		-
Malaya Journal of Matematik	$\mathcal{M J M}$ an international journal of mathematical sciences with computer applications...	

n-power Quasi-isometry and n-power Normal Composition Operators on L^{2}-spaces

P. Vijayalakshmi ${ }^{a, *}$ and J. Stella Irene Mary ${ }^{b}$
${ }^{a, b}$ Department Of Mathematics, P.S.G College Of Arts And Science, Coimbatore, Tamilnadu-641014, India.

Abstract

In this paper, we give the characterizations of n-power Quasi-isometry and n-power normal composition operators. Further, we also discuss the characterization of the n-power Quasi-isometry composite multiplication operator.

Keywords: n-power quasi-isometry operator, n-power normal operator, composite multiplication operator.
2010 MSC: 47B20, 47B33, 47B38. (C)2012 MJM. All rights reserved.

1 Introduction

Let $B(H)$ be the algebra of all bounded linear operators on an infinite dimensional complex Hilbert space H. An operator A is an n - power quasi-isometry if $A^{n-1} A^{* 2} A^{2}=A^{*} A A^{n-1}$ for all $n \in Z^{+}$[5]. The operator A is normal if $A^{*} A=A A^{*}$ and n-power normal if $A^{n} A^{*}=A^{*} A^{n}$ for all $n \geq 2[3]$. We denote the class of n-power normal operators and n-power quasi-isometry operators by $[n N]$ and $[n Q I]$ respectively. The class of normal operators \subset class $[n N]$. Also A is an n - power normal operator if and only if A^{n} is normal[3].

Let $\left(X, \sum, \lambda\right)$ be a sigma-finite measure space and let T be a measurable transformation from X to itself. If T is a measurable transformation then T^{n} is also a measurable transformation. Further, if T is non-singular then λT^{-1} is absolutely continuous with respect to λ and it follows that $\lambda\left(T^{-1}\right)^{n}$ is absolutely continuous with respaect to λ. The Radon-Nikodym derivative of $\lambda\left(T^{-1}\right)^{n}$ with respect to λ is denoted by h_{n}.

Associated with each transformation T is a conditional expectation operator $E\left(f \mid T^{-1}\left(\sum\right)\right)=E(f)$ is defined for each non-negative function $f \in L^{p} \quad(1 \leq p<\infty)$ and is uniquely determined by the following conditions:
(i) $E(f)$ is $T^{-1}(\Sigma)$ measurable.
(ii) If B is any $T^{-1}(\Sigma)$ measurable set for which $\int_{B} f d \lambda$ converges then we have $\int_{B} f d \lambda=\int_{B} E(f) d \lambda$.

The conditional expectation operator E has the following properties:
(i) $E(f \cdot(g \circ T))=E(f) \cdot(g \circ T)$
(ii) E is monotonically increasing. (i.e) if $f \leq g$ a.e then $E(f) \leq E(g)$ a.e.
(iii) $E(1)=1$.

When E is defined on a possible infinite σ-finite measure space it behaves similarly to expectations on standard probability spaces. As an operator on $L^{2}(\lambda), E$ is the projection operator onto the closure of the range of C_{T}.

Let π be an essentially bounded function. The multiplication operator M_{π} on $L^{2}(\lambda)$ induced by π, is given by, $M_{\pi} f=\pi$. f for $f \in L^{2}(\lambda)$.

A composition operator C_{T} on $L^{2}(\lambda)$ is a bounded linear operator given by composition with a map T : $X \rightarrow X$ as, $C_{T} f=f \circ T$ for all $f \in L^{2}(\lambda)$ and C_{T}^{*} is given by $C_{T}^{*} f=h E(f) \circ T^{-1}$ for all $f \in L^{2}(\lambda)$. A weighted

[^0]composition operator W is a linear transformation acting on a set of complex valued \sum - measurable functions f of the form, $W f=w C_{T} f$ where w is a complex valued \sum - measurable function. When $w=1$ we say W is a composition operator.

The adjoint W^{*} is defined as, $W^{*} f=h E(w f) \circ T^{-1}$ for $f \in L^{2}(\lambda)$. Also, $w_{n}=w .(w \circ T) .\left(w \circ T^{2}\right) \ldots . .(w \circ$ $\left.T^{n-1}\right)$. For $f \in L^{2}(\lambda), W^{n} f=w_{n} f \circ T^{n}, W^{*^{n}} f=h_{n} E\left(w_{n} . f\right) \circ T^{-n}$.

A composite multiplication operator is a linear transformation acting on a set of complex valued \sum measurable functions f of the form $M_{u, T}(f)=C_{T} M_{u}(f)=(u f) \circ T=u \circ T$. $f \circ T$ where u is a complex valued, \sum measurable function. In case, $u=1$ almost everywhere, $M_{u, T}$ becomes a composition operator. The adjoint of $M_{u, T}$ is given by $M_{u, T}^{*} f=u h . E(f) \circ T^{-1}$.

Various properties of composition operators and weighted composition operators on L^{2} spaces have been analyzed by many authors. In particular, spectra of composition operators and their generalized Alugthe transformations as weighted composition operators are characterized in[4]. In this paper we study the characterisations of the $[n Q I]$ and $[n N]$ class of composition operators. The characterisations of class $[n N]$ operators A are evaluated mainly by the aid of the normality of A^{n}. In[7], the characterisations of n-power normal and n-power quasinormal composite multiplication operators are studied. We study the characterisations of quasi-isometry and n-power quasi-isometry composite multiplication operators.

2 Characterization of the class $[n Q I]$ composition operators

The following Lemmas of [2] and [8] play an important role in the following Theorems:
Lemma 2.1. [2, 8] Let P be the projection of $L^{2}(\lambda)$ onto $\overline{R\left(C_{T}\right)}$, where $\overline{R\left(C_{T}\right)}$ denotes the closure of the range of C_{T}. Then,
(i) $C_{T}^{*} C_{T} f=h f$ and $C_{T} C_{T}^{*} f=h \circ T P f \forall f \in L^{2}(\lambda)$.
(ii) $\overline{R\left(C_{T}\right)}=\left\{f \in L^{2}(\lambda): f\right.$ is $T^{-1}(\Sigma)$ measurable $\}$.
(iii) If f is $T^{-1}(\Sigma)$ measurable, and g and $f g$ belong to $L^{2}(\lambda)$, then $P(f g)=f P(g)$ (f need not be in $L^{2}(\lambda)$). Also, for $k \in \mathbb{N}$
(iv) $\left(C_{T}^{*} C_{T}\right)^{k} f=h^{k} f$.
(v) $\left(C_{T} C_{T}^{*}\right)^{k} f=(h \circ T)^{k} P f$.
(vi) E is the identity operator on $L^{2}(\lambda)$ if and only if $T^{-1}(\Sigma)=\sum$.

