Malaya Journal of Matematik

MIM

an international journal of mathematical sciences with computer applications...

www.malayajournal.org

n-power Quasi-isometry and n-power Normal Composition Operators on L^2 -spaces

P. Vijayalakshmi a,* and J. Stella Irene Mary b

a,b Department Of Mathematics, P.S.G College Of Arts And Science, Coimbatore, Tamilnadu-641014, India.

Abstract

In this paper, we give the characterizations of *n*-power Quasi-isometry and *n*-power normal composition operators. Further, we also discuss the characterization of the *n*-power Quasi-isometry composite multiplication operator.

Keywords: n-power quasi-isometry operator, *n*-power normal operator, composite multiplication operator.

2010 MSC: 47B20, 47B33, 47B38.

©2012 MJM. All rights reserved.

1 Introduction

Let B(H) be the algebra of all bounded linear operators on an infinite dimensional complex Hilbert space H. An operator A is an n- power quasi-isometry if $A^{n-1}A^{*2}A^2 = A^*AA^{n-1}$ for all $n \in \mathbb{Z}^+[5]$. The operator A is normal if $A^*A = AA^*$ and n-power normal if $A^nA^* = A^*A^n$ for all $n \ge 2[3]$. We denote the class of n-power normal operators and n-power quasi-isometry operators by [nN] and [nQI] respectively. The class of normal operators \subset class[nN]. Also A is an n-power normal operator if and only if A^n is normal[3].

Let (X, \sum, λ) be a sigma-finite measure space and let T be a measurable transformation from X to itself. If T is a measurable transformation then T^n is also a measurable transformation. Further, if T is non-singular then λT^{-1} is absolutely continuous with respect to λ and it follows that $\lambda (T^{-1})^n$ is absolutely continuous with respect to λ . The Radon-Nikodym derivative of $\lambda (T^{-1})^n$ with respect to λ is denoted by h_n .

Associated with each transformation *T* is a conditional expectation operator

 $E(f|T^{-1}(\Sigma))=E(f)$ is defined for each non-negative function $f\in L^p$ $(1\leq p<\infty)$ and is uniquely determined by the following conditions:

- (i)E(f) is $T^{-1}(\Sigma)$ measurable.
- (ii) If B is any $T^{-1}(\Sigma)$ measurable set for which $\int_B f d\lambda$ converges then we have $\int_B f d\lambda = \int_B E(f) d\lambda$.

The conditional expectation operator *E* has the following properties:

- (i) $E(f.(g \circ T)) = E(f).(g \circ T)$
- (ii) *E* is monotonically increasing. (i.e) if $f \le g$ a.e then $E(f) \le E(g)$ a.e.
- (iii) E(1) = 1.

When E is defined on a possible infinite σ -finite measure space it behaves similarly to expectations on standard probability spaces. As an operator on $L^2(\lambda)$, E is the projection operator onto the closure of the range of C_T .

Let π be an essentially bounded function. The multiplication operator M_{π} on $L^2(\lambda)$ induced by π , is given by, $M_{\pi}f = \pi.f$ for $f \in L^2(\lambda)$.

A composition operator C_T on $L^2(\lambda)$ is a bounded linear operator given by composition with a map $T: X \to X$ as, $C_T f = f \circ T$ for all $f \in L^2(\lambda)$ and C_T^* is given by $C_T^* f = hE(f) \circ T^{-1}$ for all $f \in L^2(\lambda)$. A weighted

^{*}Corresponding author.

composition operator W is a linear transformation acting on a set of complex valued Σ - measurable functions f of the form, $Wf = wC_Tf$ where w is a complex valued Σ - measurable function. When w = 1 we say W is a composition operator.

The adjoint W^* is defined as, $W^*f = hE(wf) \circ T^{-1}$ for $f \in L^2(\lambda)$. Also, $w_n = w.(w \circ T).(w \circ T^2)....(w \circ T^{n-1})$. For $f \in L^2(\lambda)$, $W^nf = w_nf \circ T^n$, $W^{*^n}f = h_nE(w_n.f) \circ T^{-n}$.

A composite multiplication operator is a linear transformation acting on a set of complex valued Σ measurable functions f of the form $M_{u,T}(f) = C_T M_u(f) = (uf) \circ T = u \circ T. f \circ T$ where u is a complex valued, Σ measurable function. In case, u = 1 almost everywhere, $M_{u,T}$ becomes a composition operator. The adjoint of $M_{u,T}$ is given by $M_{u,T}^* f = uh.E(f) \circ T^{-1}$.

Various properties of composition operators and weighted composition operators on L^2 spaces have been analyzed by many authors. In particular, spectra of composition operators and their generalized Alugthe transformations as weighted composition operators are characterized in [4]. In this paper we study the characterisations of the [nQI] and [nN] class of composition operators. The characterisations of class [nN] operators A are evaluated mainly by the aid of the normality of A^n . In [7], the characterisations of n-power normal and n-power quasinormal composite multiplication operators are studied. We study the characterisations of quasi-isometry and n-power quasi-isometry composite multiplication operators.

2 Characterization of the class [nQI] composition operators

The following Lemmas of [2] and [8] play an important role in the following Theorems:

Lemma 2.1. [2, 8] Let P be the projection of $L^2(\lambda)$ onto $\overline{R(C_T)}$, where $\overline{R(C_T)}$ denotes the closure of the range of C_T . Then,

- (i) $C_T^*C_Tf = hf$ and $C_TC_T^*f = h \circ TPf \ \forall f \in L^2(\lambda)$.
- (ii) $\overline{R(C_T)} = \{ f \in L^2(\lambda) : f \text{ is } T^{-1}(\Sigma) \text{ measurable} \}.$
- (iii) If f is $T^{-1}(\Sigma)$ measurable, and g and fg belong to $L^2(\lambda)$, then P(fg) = fP(g) (f need not be in $L^2(\lambda)$). Also, for $k \in \mathbb{N}$
- $(iv) (C_T^*C_T)^k f = h^k f.$
- (v) $(C_T C_T^*)^k f = (h \circ T)^k P f$.
- (vi) E is the identity operator on $L^2(\lambda)$ if and only if $T^{-1}(\Sigma) = \Sigma$.

