{equation*}
$$

Suppose there exists a point $z_{0} \in \Delta$ such that

$$
\left|w\left(z_{0}\right)\right|=1 \quad \text { and } \quad|w(z)|<1 \quad \text { when } \quad|z|<\left|z_{0}\right| .
$$

Applying Lemma 2.3. then we have

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right) \quad\left(c \geq 1, w\left(z_{0}\right)=e^{i \theta}, \theta \in \mathbb{R}\right) \tag{2.14}
\end{equation*}
$$

Thus, by using (2.13) and $(2.14$, it follows that

$$
\begin{aligned}
\mathfrak{R e}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\} & =p+\mathfrak{R e}\left\{\frac{c(1-\gamma) e^{i \theta}}{1+(1-\gamma) e^{i \theta}}\right\} \\
& =p+\frac{c(1-\gamma)(1-\gamma+\cos \theta)}{1+(1-\gamma)^{2}+2(1-\gamma) \cos \theta} \\
& \geq \frac{(2 p+1)-\gamma(p+1)}{2-\gamma}
\end{aligned}
$$

which contradicts the hypothesis 2.11. It follows that $|w(z)|<1$, that is,

$$
\left|\frac{f(z)}{z^{p}}-1\right|<|1-\gamma|, \quad(z \in \Delta, 0 \leq \gamma<p)
$$

This evidently completes the proof of Theorem 2.4

Corollary 2.5. Assume that $f \in \mathcal{A}$. If f satisfies the inequalities

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<1+\frac{1-\gamma}{2-\gamma}, \quad z \in \Delta
$$

then

$$
\mathfrak{R e}\left\{\frac{f(z)}{z}\right\}>\gamma, \quad z \in \Delta, 0 \leq \gamma<1 .
$$

Taking $\gamma=1 / 2$ in Corollary 2.5, we have:
Corollary 2.6. Assume that $f \in \mathcal{A}$. If f satisfies the inequalities

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\frac{4}{3}, \quad z \in \Delta,
$$

then

$$
f \in \mathcal{P}(1 / 2), \quad z \in \Delta,
$$

that is, $\mathcal{M}(4 / 3) \subset \mathcal{P}(1 / 2)$.
Combining Corollary 2.4 and 2.6, we have:
Corollary 2.7. Assume that $f \in \mathcal{A}$. If f satisfies the following two-sided inequality

$$
\frac{1}{2}<\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\frac{4}{3}, \quad z \in \Delta,
$$

then

$$
f \in \mathcal{P}(1 / 2), \quad z \in \Delta,
$$

that is, $\mathcal{S}(1 / 2,3 / 4) \subset \mathcal{P}(1 / 2)$, where the class $\mathcal{S}(\alpha, \beta), \alpha<1$ and $\beta>1$, was recently considered by K. Kuroki and S. Owa in [2].

References

[1] I. S. Jack, Functions starlike and convex of order alpha, J. London Math. Soc. 3(2)(1971), 469-474 .
[2] K. Kuroki and S. Owa, New class for certain analytic functions concerned with the strip domains, Advances in Mathematics: Scientific Journal 2(2)(2013), 63-70.
[3] M. Nunokawa, N. E. Cho, O. S. Kwon and J. Sokół, On differential subordinations in the complex plane, Journal of Inequalities and Applications, (2015) 2015:7.
[4] M. Nunokawa, S. Owa, K. Kuroki and J. Sokól, Some generalizition properties of analytic functions concerned with Sakaguchi result, Tamkang Journal of Mathematics, 46(2)(2015), 143-150 .
[5] M. Obradović and S. Ponuusamy and N. Tuneski, Radius of univalence of certain combination of univalent of analytic functions, Bull. Malays. Math. Sci. Soc., 35(2)(2012), 325-334.
[6] B. A. Uralegaddi, M. D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25(1994), 225-230.

Received: June 28, 2015; Accepted: August 23, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/

[^0]: * Corresponding author.

 E-mail address: rkargar1983@gmail.com (Rahim Kargar), ebadian.ali@gmail.com(Ali Ebadian), jsokol@prz.edu.pl (Janusz Sokół).