The following Theorem gives the characterization of n - power quasi-isometry operators.
Theorem 2.1. Let $C_{T} \in B\left(L^{2}(\lambda)\right)$. Then C_{T} is in the class $[n Q I]$ if and only if $h \circ T^{n-1} . E(h) \circ T^{n-2}=h$.
Proof.

$$
\begin{aligned}
C_{T} \in[n Q I] & \Leftrightarrow C_{T}^{n-1} C_{T}^{*^{2}} C_{T}^{2} f=C_{T}^{*} C_{T}^{n} f, \text { where } C_{T}^{*} f=h \cdot E(f) \circ T^{-1} . \\
& \Leftrightarrow C_{T}^{n-1} C_{T}^{*^{2}}\left(f \circ T^{2}\right)=C_{T}^{*}\left(f \circ T^{n}\right) \\
& \Leftrightarrow C_{T}^{n-1} C_{T}^{*}\left[h \cdot E\left(f \circ T^{2}\right) \circ T^{-1}\right]=h \cdot E\left(f \circ T^{n}\right) \circ T^{-1} \\
& \Leftrightarrow C_{T}^{n-1} C_{T}^{*}[h \cdot f \circ T]=h \cdot f \circ T^{n-1} \\
& \Leftrightarrow C_{T}^{n-1}\left[h \cdot E(h \cdot f \circ T) \circ T^{-1}\right]=h \cdot f \circ T^{n-1} \\
& \Leftrightarrow C_{T}^{n-1}\left[h \cdot E(h) \circ T^{-1} \cdot f\right]=h . f \circ T^{n-1} \\
& \Leftrightarrow C_{T}^{n-2}\left[h \cdot E(h) \circ T^{-1} \cdot f\right] \circ T=h \cdot f \circ T^{n-1} \\
& \Leftrightarrow C_{T}^{n-2}[h \circ T \cdot E(h) \cdot f \circ T]=h \cdot f \circ T^{n-1} \\
& \Leftrightarrow C_{T}^{n-3}\left[h \circ T^{2} \cdot E(h) \circ T \cdot f \circ T^{2}\right]=h . f \circ T^{n-1} \\
& \Leftrightarrow C_{T}^{n-4}\left[h \circ T^{3} \cdot E(h) \circ T^{2} \cdot f \circ T^{3}\right]=h \cdot f \circ T^{n-1} \\
& \Leftrightarrow h \circ T^{n-1} \cdot E(h) \circ T^{n-2} \cdot f \circ T^{n-1}=h \cdot f \circ T^{n-1} \\
& \Leftrightarrow h \circ T^{n-1} \cdot E(h) \circ T^{n-2}=h
\end{aligned}
$$

Theorem 2.2. Let $C_{T} \in B\left(L^{2}(\lambda)\right)$. Then C_{T}^{*} is in the class [nQI] if and only if $h . E[h] \circ T^{-1} . E[h] \circ T^{-2} \ldots . . E[h] \circ$ $T^{-(n-2)} \cdot E[h] \circ T^{-(n-3)} \cdot E[h] \circ T^{-(n-2)} \cdot E(f) \circ T^{-(n-1)}=h \circ T \cdot E[h] . E[h] \circ T^{-1} \ldots E[h] \circ T^{-(n-2)} \cdot E(f) \circ T^{-(n-1)}$.

Proof.

$$
\begin{equation*}
C_{T}^{*} \in[n Q I] \Leftrightarrow C_{T}^{*^{n-1}} C_{T}^{2} C_{T}^{*^{2}} f=C_{T} C_{T}^{*^{n}} f \tag{2.1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
C_{T}^{*^{n-1}} C_{T}^{2} C_{T}^{*^{2}} f= & C_{T}^{*^{n-1}} C_{T}^{2} h \cdot E(h) \circ T^{-1} \cdot E(f) \circ T^{-2} \\
= & C_{T}^{*^{n-1}} h \circ T^{2} \cdot E(h) \circ T \cdot E(f) \\
= & C_{T}^{*^{n-2}} h \cdot E\left[h \circ T^{2} \cdot E(h) \circ T \cdot E(f)\right] \circ T^{-1} \\
= & C_{T}^{*^{n-2}} h \cdot h \circ T \cdot E[h] \cdot E(f) \circ T^{-1} \\
= & C_{T}^{*^{n-3}} h \cdot E[h] \circ T^{-1} \cdot h \cdot E[h] \circ T^{-1} \cdot E(f) \circ T^{-2} \\
= & C_{T}^{*^{n-4} h \cdot E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \cdot E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \cdot E(f) \circ T^{-3}}= \\
= & C_{T}^{*^{n-5} h \cdot E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \cdot E[h] \circ T^{-3} \cdot E[h] \circ T^{-2} \cdot E[h] \circ T^{-3} \cdot E(f) \circ T^{-4}}= \\
= & h \cdot E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \ldots \cdot E[h] \circ T^{-(n-2)} \cdot E[h] \circ T^{-(n-3)} \cdot E[h] \circ T^{-(n-2)} . \\
& E(f) \circ T^{-(n-1)} .
\end{aligned}
$$

And

$$
\begin{aligned}
C_{T} C_{T}^{*^{n}} f & =C_{T} C_{T}^{*(n-1)} h \cdot E(f) \circ T^{-1} \\
& =C_{T} C_{T}^{*(n-2)} h \cdot E\left[h \cdot E(f) \circ T^{-1}\right] \circ T^{-1} \\
& =C_{T} C_{T}^{*(n-2)} h \cdot E[h] \circ T^{-1} \cdot E(f) \circ T^{-2} \\
& =C_{T} C_{T}^{*(n-3)} h \cdot E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \cdot E(f) \circ T^{-3} \\
& =C_{T} h \cdot E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \ldots E[h] \circ T^{-(n-1)} \cdot E(f) \circ T^{-n} \\
& =h \circ T \cdot E[h] \cdot E[h] \circ T^{-1} \ldots E[h] \circ T^{-(n-2)} \cdot E(f) \circ T^{-(n-1)}
\end{aligned}
$$

Now (2.1) becomes $C_{T}^{*} \in[n Q I] \Leftrightarrow h \cdot E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \ldots . E[h] \circ T^{-(n-2)} \cdot E[h] \circ T^{-(n-3)} \cdot E[h] \circ T^{-(n-2)} \cdot E(f) \circ$ $T^{-(n-1)}=h \circ T . E[h] . E[h] \circ T^{-1} \ldots E[h] \circ T^{-(n-2)} . E(f) \circ T^{-(n-1)}$.