The following Theorem gives the characterization of *n*-power quasi-isometry operators.

Theorem 2.1. Let $C_T \in B(L^2(\lambda))$. Then C_T is in the class[nQI] if and only if $h \circ T^{n-1}.E(h) \circ T^{n-2} = h$. *Proof.*

$$C_{T} \in [nQI] \Leftrightarrow C_{T}^{n-1}C_{T}^{*2}C_{T}^{2}f = C_{T}^{*}C_{T}^{n}f, \text{ where } C_{T}^{*}f = h.E(f) \circ T^{-1}.$$

$$\Leftrightarrow C_{T}^{n-1}C_{T}^{*2}(f \circ T^{2}) = C_{T}^{*}(f \circ T^{n})$$

$$\Leftrightarrow C_{T}^{n-1}C_{T}^{*}[h.E(f \circ T^{2}) \circ T^{-1}] = h.E(f \circ T^{n}) \circ T^{-1}$$

$$\Leftrightarrow C_{T}^{n-1}C_{T}^{*}[h.E(f \circ T^{2}) \circ T^{-1}] = h.F(f \circ T^{n}) \circ T^{-1}$$

$$\Leftrightarrow C_{T}^{n-1}[h.E(h.f \circ T) \circ T^{-1}] = h.f \circ T^{n-1}$$

$$\Leftrightarrow C_{T}^{n-1}[h.E(h) \circ T^{-1}.f] = h.f \circ T^{n-1}$$

$$\Leftrightarrow C_{T}^{n-2}[h.E(h) \circ T^{-1}.f] \circ T = h.f \circ T^{n-1}$$

$$\Leftrightarrow C_{T}^{n-2}[h \circ T.E(h).f \circ T] = h.f \circ T^{n-1}$$

$$\Leftrightarrow C_{T}^{n-3}[h \circ T^{2}.E(h) \circ T.f \circ T^{2}] = h.f \circ T^{n-1}$$

$$\Leftrightarrow C_{T}^{n-4}[h \circ T^{3}.E(h) \circ T^{2}.f \circ T^{3}] = h.f \circ T^{n-1}$$

$$\Leftrightarrow h \circ T^{n-1}.E(h) \circ T^{n-2}.f \circ T^{n-1} = h.f \circ T^{n-1}$$

$$\Leftrightarrow h \circ T^{n-1}.E(h) \circ T^{n-2}.f \circ T^{n-1} = h.f \circ T^{n-1}$$

Theorem 2.2. Let $C_T \in B(L^2(\lambda))$. Then C_T^* is in the class[nQI] if and only if $h.E[h] \circ T^{-1}.E[h] \circ T^{-2}...E[h] \circ T^{-(n-2)}.E[h] \circ T^{-(n-2$

Proof.

$$C_T^* \in [nQI] \Leftrightarrow C_T^{*^{n-1}} C_T^2 C_T^{*^2} f = C_T C_T^{*^n} f.$$
 (2.1)

Now,

$$\begin{split} C_T^{*^{n-1}}C_T^2C_T^{*^2}f &= C_T^{*^{n-1}}C_T^2h.E(h)\circ T^{-1}.E(f)\circ T^{-2}\\ &= C_T^{*^{n-1}}h\circ T^2.E(h)\circ T.E(f)\\ &= C_T^{*^{n-2}}h.E[h\circ T^2.E(h)\circ T.E(f)]\circ T^{-1}\\ &= C_T^{*^{n-2}}h.h\circ T.E[h].E(f)\circ T^{-1}\\ &= C_T^{*^{n-3}}h.E[h]\circ T^{-1}.h.E[h]\circ T^{-1}.E(f)\circ T^{-2}\\ &= C_T^{*^{n-4}}h.E[h]\circ T^{-1}.E[h]\circ T^{-2}.E[h]\circ T^{-2}.E(f)\circ T^{-3}\\ &= C_T^{*^{n-5}}h.E[h]\circ T^{-1}.E[h]\circ T^{-2}.E[h]\circ T^{-3}.E[h]\circ T^{-3}.E(f)\circ T^{-4}\\ &= h.E[h]\circ T^{-1}.E[h]\circ T^{-2}....E[h]\circ T^{-(n-2)}.E[h]\circ T^{-(n-3)}.E[h]\circ T^{-(n-2)}.\\ &E(f)\circ T^{-(n-1)}. \end{split}$$

And

$$\begin{split} C_T C_T^{*^n} f &= C_T C_T^{*^{(n-1)}} h.E(f) \circ T^{-1} \\ &= C_T C_T^{*^{(n-2)}} h.E[h.E(f) \circ T^{-1}] \circ T^{-1} \\ &= C_T C_T^{*^{(n-2)}} h.E[h] \circ T^{-1}.E(f) \circ T^{-2} \\ &= C_T C_T^{*^{(n-3)}} h.E[h] \circ T^{-1}.E[h] \circ T^{-2}.E(f) \circ T^{-3} \\ &= C_T h.E[h] \circ T^{-1}.E[h] \circ T^{-2}...E[h] \circ T^{-(n-1)}.E(f) \circ T^{-n} \\ &= h \circ T.E[h].E[h] \circ T^{-1}...E[h] \circ T^{-(n-2)}.E(f) \circ T^{-(n-1)}. \end{split}$$

Now (2.1) becomes $C_T^* \in [nQI] \Leftrightarrow h.E[h] \circ T^{-1}.E[h] \circ T^{-2}...E[h] \circ T^{-(n-2)}.E[h] \circ T^{-(n-3)}.E[h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-2)$

Example 2.1. Let $X = \mathbb{N}$, the set of all natural numbers and λ be a counting measure on it. $T : \mathbb{N} \to \mathbb{N}$ is defined by $T(k) = k + 1, k \in \mathbb{N}$. Since $T^{n-1}(k) = k_1$ where $k_1 \in \mathbb{N}$, $h_2 \circ T^{n-1}(k) = 1$ and h(k) = 1, C_T is of class [nQI]. Here C_T is the unilateral shift operator on l^2 .