Example 2.1. Let $X=\mathbb{N}$, the set of all natural numbers and λ be a counting measure on it. $T: \mathbb{N} \rightarrow \mathbb{N}$ is defined by $T(k)=k+1, k \in \mathbb{N}$. Since $T^{n-1}(k)=k_{1}$ where $k_{1} \in \mathbb{N}, h_{2} \circ T^{n-1}(k)=1$ and $h(k)=1, C_{T}$ is of class [nQI]. Here C_{T} is the unilateral shift operator on l^{2}.

3 Weighted composition operators of class [nQI]

Theorem 3.3. Let W be a weighted composition operator then $W \in[n Q I]$ if and only if $w_{n-1} \cdot h \circ T^{n-1} . E(w) \circ$ $T^{n-2} \cdot E(h) \circ T^{n-2} \cdot E\left(w \cdot w_{2}\right) \circ T^{n-3} \cdot f \circ T^{n-1}=h \cdot E\left[w \cdot w_{n}\right] \circ T^{-1} . f \circ T^{n-1}$.

Proof.

$$
\begin{equation*}
W \in[n Q I] \Leftrightarrow W^{n-1} W^{*^{2}} W^{2} f=W^{*} W^{n} f \tag{3.2}
\end{equation*}
$$

Consider

$$
\begin{aligned}
W^{n-1} W^{*^{2}} W^{2} f= & W^{n-1} W^{*^{2}} W[w f \circ T] \\
= & W^{n-1} W^{*^{2}} w[w \cdot f \circ T] \circ T \\
= & W^{n-1} W^{*^{2}} w_{2} \cdot f \circ T^{2} \\
= & W^{n-1} W^{*} h \cdot E\left[w \cdot w_{2} \cdot f \circ T^{2}\right] \circ T^{-1} \\
= & W^{n-1} W^{*} h \cdot E\left[w \cdot w_{2}\right] \circ T^{-1} \cdot f \circ T \\
= & W^{n-1} h \cdot E(w) \circ T^{-1} \cdot E(h) \circ T^{-1} \cdot E\left(w \cdot w_{2}\right) \circ T^{-2} \cdot f \\
= & W^{n-2} w \cdot h \circ T \cdot E(w) \cdot E(h) \cdot E\left(w \cdot w_{2}\right) \circ T^{-1} \cdot f \circ T \\
= & W^{n-3} w \cdot w \circ T \cdot h \circ T^{2} \cdot E(w) \circ T \cdot E(h) \circ T \cdot E\left(w \cdot w_{2}\right) \cdot f \circ T^{2} \\
= & W^{n-4} w \cdot w \circ T \cdot w \circ T^{2} \cdot h \circ T^{3} \cdot E(w) \circ T^{2} \cdot E(h) \circ T^{2} \cdot \\
& E\left(w \cdot w_{2}\right) \circ T \cdot f \circ T^{3} \\
= & w \cdot w \circ T \cdot w \circ T^{2} \cdot . w \circ T^{n-2} \cdot h \circ T^{n-1} \cdot E(w) \circ T^{n-2} \cdot E(h) \circ T^{n-2} . \\
& E\left(w \cdot w_{2}\right) \circ T^{n-3} \cdot f \circ T^{n-1} \\
= & w_{n-1} \cdot h \circ T^{n-1} \cdot E(w) \circ T^{n-2} \cdot E(h) \circ T^{n-2} . \\
& E\left(w \cdot w_{2}\right) \circ T^{n-3} \cdot f \circ T^{n-1}
\end{aligned}
$$

And

$$
\begin{aligned}
W^{*} W^{n} f & =W^{*} W^{n-1} w \cdot f \circ T \\
& =W^{*} W^{n-2} w \cdot[w \cdot f \circ T] \circ T \\
& =W^{*} W^{n-2} w \cdot w \circ T \cdot f \circ T^{2} \\
& =W^{*} w \cdot w \circ T . . . w \circ T^{n-1} \cdot f \circ T^{n} \\
& =h \cdot E\left[w \cdot w \cdot w \circ T \ldots . w \circ T^{n-1} \cdot f \circ T^{n}\right] \circ T^{-1} \\
& =h \cdot E\left[w \cdot w_{n}\right] \circ T^{-1} \cdot f \circ T^{n-1} .
\end{aligned}
$$

Now (3.2) becomes
$W \in[n Q I] \Leftrightarrow w_{n-1} \cdot h \circ T^{n-1} \cdot E(w) \circ T^{n-2} . E(h) \circ T^{n-2} \cdot E\left(w \cdot w_{2}\right) \circ T^{n-3} \cdot f \circ T^{n-1}=h \cdot E\left[w \cdot w_{n}\right] \circ T^{-1} \cdot f \circ T^{n-1}$.

Theorem 3.4. Let W be a weighted composition operator then $W^{*} \in[n Q I]$ if and only if $h . E[w] \circ T^{-1} . E[h] \circ$ $T^{-1} \cdot E[w] \circ T^{-2} \cdot E[h] \circ T^{-2} \cdot E[w] \circ T^{-3} \cdot E[h] \circ T^{-3} \ldots . E[w] \circ T^{n-2} \cdot E[h] \circ T^{n-2} \cdot E\left[w \cdot w_{2}\right] \circ T^{-(n-1)} \cdot h \circ T^{-(n-3)} \cdot E[w] \circ$ $T^{-(n-2)} \cdot E[h] \circ T^{-(n-2)} \cdot E(w f) \circ T^{-(n-1)}=w \cdot h \circ T \cdot E[w] \cdot E[h] \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \ldots . E[w] \circ T^{-(n-2)}$. $E[h] \circ T^{-(n-2)} \cdot E(w f) \circ T^{-(n-1)}$.