3 Weighted composition operators of class [nQI]

Theorem 3.3. Let W be a weighted composition operator then $W \in [nQI]$ if and only if $w_{n-1}.h \circ T^{n-1}.E(w) \circ T^{n-2}.E(h) \circ T^{n-2}.E(w.w_2) \circ T^{n-3}.f \circ T^{n-1} = h.E[w.w_n] \circ T^{-1}.f \circ T^{n-1}.$

Proof.

$$W \in [nQI] \Leftrightarrow W^{n-1}W^{*2}W^2f = W^*W^nf. \tag{3.2}$$

Consider

$$\begin{split} W^{n-1}W^{*2}W^2f &= W^{n-1}W^{*2}W[wf\circ T] \\ &= W^{n-1}W^{*2}w[w.f\circ T]\circ T \\ &= W^{n-1}W^{*2}w_2.f\circ T^2 \\ &= W^{n-1}W^*h.E[w.w_2.f\circ T^2]\circ T^{-1} \\ &= W^{n-1}W^*h.E[w.w_2]\circ T^{-1}.f\circ T \\ &= W^{n-1}h.E(w)\circ T^{-1}.E(h)\circ T^{-1}.E(w.w_2)\circ T^{-2}.f \\ &= W^{n-2}w.h\circ T.E(w).E(h).E(w.w_2)\circ T^{-1}.f\circ T \\ &= W^{n-3}w.w\circ T.h\circ T^2.E(w)\circ T.E(h)\circ T.E(w.w_2).f\circ T^2 \\ &= W^{n-4}w.w\circ T.w\circ T^2.h\circ T^3.E(w)\circ T^2.E(h)\circ T^2. \\ &= E(w.w_2)\circ T.f\circ T^3 \\ &= w.w\circ T.w\circ T^2...w\circ T^{n-2}.h\circ T^{n-1}.E(w)\circ T^{n-2}.E(h)\circ T^{n-2}. \\ &= E(w.w_2)\circ T^{n-3}.f\circ T^{n-1} \\ &= w_{n-1}.h\circ T^{n-1}.E(w)\circ T^{n-2}.E(h)\circ T^{n-2}. \\ &= E(w.w_2)\circ T^{n-3}.f\circ T^{n-1} \end{split}$$

And

$$W^*W^n f = W^*W^{n-1}w.f \circ T$$

$$= W^*W^{n-2}w.[w.f \circ T] \circ T$$

$$= W^*W^{n-2}w.w \circ T.f \circ T^2$$

$$= W^*w.w \circ T...w \circ T^{n-1}.f \circ T^n$$

$$= h.E[w.w.w \circ T...w \circ T^{n-1}.f \circ T^{n}] \circ T^{-1}$$

$$= h.E[w.w_n] \circ T^{-1}.f \circ T^{n-1}.$$

Now (3.2) becomes $W \in [nQI] \Leftrightarrow w_{n-1}.h \circ T^{n-1}.E(w) \circ T^{n-2}.E(h) \circ T^{n-2}.E(w.w_2) \circ T^{n-3}.f \circ T^{n-1} = h.E[w.w_n] \circ T^{-1}.f \circ T^{n-1}.$

Theorem 3.4. Let *W* be a weighted composition operator then *W** ∈ [nQI] if and only if $h.E[w] \circ T^{-1}.E[h] \circ T^{-1}.E[w] \circ T^{-2}.E[h] \circ T^{-(n-1)}.h \circ T^{-(n-3)}.E[w] \circ T^{-(n-2)}.E[h] \circ T^{-(n-2)}.E[wf) \circ T^{-(n-1)} = w.h \circ T.E[w].E[h].E[w] \circ T^{-1}.E[h] \circ T^{-1}....E[w] \circ T^{-(n-2)}.E[h] \circ T^{-(n-2)}.E[wf) \circ T^{-(n-1)}.$

Proof.

$$W^* \in [nQI] \Leftrightarrow W^{*^{n-1}}W^2W^{*^2}f = WW^{*^n}f. \tag{3.3}$$

$$\begin{split} W^{*^{n-1}}W^2W^{*^2}f &= W^{*^{n-1}}W^2h.E(w)\circ T^{-1}.E(h)\circ T^{-1}.E(wf)\circ T^{-2}\\ &= W^{*^{n-1}}W.w.h\circ T.E[w].E[h].E(wf)\circ T^{-1}\\ &= W^{*^{n-1}}w_2.h\circ T^2.E[w]\circ T.E[h]\circ T.E(wf)\\ &= W^{*^{n-2}}h.E[w.w_2.h\circ T^2.E[w]\circ T.E[h]\circ T.E(wf)]\circ T^{-1}\\ &= W^{*^{n-2}}h.E[w.w_2]\circ T^{-1}.h\circ T.E[w].E[h].E(wf)\circ T^{-1}\\ &= W^{*^{n-3}}h.E[w]\circ T^{-1}.E[h]\circ T^{-1}.E[w.w_2]\circ T^{-2}.h.\\ &= E[w]\circ T^{-1}.E[h]\circ T^{-1}.E[w]\circ T^{-2}.E[h]\circ T^{-2}.E[w.w_2]\circ T^{-3}.\\ &= W^{*^{n-4}}h.E[w]\circ T^{-1}.E[h]\circ T^{-1}.E[w]\circ T^{-2}.E[h]\circ T^{-2}.E[w]\circ T^{-3}.E[h]\circ T^{-1}.E[w]\circ T^{-2}.E[h]\circ T^{-2}.E[h]\circ T^{-3}.E[h]\circ T^{-2}.E[h]\circ T^{-2}.E[h]\circ T^{-2}.E[w]\circ T^{-3}.E[h]\circ T^{-3}.E[h]\circ T^{-2}.E[h]\circ T^{-2}.E[w]\circ T^{-3}.E[w]\circ T^{-(n-2)}.E[w]\circ T^{-(n-2)}.E[w]\circ T^{-(n-1)}.h\circ T^{-(n-3)}.E[w]\circ T^{-(n-2)}.E[h]\circ T^{-(n-1)}.E[w]\circ T^{-(n-1)}.E[w]\circ$$