Proof.

$$
\begin{equation*}
W^{*} \in[n Q I] \Leftrightarrow W^{*^{n-1}} W^{2} W^{*^{2}} f=W W^{*^{n}} f \tag{3.3}
\end{equation*}
$$

$$
\begin{aligned}
W^{*^{n-1}} W^{2} W^{*^{2}} f= & W^{*^{n-1}} W^{2} h \cdot E(w) \circ T^{-1} \cdot E(h) \circ T^{-1} \cdot E(w f) \circ T^{-2} \\
= & W^{*^{n-1}} W \cdot w \cdot h \circ T \cdot E[w] \cdot E[h] \cdot E(w f) \circ T^{-1} \\
= & W^{*^{n-1}} w_{2} \cdot h \circ T^{2} \cdot E[w] \circ T \cdot E[h] \circ T \cdot E(w f) \\
= & W^{*^{n-2}} h \cdot E\left[w \cdot w_{2} \cdot h \circ T^{2} \cdot E[w] \circ T \cdot E[h] \circ T \cdot E(w f)\right] \circ T^{-1} \\
= & W^{*^{n-2}} h \cdot E\left[w \cdot w_{2}\right] \circ T^{-1} \cdot h \circ T \cdot E[w] \cdot E[h] \cdot E(w f) \circ T^{-1} \\
= & W^{*^{n-3}} h \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \cdot E\left[w \cdot w_{2}\right] \circ T^{-2} \cdot h \cdot \\
& E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \cdot E(w f) \circ T^{-2} \\
= & W^{*^{n-4}} h \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \cdot E[w] \circ T^{-2} \cdot E[h] \circ T^{-2} \cdot E\left[w \cdot w_{2}\right] \circ T^{-3} \cdot \\
& h \circ T^{-1} \cdot E[w] \circ T^{-2} \cdot E[h] \circ T^{-2} \cdot E(w f) \circ T^{-3} \\
= & h \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \cdot E[w] \circ T^{-2} \cdot E[h] \circ T^{-2} \cdot E[w] \circ T^{-3} \cdot E[h] \circ T^{-3} \cdot \ldots . \\
& E[w] \circ T^{n-2} \cdot E[h] \circ T^{n-2} \cdot E\left[w \cdot w_{2}\right] \circ T^{-(n-1)} \cdot h \circ T^{-(n-3)} \cdot E[w] \circ T^{-(n-2)} . \\
& E[h] \circ T^{-(n-2)} \cdot E(w f) \circ T^{-(n-1)} \cdot
\end{aligned}
$$

And,

$$
\begin{aligned}
W W^{*^{n}} f= & W W^{*^{n-1}} h \cdot E(w f) \circ T^{-1} \\
= & W W^{*^{n-2}} h \cdot E\left[w \cdot h \cdot E(w f) \circ T^{-1}\right] \circ T^{-1} \\
= & W W^{*^{n-2}} h \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \cdot E(w f) \circ T^{-2} \\
= & W W^{*^{n-3}} h \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \cdot E[w] \circ T^{-2} \cdot E[h] \circ T^{-2} \cdot E(w f) \circ T^{-3} \\
= & W h \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \cdot E[w] \circ T^{-2} \cdot E[h] \circ T^{-2} \\
& \ldots \cdot E[w] \circ T^{-(n-1)} \cdot E[h] \circ T^{-(n-1)} \cdot E(w f) \circ T^{-n} \\
= & w \cdot h \circ T \cdot E[w] \cdot E[h] \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \\
& \ldots \cdot E[w] \circ T^{-(n-2)} \cdot E[h] \circ T^{-(n-2)} \cdot E(w f) \circ T^{-(n-1)} .
\end{aligned}
$$

Now (3.3) becomes $W^{*} \in[n Q I] \Leftrightarrow h \cdot E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \cdot E[w] \circ T^{-2} \cdot E[h] \circ T^{-2} \cdot E[w] \circ T^{-3} \cdot E[h] \circ$ $T^{-3} \ldots . . E[w] \circ T^{n-2} \cdot E[h] \circ T^{n-2} \cdot E\left[w \cdot w_{2}\right] \circ T^{-(n-1)} \cdot h \circ T^{-(n-3)} \cdot E[w] \circ T^{-(n-2)} \cdot E[h] \circ T^{-(n-2)} \cdot E(w f) \circ T^{-(n-1)}=$ $w . h \circ T \cdot E[w] . E[h] . E[w] \circ T^{-1} \cdot E[h] \circ T^{-1} \ldots . E[w] \circ T^{-(n-2)} \cdot E[h] \circ T^{-(n-2)} \cdot E(w f) \circ T^{-(n-1)}$.

4 Charecterisations of class $[n N]$ composition operators

In this section we discuss the characterization of n-power normal composition operators on $L^{2}-$ spaces.
Lemma 4.2. [1] Let α and β be non-negative functions with $S=$ support α. Then the following are equivalent:
(i) For every $f \in L^{2}\left(X, \sum, \lambda\right), \int_{X} \alpha|f|^{2} d \lambda \geq \int_{X}|E(\beta f \mid F)|^{2} d \lambda$, where F is a sub-sigma algebra of \sum.
(ii) Support $\beta \subset S$ and $E\left(\left.\frac{\beta^{2}}{\alpha} \chi_{S} \right\rvert\, F\right) \leq 1$ a.e.

Theorem 4.5. $C_{T} \in B\left(L^{2}(\lambda)\right)$ is of class $[n N]$ if and only if $h_{n}>0$ and $E\left(\frac{1}{h_{n}}\right)=\frac{1}{h_{n} \circ T^{n}}$.
Proof.

$$
\begin{aligned}
\left\langle C_{T}^{*^{n}} C_{T}^{n} f, f\right\rangle & =\left\langle h_{n} f, f\right\rangle=\int_{X} h_{n}|f|^{2} d \lambda \\
\left\langle C_{T}^{n} C_{T}^{*^{n}} f, f\right\rangle & =\left\langle h_{n} \circ T^{n} E f, f\right\rangle=\int_{X} h_{n} \circ T^{n} E(f) \bar{f} d \lambda=\int_{X}\left|E\left(h_{n}^{\frac{1}{2}} \circ T^{n} f\right)\right|^{2} d \lambda
\end{aligned}
$$

Let $S=$ support h_{n}. By Lemma 4.2. C_{T} is of class $[n N]$ if and only if support $h_{n}^{\frac{1}{2}} \circ T^{n} \subset$ support h_{n} and $E\left(\frac{\chi_{S} h_{n} \circ T^{n}}{h_{n}}\right) \leq 1$.

As $h_{n} \circ T^{n}>0$, the condition involving supports is true if and only if $h_{n}>0$ (so that $\chi_{S}=1$). The inequality is then equivalent to $E\left(\frac{1}{h_{n}}\right)=\frac{1}{h_{n} \circ T^{n}}$ since $h_{n} \circ T$ is $T^{-1}(\Sigma)$ measurable.

Theorem 4.6. (i) C_{T} is of class $[n N] \Leftrightarrow\left\|h^{\frac{1}{2}} h_{n-1}^{\frac{1}{2}} f\right\|^{2}=\left\|h_{n-1}^{\frac{1}{2}} h^{\frac{1}{2}} \circ T P f\right\|^{2} \Leftrightarrow\left\|h_{n}^{\frac{1}{2}} f\right\|^{2}=\left\|\left(h_{n} \circ T^{n}\right)^{\frac{1}{2}} P f\right\|^{2}$.
(ii) $\left\|h^{\frac{1}{2}} h_{n-1}^{\frac{1}{2}} P f\right\|^{2}=\left\|h_{n-1}^{\frac{1}{2}} h^{\frac{1}{2}} \circ T P f\right\|^{2}$.

Proof.

$$
\begin{aligned}
0 & =\left\langle C_{T}^{*} C_{T}^{n} f, f \circ T^{n-1}\right\rangle-\left\langle C_{T}^{n} C_{T}^{*} f, f \circ T^{n-1}\right\rangle \\
& =\left\langle h C_{T}^{n-1} f, f \circ T^{n-1}\right\rangle-\left\langle C_{T}^{n-1} h \circ T P f, f \circ T^{n-1}\right\rangle \\
& =\left\langle h f \circ T^{n-1}, f \circ T^{n-1}\right\rangle-\left\langle h \circ T P f \circ T^{n-1}, f \circ T^{n-1}\right\rangle \\
& =\left\langle h f \circ T^{n-1}, f \circ T^{n-1}\right\rangle-\left\langle P h \circ T f \circ T^{n-1}, f \circ T^{n-1}\right\rangle \\
& =\int h|f|^{2} \circ T^{n-1} d \lambda-\int P h \circ T|f|^{2} \circ T^{n-1} d \lambda \\
& =\int h|f|^{2} d \lambda \circ T^{n-1}-\int P h \circ T|f|^{2} d \lambda \circ T^{n-1} \\
& =\left\langle h h_{n-1} f, f\right\rangle-\left\langle P h \circ T h_{n-1} f, f\right\rangle \\
& =\left\langle h h_{n-1} f, f\right\rangle-\left\langle h \circ T h_{n-1} P f, f\right\rangle
\end{aligned}
$$

Since C_{T} and C_{T}^{n} commutes $\forall n \in \mathbb{N}, h, h_{n}$ also commutes $\forall n \in \mathbb{N}$.

$$
\left\|h^{\frac{1}{2}} h_{n-1}^{\frac{1}{2}} f\right\|^{2}=\left\|h_{n-1}^{\frac{1}{2}} h^{\frac{1}{2}} \circ T P f\right\|^{2}
$$

Also,

$$
\left\langle\left(C_{T}^{*^{n}} C_{T}^{n}-C_{T}^{n} C_{T}^{*^{n}}\right) f, f\right\rangle=\left\langle\left(h_{n}-h_{n} \circ T^{n} P\right) f, f\right\rangle
$$

And hence it follows that $\left\|h_{n}^{\frac{1}{2}} f\right\|^{2}=\left\|\left(h_{n} \circ T^{n}\right)^{\frac{1}{2}} P f\right\|^{2}$.
(ii) follows directly from (i)

Theorem 4.7. Let C_{T} be an n-power normal composition operator on $L^{2}(\lambda)$ then for all $m>n, f \in L^{2}$ and $i=m-n$ we have

$$
\begin{equation*}
\left\langle C_{T}^{m} C_{T}^{*^{m}} f, f\right\rangle=\left\langle P h_{i} \circ T^{i} h_{n} f, f\right\rangle \tag{4.4}
\end{equation*}
$$

Proof. For $m=n+1$, we have

$$
\begin{aligned}
\left\langle C_{T}^{n+1} C_{T}^{*^{n+1}} f, f\right\rangle & =\left\langle C_{T} C_{T}^{*} C_{T}^{n} C_{T}^{*^{n}} f, f\right\rangle \\
& =\left\langle h \circ T P h_{n} f, f\right\rangle \\
& =\left\langle P h \circ T h_{n} f, f\right\rangle
\end{aligned}
$$

Suppose 4.4 holds for $m=n+1, n+2, \ldots n+k, i=1,2, \ldots k$ and all $f \in L^{2}$. Then

$$
\begin{aligned}
\left\langle C_{T}^{n+k+1} C_{T}^{*^{n+k+1}} f, f\right\rangle & =\left\langle C_{T}^{k+1} C_{T}^{*^{k+1}} C_{T}^{n} C_{T}^{*^{n}} f, f\right\rangle \\
& =\left\langle h_{k+1} \circ T^{k+1} P h_{n} f, f\right\rangle \\
& =\left\langle P h_{k+1} \circ T^{k+1} h_{n} f, f\right\rangle
\end{aligned}
$$

And hence 4.4 follows by induction.