And,

$$\begin{split} WW^{*^n}f &= WW^{*^{n-1}}h.E(wf) \circ T^{-1} \\ &= WW^{*^{n-2}}h.E[w.h.E(wf) \circ T^{-1}] \circ T^{-1} \\ &= WW^{*^{n-2}}h.E[w] \circ T^{-1}.E[h] \circ T^{-1}.E(wf) \circ T^{-2} \\ &= WW^{*^{n-3}}h.E[w] \circ T^{-1}.E[h] \circ T^{-1}.E[w] \circ T^{-2}.E[h] \circ T^{-2}.E(wf) \circ T^{-3} \\ &= Wh.E[w] \circ T^{-1}.E[h] \circ T^{-1}.E[w] \circ T^{-2}.E[h] \circ T^{-2} \\ &\quadE[w] \circ T^{-(n-1)}.E[h] \circ T^{-(n-1)}.E(wf) \circ T^{-n} \\ &= w.h \circ T.E[w].E[h].E[w] \circ T^{-1}.E[h] \circ T^{-1} \\ &\quadE[w] \circ T^{-(n-2)}.E[h] \circ T^{-(n-2)}.E(wf) \circ T^{-(n-1)}. \end{split}$$

Now (3.3) becomes $W^* \in [nQI] \Leftrightarrow h.E[w] \circ T^{-1}.E[h] \circ T^{-1}.E[w] \circ T^{-2}.E[h] \circ T^{-2}.E[w] \circ T^{-3}.E[h] \circ T^{-3}...E[w] \circ T^{n-2}.E[h] \circ T^{n-2}.E[w] \circ T^{-(n-1)}.h \circ T^{-(n-3)}.E[w] \circ T^{-(n-2)}.E[h] \circ T^{-(n-2)}.E(wf) \circ T^{-(n-1)} = w.h \circ T.E[w].E[h].E[w] \circ T^{-1}.E[h] \circ T^{-1}...E[w] \circ T^{-(n-2)}.E[h] \circ T^{-(n-2)}.E(wf) \circ T^{-(n-1)}.$

4 Charecterisations of class [nN] composition operators

In this section we discuss the characterization of *n*-power normal composition operators on L^2 – spaces.

Lemma 4.2. [1] Let α and β be non-negative functions with $S = \text{support } \alpha$. Then the following are equivalent:

- (i) For every $f \in L^2(X, \Sigma, \lambda)$, $\int_X \alpha |f|^2 d\lambda \ge \int_X |E(\beta f|F)|^2 d\lambda$, where F is a sub-sigma algebra of Σ .
- (ii) Support $\beta \subset S$ and $E(\frac{\beta^2}{\alpha}\chi_S|F) \leq 1a.e.$

Theorem 4.5. $C_T \in B(L^2(\lambda))$ is of class[nN] if and only if $h_n > 0$ and $E(\frac{1}{h_n}) = \frac{1}{h_n \circ T^n}$.

Proof.

$$\left\langle C_T^{*^n} C_T^n f, f \right\rangle = \left\langle h_n f, f \right\rangle = \int_X h_n |f|^2 d\lambda$$

$$\left\langle C_T^n C_T^{*^n} f, f \right\rangle = \left\langle h_n \circ T^n E f, f \right\rangle = \int_X h_n \circ T^n E(f) \overline{f} d\lambda = \int_X \left| E(h_n^{\frac{1}{2}} \circ T^n f) \right|^2 d\lambda.$$

Let $S = support \ h_n$. By Lemma 4.2, C_T is of class[nN] if and only if $support \ h_n^{\frac{1}{2}} \circ T^n \subset support \ h_n$ and $E\left(\frac{\chi_S h_n \circ T^n}{h_n}\right) \leq 1$.

As $h_n \circ T^n > 0$, the condition involving supports is true if and only if $h_n > 0$ (so that $\chi_S = 1$). The inequality is then equivalent to $E(\frac{1}{h_n}) = \frac{1}{h_n \circ T^n}$ since $h_n \circ T$ is $T^{-1}(\Sigma)$ measurable.

Theorem 4.6. (i) C_T is of $class[nN] \Leftrightarrow \left\| h^{\frac{1}{2}} h_{n-1}^{\frac{1}{2}} f \right\|^2 = \left\| h_{n-1}^{\frac{1}{2}} h^{\frac{1}{2}} \circ TPf \right\|^2 \Leftrightarrow \left\| h_n^{\frac{1}{2}} f \right\|^2 = \left\| (h_n \circ T^n)^{\frac{1}{2}} Pf \right\|^2.$

(ii)
$$\left\| h^{\frac{1}{2}} h_{n-1}^{\frac{1}{2}} Pf \right\|^2 = \left\| h_{n-1}^{\frac{1}{2}} h^{\frac{1}{2}} \circ TPf \right\|^2$$
.

Proof.

$$0 = \left\langle C_T^* C_T^n f, f \circ T^{n-1} \right\rangle - \left\langle C_T^n C_T^* f, f \circ T^{n-1} \right\rangle$$

$$= \left\langle h C_T^{n-1} f, f \circ T^{n-1} \right\rangle - \left\langle C_T^{n-1} h \circ T P f, f \circ T^{n-1} \right\rangle$$

$$= \left\langle h f \circ T^{n-1}, f \circ T^{n-1} \right\rangle - \left\langle h \circ T P f \circ T^{n-1}, f \circ T^{n-1} \right\rangle$$

$$= \left\langle h f \circ T^{n-1}, f \circ T^{n-1} \right\rangle - \left\langle P h \circ T f \circ T^{n-1}, f \circ T^{n-1} \right\rangle$$

$$= \int h \left| f \right|^2 \circ T^{n-1} d\lambda - \int P h \circ T \left| f \right|^2 \circ T^{n-1} d\lambda$$

$$= \int h \left| f \right|^2 d\lambda \circ T^{n-1} - \int P h \circ T \left| f \right|^2 d\lambda \circ T^{n-1}$$

$$= \left\langle h h_{n-1} f, f \right\rangle - \left\langle P h \circ T h_{n-1} f, f \right\rangle$$

$$= \left\langle h h_{n-1} f, f \right\rangle - \left\langle h \circ T h_{n-1} P f, f \right\rangle$$

Since C_T and C_T^n commutes $\forall n \in \mathbb{N}, h, h_n$ also commutes $\forall n \in \mathbb{N}$.

$$\left\| h^{\frac{1}{2}} h_{n-1}^{\frac{1}{2}} f \right\|^{2} = \left\| h_{n-1}^{\frac{1}{2}} h^{\frac{1}{2}} \circ TPf \right\|^{2}$$