Theorem 4.8. Let C_{T} be an n-power normal composition operator on $L^{2}(\lambda)$ then for all $m>n, f \in L^{2}$ and $i=m-n$ we have

$$
\begin{equation*}
\left\langle C_{T}^{*^{m}} C_{T}^{m} f, f\right\rangle=\left\langle h_{i} h_{n} f, f\right\rangle \tag{4.5}
\end{equation*}
$$

Proof. For $m=n+1$, we have

$$
\begin{aligned}
\left\langle C_{T}^{*^{n+1}} C_{T}^{n+1} f, f\right\rangle & =\left\langle C_{T}^{*} C_{T} C_{T}^{n} C_{T}^{*^{n}} f, f\right\rangle \\
& =\left\langle h h_{n} f, f\right\rangle \\
& =\left\langle h h_{n} f, f\right\rangle
\end{aligned}
$$

Suppose (4.5) holds for $m=n+1, n+2, \ldots n+k, i=1,2, \ldots k$ and all $f \in L^{2}$. Then

$$
\begin{aligned}
\left\langle C_{T}^{*^{n+k+1}} C_{T}^{n+k+1} f, f\right\rangle & =\left\langle C_{T}^{* k+1} C_{T}^{k+1} C_{T}^{n} C_{T}^{*^{n}} f, f\right\rangle \\
& =\left\langle h_{k+1} h_{n} f, f\right\rangle \\
& =\left\langle h_{k+1} h_{n} f, f\right\rangle
\end{aligned}
$$

And hence 4.5 follows by induction.
Theorem 4.9. Let $C_{T_{1}}$ and $C_{T_{2}}$ be n-power normal composition operators on $L^{2}(\lambda)$ then for all $m>n, p>n$, such that m and p are multiples of $n, C_{T_{1}}^{m} C_{T_{2}}^{p}$ is normal.

Proof. On applying Theorem 4.8 in the subsequent equations the assertion is proved. Denote $C_{T_{1}}^{*^{k}} C_{T_{1}}^{k}$ by $M_{h(1) k}$ and $C_{T_{2}}^{*^{k}} C_{T_{2}}^{k}$ by $M_{h(2) k}$ respectively.

$$
\begin{aligned}
\left\langle\left(C_{T_{1}}^{m} C_{T_{2}}^{p}\right)^{*}\left(C_{T_{1}}^{m} C_{T_{2}}^{p}\right) f, f\right\rangle & =\left\langle C_{T_{2}}^{* p} C_{T_{1}}^{*^{m}} C_{T_{1}}^{m} C_{T_{2}}^{p} f, f\right\rangle \\
& =\left\langle h_{(1) m-n} h_{(1) n} C_{T_{2}}^{p} f, C_{T_{2}}^{p} f\right\rangle \\
& =\left\langle h_{(1) m-n} h_{(1) n} C_{T_{2}}^{* p} C_{T_{2}}^{p} f, f\right\rangle \\
& =\left\langle h_{(1) m-n} h_{(1) n} h_{(2) p-n} h_{(2) n} f, f\right\rangle \\
\left\langle\left(C_{T_{1}}^{m} C_{T_{2}}^{p}\right)\left(C_{T_{1}}^{m} C_{T_{2}}^{p}\right)^{*} f, f\right\rangle & =\left\langle C_{T_{2}}^{p} C_{T_{2}}^{* p} C_{T_{1}}^{*^{m}} f, C_{T_{1}}^{* m} f\right\rangle \\
& =\left\langle h_{(2) p-n} h_{(2) n} C_{T_{1}}^{*_{1}^{m}} C_{T_{1}}^{m} f, f\right\rangle \\
& =\left\langle h_{(1) m-n} h_{(1) n} h_{(2) p-n} h_{(2) n} f, f\right\rangle
\end{aligned}
$$

From the above equalities it follows that $C_{T_{1}}^{m} C_{T_{2}}^{p}$ is normal.
Corollary 4.1. Let $C_{T_{1}}$ and $C_{T_{2}}$ be n-power normal composition operators on $L^{2}(\lambda)$ then for all $m>n, p>n$, such that m and p are multiples of $n,\left(C_{T_{1}}^{m} C_{T_{2}}^{p}\right)^{q}, \forall q \in \mathbb{N}$ is normal.
In particular, for $q=n, C_{T_{1}}^{m} C_{T_{2}}^{p}$ is of class $[n N]$.
Proof. From Theorem 4.9 it is obvious that $\left(C_{T_{1}}^{m} C_{T_{2}}^{p}\right)^{q}, \forall q \in \mathbb{N}$ is normal. And for $q=n$, it follows from the normality of class $[n N]$ operators that $C_{T_{1}}^{m} C_{T_{2}}^{p}$ is of class $[n N]$

Now we establish a close relationship between $\sigma\left(C_{T}\right)$ and $E(h)$ where $E(h)$ denotes the essential range of the Radon-Nikodym derivative h.

Theorem 4.10. Let C_{T} be an n-power normal composition operator on $L^{2}(\lambda)$ then
$\sigma\left(C_{T}\right) \subset\left\{\alpha^{\frac{1}{n}}: \alpha^{\frac{1}{n}} \in \mathbb{C}\right.$ and $\left.|\alpha|^{\frac{2}{n}} \in E\left(h_{n}\right)^{\frac{1}{n}}\right\}$
Proof. C_{T} is in class $[n N]$ implies C_{T}^{n} is normal and hence by Spectral mapping Theorem, for normal operators, $\sigma\left(C_{T}^{*^{n}} C_{T}^{n}\right)=\left\{|\alpha|^{2}: \alpha \in \sigma\left(C_{T}^{n}\right)\right\}$.
But $C_{T}^{*^{n}} C_{T}^{n}=M_{h_{n}}$.

Therefore $\sigma\left(M_{h_{n}}\right)=\left\{|\alpha|^{2}: \alpha \in \sigma\left(C_{T}^{n}\right)\right\}$. Because $\sigma\left(M_{h_{n}}\right)=E\left(h_{n}\right)$. We have,
$E\left(h_{n}\right)=\left\{|\alpha|^{2}: \alpha \in \sigma\left(C_{T}^{n}\right)\right\}=\left\{|\alpha|^{2}: \alpha \in \sigma\left(C_{T}\right)^{n}\right\}$.
Thus $\sigma\left(C_{T}\right)^{n} \subset\left\{\alpha: \alpha \in \mathbb{C}\right.$ and $\left.|\alpha|^{2} \in E\left(h_{n}\right)\right\}$, which implies
$\sigma\left(C_{T}\right) \subset\left\{\alpha^{\frac{1}{n}}: \alpha^{\frac{1}{n}} \in \mathbb{C}\right.$ and $\left.|\alpha|^{\frac{2}{n}} \in E\left(h_{n}\right)^{\frac{1}{n}}\right\}$

Theorem 4.11. Let C_{T} be an n-power normal composition operator on $L^{2}(\lambda)$ such that 1 does not belong to $E\left(h_{n}\right)^{\frac{1}{n}}$. Then $\sigma\left(C_{T}\right)=\left\{\alpha^{\frac{1}{n}}: \alpha^{\frac{1}{n}} \in \mathbb{C}\right.$ and $\left.|\alpha|^{\frac{2}{n}} \in E\left(h_{n}\right)^{\frac{1}{n}}\right\}$ and hence $\sigma\left(C_{T}\right)$ has cyclic symmetry.