Also,

$$\left\langle (C_T^{*^n} C_T^n - C_T^n C_T^{*^n}) f, f \right\rangle = \left\langle (h_n - h_n \circ T^n P) f, f \right\rangle$$

And hence it follows that $\left\|h_n^{\frac{1}{2}}f\right\|^2=\left\|(h_n\circ T^n)^{\frac{1}{2}}Pf\right\|^2$. (ii) follows directly from (i)

Theorem 4.7. Let C_T be an n-power normal composition operator on $L^2(\lambda)$ then for all m > n, $f \in L^2$ and i = m - n we have

$$\left\langle C_T^m C_T^{*^m} f, f \right\rangle = \left\langle P h_i \circ T^i h_n f, f \right\rangle. \tag{4.4}$$

Proof. For m = n + 1, we have

$$\left\langle C_T^{n+1} C_T^{*^{n+1}} f, f \right\rangle = \left\langle C_T C_T^* C_T^n C_T^{*^n} f, f \right\rangle$$
$$= \left\langle h \circ T P h_n f, f \right\rangle$$
$$= \left\langle P h \circ T h_n f, f \right\rangle$$

Suppose (4.4) holds for m = n + 1, n + 2, ...n + k, i = 1, 2, ...k and all $f \in L^2$. Then

$$\left\langle C_T^{n+k+1} C_T^{*^{n+k+1}} f, f \right\rangle = \left\langle C_T^{k+1} C_T^{*^{k+1}} C_T^n C_T^{*^n} f, f \right\rangle$$

$$= \left\langle h_{k+1} \circ T^{k+1} P h_n f, f \right\rangle$$

$$= \left\langle P h_{k+1} \circ T^{k+1} h_n f, f \right\rangle$$

And hence (4.4) follows by induction.

Theorem 4.8. Let C_T be an n-power normal composition operator on $L^2(\lambda)$ then for all m > n, $f \in L^2$ and i = m - n we have

$$\left\langle C_T^{*^m} C_T^m f, f \right\rangle = \left\langle h_i h_n f, f \right\rangle. \tag{4.5}$$

Proof. For m = n + 1, we have

$$\left\langle C_T^{*^{n+1}} C_T^{n+1} f, f \right\rangle = \left\langle C_T^* C_T C_T^n C_T^{*^n} f, f \right\rangle$$
$$= \left\langle h h_n f, f \right\rangle$$
$$= \left\langle h h_n f, f \right\rangle$$

Suppose (4.5) holds for m = n + 1, n + 2, ...n + k, i = 1, 2, ...k and all $f \in L^2$. Then

$$\left\langle C_T^{*^{n+k+1}} C_T^{n+k+1} f, f \right\rangle = \left\langle C_T^{*^{k+1}} C_T^{k+1} C_T^n C_T^{*^n} f, f \right\rangle$$
$$= \left\langle h_{k+1} h_n f, f \right\rangle$$
$$= \left\langle h_{k+1} h_n f, f \right\rangle$$

And hence (4.5) follows by induction.

Theorem 4.9. Let C_{T_1} and C_{T_2} be n-power normal composition operators on $L^2(\lambda)$ then for all m > n, p > n, such that m and p are multiples of n, $C_{T_1}^m C_{T_2}^p$ is normal.

Proof. On applying Theorem 4.8 in the subsequent equations the assertion is proved. Denote $C_{T_1}^{*^k}C_{T_1}^k$ by $M_{h(1)k}$ and $C_{T_2}^{*^k}C_{T_2}^k$ by $M_{h(2)k}$ respectively.

$$\begin{split} \left\langle (C_{T_{1}}^{m}C_{T_{2}}^{p})^{*}(C_{T_{1}}^{m}C_{T_{2}}^{p})f,f\right\rangle &= \left\langle C_{T_{2}}^{*}C_{T_{1}}^{*}C_{T_{1}}^{m}C_{T_{2}}^{p}f,f\right\rangle \\ &= \left\langle h_{(1)m-n}h_{(1)n}C_{T_{2}}^{p}f,C_{T_{2}}^{p}f\right\rangle \\ &= \left\langle h_{(1)m-n}h_{(1)n}C_{T_{2}}^{*}C_{T_{2}}^{p}f,f\right\rangle \\ &= \left\langle h_{(1)m-n}h_{(1)n}h_{(2)p-n}h_{(2)n}f,f\right\rangle \\ \left\langle (C_{T_{1}}^{m}C_{T_{2}}^{p})(C_{T_{1}}^{m}C_{T_{2}}^{p})^{*}f,f\right\rangle &= \left\langle C_{T_{2}}^{p}C_{T_{2}}^{*}C_{T_{1}}^{*}f,C_{T_{1}}^{*m}f,C_{T_{1}}^{m}f\right\rangle \\ &= \left\langle h_{(2)p-n}h_{(2)n}C_{T_{1}}^{*}C_{T_{1}}^{m}f,f\right\rangle \\ &= \left\langle h_{(1)m-n}h_{(1)n}h_{(2)p-n}h_{(2)n}f,f\right\rangle \end{split}$$

From the above equalities it follows that $C_{T_1}^m C_{T_2}^p$ is normal.

Corollary 4.1. Let C_{T_1} and C_{T_2} be n-power normal composition operators on $L^2(\lambda)$ then for all m > n, p > n, such that m and p are multiples of n, $(C_{T_1}^m C_{T_2}^p)^q$, $\forall q \in \mathbb{N}$ is normal. In particular, for q = n, $C_{T_1}^m C_{T_2}^p$ is of class[nN].

Proof. From Theorem 4.9 it is obvious that $(C_{T_1}^m C_{T_2}^p)^q$, $\forall q \in \mathbb{N}$ is normal. And for q = n, it follows from the normality of class[nN] operators that $C_{T_1}^m C_{T_2}^p$ is of class[nN]

Now we establish a close relationship between $\sigma(C_T)$ and E(h) where E(h) denotes the essential range of the Radon-Nikodym derivative h.