Proof. From the proof of Theorem 4.10. we have, $E\left(h_{n}\right)^{\frac{1}{n}}=\left\{|\alpha|^{\frac{2}{n}}: \alpha^{\frac{1}{n}} \in \sigma\left(C_{T}\right)\right\}$. Thus for every $m \in E\left(h_{n}\right)^{\frac{1}{n}}$ there is an $\alpha^{\frac{1}{n}} \in \sigma\left(C_{T}\right)$ such that $|\alpha|^{\frac{1}{n}}=m$. If $\alpha \in \sigma\left(C_{T}\right)$ and $|\alpha| \neq 1$, then every β such that $|\alpha|=|\beta|$ is in $\sigma\left(C_{T}\right)$ [6]. Since by assumption, $1 \notin E\left(h_{n}\right)^{\frac{1}{n}}$ there is no $\alpha^{\frac{1}{n}} \in \sigma\left(C_{T}\right)$ such that $|\alpha|^{\frac{2}{n}}=1$. Hence $\left\{\alpha^{\frac{1}{n}}: \alpha^{\frac{1}{n}} \in \mathbb{C}\right.$ and $\left.|\alpha|^{\frac{2}{n}} \in E\left(h_{n}\right)^{\frac{1}{n}}\right\} \subset \sigma\left(C_{T}\right)$. The opposite inclusion follows from Theorem 4.10 and hence $\sigma\left(C_{T}\right)=\left\{\alpha^{\frac{1}{n}}: \alpha^{\frac{1}{n}} \in \mathbb{C}\right.$ and $\left.|\alpha|^{\frac{2}{n}} \in E\left(h_{n}\right)^{\frac{1}{n}}\right\}$.

5 Quasi-isometry and n-power Quasi-isometry Composite multiplication operators

In this section we give a characterization of quasi-isometry and n - power quasi-isometry composite multiplication operators.

Theorem 5.12. Let $M_{u, T}$ on $L^{2}(\lambda)$ be a composite mulitiplication operator, then for $\lambda \geq 0, M_{u, T}$ is a quasi-isometry if and only if $u . h . E[u h] \circ T^{-1} . E\left[u \circ T u \circ T^{2}\right] \circ T^{-2} . f=u^{2}$. h.f.

Proof.

$$
\begin{aligned}
& M_{u, T} \text { is a quasi-isometry } \Leftrightarrow M_{u, T}^{* 2} M_{u, T}^{2} f=M_{u, T}^{*} M_{u, T} f \\
& \Leftrightarrow \quad M_{u, T}^{*{ }^{2}} M_{u, T} u \circ T . f \circ T=M_{u, T}^{*} \cdot u \circ T . f \circ T \\
& \Leftrightarrow \quad M_{u, T}^{*^{2}}[u \circ T(u \circ T . f \circ T) \circ T]=u . h . E[u \circ T . f \circ T] \circ T^{-1} \\
& \Leftrightarrow \quad M_{u, T}^{*^{2}}\left[u \circ T . u \circ T^{2} . f \circ T^{2}\right]=u . h . u \circ T \circ T^{-1} . f \circ T \circ T^{-1} \\
& \Leftrightarrow \quad M_{u, T}^{*} u . h . E\left[u \circ T . u \circ T^{2} . f \circ T^{2}\right] \circ T^{-1}=\text { u.h.u. } f \\
& \Leftrightarrow \quad M_{u, T}^{*} u . h . E\left[u \circ T . u \circ T^{2}\right] \circ T^{-1} . f \circ T=u^{2} . h . f \\
& \Leftrightarrow \quad u . h . E\left[u . h . E\left[u \circ T . u \circ T^{2}\right] \circ T^{-1} . f \circ T\right] \circ T^{-1}=u^{2} . h . f \\
& \Leftrightarrow \quad u . h . E[u h] \circ T^{-1} . E\left[u \circ T . u \circ T^{2}\right] \circ T^{-2} . f=u^{2} . h . f .
\end{aligned}
$$

Corollary 5.2. $C_{T} \in B\left(L^{2}(\lambda)\right)$ is quasi-isometry if and only if $h . E[h] \circ T^{-1} . f=h . f$.
Proof. The proof is obtained by putting $u=1$ in Theorem 5.12

Theorem 5.13. Let $M_{u, T}$ on $L^{2}(\lambda)$ be a composite mulitiplication operator, then for $\lambda \geq 0, M_{u, T}^{*}$ is a quasi-isometry if and only if $u \circ T . u \circ T^{2} . u \circ T^{2} . h \circ T^{2} . E[u . h] \circ T . E[f]=u \circ T . u \circ T . h \circ T . E[f]$

Proof.