Theorem 4.10. Let C_T be an n-power normal composition operator on $L^2(\lambda)$ then $\sigma(C_T) \subset \left\{ \alpha^{\frac{1}{n}} : \alpha^{\frac{1}{n}} \in \mathbb{C} \text{ and } |\alpha|^{\frac{2}{n}} \in E(h_n)^{\frac{1}{n}} \right\}$

Proof. C_T is in class [nN] implies C_T^n is normal and hence by Spectral mapping Theorem, for normal operators, $\sigma(C_T^{*^n}C_T^n) = \left\{ |\alpha|^2 : \alpha \in \sigma(C_T^n) \right\}$.

But $C_T^{*^n}C_T^n = M_{h_n}$.

Therefore
$$\sigma(M_{h_n}) = \left\{ |\alpha|^2 : \alpha \in \sigma(C_T^n) \right\}$$
. Because $\sigma(M_{h_n}) = E(h_n)$. We have, $E(h_n) = \left\{ |\alpha|^2 : \alpha \in \sigma(C_T^n) \right\} = \left\{ |\alpha|^2 : \alpha \in \sigma(C_T)^n \right\}$. Thus $\sigma(C_T)^n \subset \left\{ \alpha : \alpha \in \mathbb{C} \text{ and } |\alpha|^2 \in E(h_n) \right\}$, which implies $\sigma(C_T) \subset \left\{ \alpha^{\frac{1}{n}} : \alpha^{\frac{1}{n}} \in \mathbb{C} \text{ and } |\alpha|^{\frac{2}{n}} \in E(h_n)^{\frac{1}{n}} \right\}$

Theorem 4.11. Let C_T be an n-power normal composition operator on $L^2(\lambda)$ such that 1 does not belong to $E(h_n)^{\frac{1}{n}}$. Then $\sigma(C_T) = \left\{\alpha^{\frac{1}{n}} : \alpha^{\frac{1}{n}} \in \mathbb{C} \text{ and } |\alpha|^{\frac{2}{n}} \in E(h_n)^{\frac{1}{n}}\right\}$ and hence $\sigma(C_T)$ has cyclic symmetry.

Proof. From the proof of Theorem 4.10, we have, $E(h_n)^{\frac{1}{n}} = \left\{ |\alpha|^{\frac{2}{n}} : \alpha^{\frac{1}{n}} \in \sigma(C_T) \right\}$. Thus for every $m \in E(h_n)^{\frac{1}{n}}$ there is an $\alpha^{\frac{1}{n}} \in \sigma(C_T)$ such that $|\alpha|^{\frac{2}{n}} = m$. If $\alpha \in \sigma(C_T)$ and $|\alpha| \neq 1$, then every β such that $|\alpha| = |\beta|$ is in $\sigma(C_T)[6]$. Since by assumption, $1 \notin E(h_n)^{\frac{1}{n}}$ there is no $\alpha^{\frac{1}{n}} \in \sigma(C_T)$ such that $|\alpha|^{\frac{2}{n}} = 1$. Hence $\left\{\alpha^{\frac{1}{n}} : \alpha^{\frac{1}{n}} \in \mathbb{C} \text{ and } |\alpha|^{\frac{2}{n}} \in E(h_n)^{\frac{1}{n}} \right\} \subset \sigma(C_T)$. The opposite inclusion follows from Theorem 4.10 and hence $\sigma(C_T) = \left\{\alpha^{\frac{1}{n}} : \alpha^{\frac{1}{n}} \in \mathbb{C} \text{ and } |\alpha|^{\frac{2}{n}} \in E(h_n)^{\frac{1}{n}} \right\}$.

5 Quasi-isometry and *n*-power Quasi-isometry Composite multiplication operators

In this section we give a characterization of quasi-isometry and *n*- power quasi-isometry composite multiplication operators.

Theorem 5.12. Let $M_{u,T}$ on $L^2(\lambda)$ be a composite mulitiplication operator, then for $\lambda \geq 0$, $M_{u,T}$ is a quasi-isometry if and only if $u.h.E[uh] \circ T^{-1}.E[u \circ Tu \circ T^2] \circ T^{-2}.f = u^2.h.f$.

Proof.

$$\begin{array}{lll} M_{u,T} \text{ is a quasi-isometry} & \Leftrightarrow & M_{u,T}^{*^2} M_{u,T}^2 f = M_{u,T}^* M_{u,T} f \\ & \Leftrightarrow & M_{u,T}^{*^2} M_{u,T} u \circ T. f \circ T = M_{u,T}^*. u \circ T. f \circ T \\ & \Leftrightarrow & M_{u,T}^{*^2} [u \circ T(u \circ T. f \circ T) \circ T] = u.h. E[u \circ T. f \circ T] \circ T^{-1} \\ & \Leftrightarrow & M_{u,T}^{*^2} [u \circ T. u \circ T^2. f \circ T^2] = u.h. u \circ T \circ T^{-1}. f \circ T \circ T^{-1} \\ & \Leftrightarrow & M_{u,T}^* u.h. E[u \circ T. u \circ T^2. f \circ T^2] \circ T^{-1} = u.h. u.f \\ & \Leftrightarrow & M_{u,T}^* u.h. E[u \circ T. u \circ T^2] \circ T^{-1}. f \circ T = u^2.h.f \\ & \Leftrightarrow & u.h. E[u.h. E[u \circ T. u \circ T^2] \circ T^{-1}. f \circ T] \circ T^{-1} = u^2.h.f \\ & \Leftrightarrow & u.h. E[uh] \circ T^{-1}. E[u \circ T. u \circ T^2] \circ T^{-2}. f = u^2.h.f. \end{array}$$

Corollary 5.2. $C_T \in B(L^2(\lambda))$ is quasi-isometry if and only if $h.E[h] \circ T^{-1}.f = h.f.$

Proof. The proof is obtained by putting u = 1 in Theorem 5.12.

Theorem 5.13. Let $M_{u,T}$ on $L^2(\lambda)$ be a composite mulitiplication operator, then for $\lambda \geq 0$, $M_{u,T}^*$ is a quasi-isometry if and only if $u \circ T.u \circ T^2.u \circ T^2.h \circ T^2.E[u.h] \circ T.E[f] = u \circ T.u \circ T.h \circ T.E[f]$

Proof.

$$\begin{array}{lll} M_{u,T}^* \text{ is a quasi-isometry} & \Leftrightarrow & M_{u,T}^2 M_{u,T}^{*2} f = M_{u,T} M_{u,T}^* f \\ & \Leftrightarrow & M_{u,T}^2 M_{u,T}^* u.h. E[f] \circ T^{-1} = M_{u,T} u.h. E[f] \circ T^{-1} \\ & \Leftrightarrow & M_{u,T}^2 u.h. E[u.h. E[f] \circ T^{-1}] \circ T^{-1} = u \circ T. [u.h. E[f] \circ T^{-1}] \circ T \\ & \Leftrightarrow & M_{u,T}^2 u.h. E[u.h] \circ T^{-1}. E[f] \circ T^{-2} = u \circ T. u \circ T.h \circ T. E[f] \\ & \Leftrightarrow & M_{u,T} u \circ T. [u.h. E[u.h] \circ T^{-1}. E[f] \circ T^{-2}] \circ T \\ & = u \circ T. u \circ T.h \circ T. E[f] \\ & \Leftrightarrow & M_{u,T} u \circ T.u \circ T.h \circ T. E[u.h]. E[f] \circ T^{-1} \\ & = u \circ T.u \circ T.h \circ T. E[f] \\ & \Leftrightarrow & u \circ T[u \circ Tu \circ T.h \circ T. E[u.h]. E[f] \circ T^{-1}] \circ T \\ & = u \circ T.u \circ T.h \circ T. E[f] \\ & \Leftrightarrow & u \circ T.u \circ T.h \circ T. E[f] \\ & \Leftrightarrow & u \circ T.u \circ T.h \circ T. E[f]. \end{array}$$

Theorem 5.14. Let $M_{u,T}$ on $L^2(\lambda)$ be a composite mulitiplication operator, then for $\lambda \geq 0$, $M_{u,T}$ is an n-power quasi-isometry operator if and only if $u \circ T.u \circ T^2.u \circ T^3....u \circ T^{n-1}.u \circ T^{n-1}.h \circ T^{n-1}.E[u.h] \circ T^{n-2}E[u \circ T.u \circ T^2] \circ T^{n-3}.f \circ T^{n-1} = u.h.E[u \circ T.u \circ T^2.u \circ T^3...u \circ T^n] \circ T^{n-1}.$

Proof.

$$M_{u,T}$$
 is *n*-power quasi-isometry $\Leftrightarrow M_{u,T}^{n-1} M_{u,T}^{*2} M_{u,T}^2 f = M_{u,T}^* M_{u,T} M_{u,T}^{n-1} f$ (5.6)

Now,

$$\begin{array}{lll} M_{u,T}^{n-1} M_{u,T}^{*^2} M_{u,T}^2 f & = & M_{u,T}^{n-1} u.h. E[u.h] \circ T^{-1}. E[u \circ T.u \circ T^2] \circ T^{-2}.f \\ & = & M_{u,T}^{n-2} u \circ T[u.h. E[u.h] \circ T^{-1}. E[u \circ T.u \circ T^2] \circ T^{-2}.f] \circ T \\ & = & M_{u,T}^{n-2} u \circ T.u \circ T.h \circ T. E[u.h]. E[u \circ T.u \circ T^2] \circ T^{-1}.f \circ T \\ & = & M_{u,T}^{n-3} u \circ T[u \circ T.u \circ T.h \circ T. E[u.h]. E[u \circ T.u \circ T^2] \circ T^{-1}.f \circ T] \circ T \\ & = & M_{u,T}^{n-3} u \circ T.u \circ T^2.u \circ T^2.h \circ T^2. E[u.h] \circ T. E[u \circ T.u \circ T^2].f \circ T^2. \end{array}$$

Continuing in a similar manner, we arrive at the following expression,

$$\begin{array}{lcl} M_{u,T}^{n-1} M_{u,T}^{*^2} M_{u,T}^2 f & = & u \circ T. u \circ T^2. u \circ T^3.... u \circ T^{n-1}. u \circ T^{n-1} \\ & & h \circ T^{n-1}. E[u.h] \circ T^{n-2}. E[u \circ T. u \circ T^2] \circ T^{n-3}. \\ & & f \circ T^{n-1}. \end{array}$$

$$\begin{array}{lll} M_{u,T}^* M_{u,T}^n f & = & M_{u,T}^* M_{u,T}^{n-1} u \circ T.f \circ T \\ & = & M_{u,T}^* M_{u,T}^{n-2} u \circ T[u \circ T.f \circ T] \circ T \\ & = & M_{u,T}^* M_{u,T}^{n-2} u \circ T.u \circ T^2.f \circ T^2 \\ & = & . \\ & = & . \\ & = & . \\ & = & . \\ & = & . \\ & = & M_{u,T}^* u \circ T.u \circ T^2.u \circ T^3...u \circ T^n.f \circ T^n \\ & = & u.hE[u \circ T.u \circ T^2.u \circ T^3...u \circ T^n.f \circ T^n] \circ T^{-1} \\ & = & u.hE[u \circ T.u \circ T^2.u \circ T^3...u \circ T^n] \circ T^{-1}.f \circ T^{n-1}. \end{array}$$

Hence equation (5.6) becomes,

 $M_{u,T}$ is n- power quasi-isometry $\Leftrightarrow u \circ T.u \circ T^2.u \circ T^3....u \circ T^{n-1}.u \circ T^{n-1}$ $h \circ T^{n-1}.E[u.h] \circ T^{n-2}.E[u \circ T.u \circ T^2] \circ T^{n-3}.f \circ T^{n-1} = u.h.E[u \circ T.u \circ T^2.u \circ T^3...u \circ T^n] \circ T^{n-1}.$

Corollary 5.3. $C_T \in B(L^2(\lambda))$ is n-power quasi-isometry if and only if $h \circ T^{n-1}.E[h] \circ T^{n-2}.f \circ T^{n-1} = h.f \circ T^{n-1}$.

Proof. The proof is obtained by putting u = 1 in Theorem 5.14.

Theorem 5.15. Let $M_{u,T}$ on $L^2(\lambda)$ be a composite mulitiplication operator, then for $\lambda \geq 0$, $M_{u,T}^*$ is an n-power quasi-isometry operator if and only if $u.h.E[u.h] \circ T^{-1}.E[u.h] \circ T^{-2}....E[u.h] \circ T^{-(n-2)}E[u \circ T.u \circ T^2.u \circ T^2] \circ T^{-(n-1)}$. $E[h] \circ T^{-(n-3)}.E[u.h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-1)} = u \circ T.u \circ T.h \circ T.E[u.h].E[u.h] \circ T^{-1}.E[u.h] \circ T^{-2}....E[u.h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-1)}$.

Proof.

$$M_{u,T}^*$$
 is *n*-power quasi-isometry $\Leftrightarrow M_{u,T}^{*^{n-1}} M_{u,T}^2 M_{u,T}^{*^2} f = M_{u,T} M_{u,T}^* M_{u,T}^{*^{n-1}} f$ (5.7)

Now,

$$\begin{array}{lll} M_{u,T}^{*^{n-1}} M_{u,T}^2 M_{u,T}^{*^2} f &=& M_{u,T}^{*^{n-1}} \left[u \circ T.u \circ T^2.u \circ T^2.h \circ T^2.E[u.h] \circ T.E[f] \right] \\ &=& M_{u,T}^{*^{n-2}} u.h.E[u \circ T.u \circ T^2.u \circ T^2.h \circ T^2.E[u.h] \circ T.E[f] \right] \circ T^{-1} \\ &=& M_{u,T}^{*^{n-2}} u.h.E[u \circ T.u \circ T^2.u \circ T^2] \circ T^{-1}.h \circ T.E[u.h].E[f] \circ T^{-1} \\ &=& M_{u,T}^{*^{n-3}} u.h.E[u.h.E[u \circ T.u \circ T^2.u \circ T^2] \circ T^{-1}. \\ && h \circ T.E[u.h].E[f] \circ T^{-1} \right] \circ T^{-1} \\ &=& M_{u,T}^{*^{n-3}} u.h.E[u.h] \circ T^{-1}.E[u \circ T.u \circ T^2.u \circ T^2] \circ T^{-2}. \\ && h.E[u.h] \circ T^{-1}.E[f] \circ T^{-2} \\ &=& . \\ &=& . \\ &=& . \\ &=& u.h.E[u.h] \circ T^{-1}.E[u.h] \circ T^{-2}....E[u.h] \circ T^{-(n-2)} \\ && E[u \circ T.u \circ T^2.u \circ T^2] \circ T^{-(n-1)}.E[h] \circ T^{-(n-3)} \\ && E[u.h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-1)}. \end{array}$$

And,

$$\begin{array}{lll} M_{u,T}M_{u,T}^{*^{n}} & = & M_{u,T}M_{u,T}^{*^{n-1}}u.h.E[f] \circ T^{-1} \\ & = & M_{u,T}M_{u,T}^{*^{n-2}}u.h.E[u.h.E[f] \circ T^{-1}] \circ T^{-1} \\ & = & M_{u,T}M_{u,T}^{*^{n-2}}u.h.E[u.h] \circ T^{-1}.E[f] \circ T^{-2} \\ & = & . \\ & = & . \\ & = & . \\ & = & . \\ & = & M_{u,T}u.h.E[u.h] \circ T^{-1}.E[u.h] \circ T^{-2}.E[u.h] \circ T^{-3}.... \\ & E[u.h] \circ T^{-(n-1)}.E[f] \circ T^{-n} \\ & = & u \circ T[u.h.E[u.h] \circ T^{-1}.E[u.h] \circ T^{-2}.E[u.h] \circ T^{-3}.... \\ & E[u.h] \circ T^{-(n-1)}.E[f] \circ T^{-n}] \circ T \\ & = & u \circ T.u \circ T.h \circ T.E[u.h].E[u.h] \circ T^{-1}.E[u.h] \circ T^{-2}.... \\ & E[u.h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-1)}. \end{array}$$

Hence equation (5.7) becomes,

 $M_{u,T}^*$ is n-power quasi-isometry $\Leftrightarrow u.h.E[u.h] \circ T^{-1}.E[u.h] \circ T^{-2}....E[u.h] \circ T^{-(n-2)}.E[u \circ T.u \circ T^2.u \circ T^2] \circ T^{-(n-2)}$

$$T^{-(n-1)}.E[h] \circ T^{-(n-3)}.E[u.h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-1)} = u \circ T.u \circ T.h \circ T.E[u.h].E[u.h] \circ T^{-1}.E[u.h] \circ T^{-2}.$$

$$....E[u.h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-1)}.$$

Corollary 5.4. $C_T^* \in B(L^2(\lambda))$ is n-power quasi-isometry if and only if $h.E[h] \circ T^{-1}.E[h] \circ T^{-2}....E[h] \circ T^{-(n-2)}.$ $E[h] \circ T^{-(n-3)}.E[h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-1)} = h \circ T.E[h].E[h] \circ T^{-1}.E[h] \circ T^{-2}....E[h] \circ T^{-(n-2)}.E[f] \circ T^{-(n-1)}.$

Proof. The proof is obtained by putting u = 1 in Theorem 5.15.

References

- [1] C. Burnap, I. B. Jung and A. Lambert, Separating partial normality classes with composition opertors, *J.Operator Theory*, 53(2) (2005), 381-397.
- [2] D. J. Harrington and R. Whitley, Seminormal composition operator, J. Operator Theory, 11(1981), 125-135.
- [3] A. A. S. Jibril, On *n*-Power normal operators, *The Arabian Journal for Science and Engineering*, 33(2A)(2008), 247-251.
- [4] J. S. I. Mary, Spectra of composition operators and their Alugthe transformations, *Indian J. of Mathematics*,51(3)(2009), 549-555.
- [5] J. S. I. Mary and P. Vijayalakshmi, A note on the class of N-power quasi isometry, *International J. Applied Mathematics and Statistical Sciences*, 2(5)(2013), 1-8.
- [6] W. C. Ridge, Proc. Am. Math. Soc., 37(1973), 121-127.
- [7] S. Senthil, P. Thangaraju and D. C. Kumar, n-normal and n-quasi-normal composite multiplication operator on L^2 -spaces, J. Scientific Research and Reports, 8(4)(2015), 1-9.
- [8] R. K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc., 45(1974), 80-82.

Received: September 2, 2015; Accepted: January 23, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/