$$
\begin{aligned}
& M_{u, T}^{*} \text { is a quasi-isometry } \Leftrightarrow M_{u, T}^{2} M_{u, T}^{* 2} f=M_{u, T} M_{u, T}^{*} f \\
& \Leftrightarrow \quad M_{u, T}^{2} M_{u, T}^{*} u . h . E[f] \circ T^{-1}=M_{u, T} u . h . E[f] \circ T^{-1} \\
& \Leftrightarrow \quad M_{u, T}^{2} u . h . E\left[u . h . E[f] \circ T^{-1}\right] \circ T^{-1}=u \circ T .\left[u . h . E[f] \circ T^{-1}\right] \circ T \\
& \Leftrightarrow \quad M_{u, T}^{2} u . h . E[u . h] \circ T^{-1} . E[f] \circ T^{-2}=u \circ T . u \circ T . h \circ T . E[f] \\
& \Leftrightarrow \quad M_{u, T} u \circ T .\left[u . h . E[u . h] \circ T^{-1} . E[f] \circ T^{-2}\right] \circ T \\
& =u \circ T . u \circ T . h \circ T . E[f] \\
& \Leftrightarrow \quad M_{u, T} u \circ T . u \circ T . h \circ T . E[u . h] . E[f] \circ T^{-1} \\
& =u \circ T . u \circ T . h \circ T . E[f] \\
& \Leftrightarrow \quad u \circ T\left[u \circ T u \circ T . h \circ T . E[u . h] \cdot E[f] \circ T^{-1}\right] \circ T \\
& =u \circ T . u \circ T . h \circ T . E[f] \\
& \Leftrightarrow \quad u \circ T . u \circ T^{2} . u \circ T^{2} . h \circ T^{2} . E[u . h] \circ T . E[f] \\
& =u \circ T . u \circ T . h \circ T . E[f] \text {. }
\end{aligned}
$$

Theorem 5.14. Let $M_{u, T}$ on $L^{2}(\lambda)$ be a composite mulitiplication operator, then for $\lambda \geq 0, M_{u, T}$ is an n-power quasi-isometry operator if and only if $u \circ T . u \circ T^{2} . u \circ T^{3} u \circ T^{n-1} . u \circ T^{n-1} . h \circ T^{n-1} . E[u . h] \circ T^{n-2} E\left[u \circ T . u \circ T^{2}\right] \circ$ $T^{n-3} . f \circ T^{n-1}=u . h . E\left[u \circ T . u \circ T^{2} . u \circ T^{3} . . . u \circ T^{n}\right] \circ T^{-1} . f \circ T^{n-1}$.

Proof.

$$
\begin{equation*}
M_{u, T} \text { is } n \text {-power quasi-isometry } \Leftrightarrow M_{u, T}^{n-1} M_{u, T}^{*^{2}} M_{u, T}^{2} f=M_{u, T}^{*} M_{u, T} M_{u, T}^{n-1} f \tag{5.6}
\end{equation*}
$$

Now,

$$
\begin{aligned}
M_{u, T}^{n-1} M_{u, T}^{*^{2}} M_{u, T}^{2} f & =M_{u, T}^{n-1} u \cdot h \cdot E[u \cdot h] \circ T^{-1} \cdot E\left[u \circ T \cdot u \circ T^{2}\right] \circ T^{-2} \cdot f \\
& =M_{u, T}^{n-2} u \circ T\left[u \cdot h \cdot E[u \cdot h] \circ T^{-1} \cdot E\left[u \circ T \cdot u \circ T^{2}\right] \circ T^{-2} \cdot f\right] \circ T \\
& =M_{u, T}^{n-2} u \circ T \cdot u \circ T \cdot h \circ T \cdot E[u \cdot h] \cdot E\left[u \circ T \cdot u \circ T^{2}\right] \circ T^{-1} \cdot f \circ T \\
& =M_{u, T}^{n-3} u \circ T\left[u \circ T \cdot u \circ T \cdot h \circ T \cdot E[u \cdot h] \cdot E\left[u \circ T \cdot u \circ T^{2}\right] \circ T^{-1} \cdot f \circ T\right] \circ T \\
& =M_{u, T}^{n-3} u \circ T . u \circ T^{2} \cdot u \circ T^{2} \cdot h \circ T^{2} \cdot E[u \cdot h] \circ T \cdot E\left[u \circ T \cdot u \circ T^{2}\right] \cdot f \circ T^{2} .
\end{aligned}
$$

Continuing in a similar manner, we arrive at the following expression,

$$
\begin{aligned}
& M_{u, T}^{n-1} M_{u, T}^{*^{2}} M_{u, T}^{2} f=u \circ T . u \circ T^{2} . u \circ T^{3} \ldots . . u \circ T^{n-1} . u \circ T^{n-1} \\
& h \circ T^{n-1} . E[u . h] \circ T^{n-2} . E\left[u \circ T . u \circ T^{2}\right] \circ T^{n-3} . \\
& f \circ T^{n-1} \text {. } \\
& M_{u, T}^{*} M_{u, T}^{n} f=M_{u, T}^{*} M_{u, T}^{n-1} u \circ T . f \circ T \\
& =M_{u, T}^{*} M_{u, T}^{n-2} u \circ T[u \circ T . f \circ T] \circ T \\
& =M_{u, T}^{*} M_{u, T}^{n-2} u \circ T . u \circ T^{2} . f \circ T^{2} \\
& =\text {. } \\
& =\text {. } \\
& =\text {. } \\
& =M_{u, T}^{*} u \circ T . u \circ T^{2} . u \circ T^{3} \ldots . u \circ T^{n} . f \circ T^{n} \\
& =u . h E\left[u \circ T . u \circ T^{2} . u \circ T^{3} \ldots u \circ T^{n} . f \circ T^{n}\right] \circ T^{-1} \\
& =u . h E\left[u \circ T . u \circ T^{2} . u \circ T^{3} . . . u \circ T^{n}\right] \circ T^{-1} . f \circ T^{n-1} .
\end{aligned}
$$

Hence equation (5.6) becomes,
$M_{u, T}$ is n-power quasi-isometry $\Leftrightarrow u \circ T . u \circ T^{2} . u \circ T^{3} \ldots . u \circ T^{n-1} . u \circ T^{n-1}$
$h \circ T^{n-1} . E[u . h] \circ T^{n-2} . E\left[u \circ T . u \circ T^{2}\right] \circ T^{n-3} . f \circ T^{n-1}=u . h . E\left[u \circ T . u \circ T^{2} . u \circ T^{3} \ldots u \circ T^{n}\right] \circ T^{-1} . f \circ T^{n-1}$.
Corollary 5.3. $C_{T} \in B\left(L^{2}(\lambda)\right)$ is n-power quasi-isometry if and only if $h \circ T^{n-1} . E[h] \circ T^{n-2} . f \circ T^{n-1}=h . f \circ T^{n-1}$.
Proof. The proof is obtained by putting $u=1$ in Theorem 5.14 .
Theorem 5.15. Let $M_{u, T}$ on $L^{2}(\lambda)$ be a composite mulitiplication operator, then for $\lambda \geq 0, M_{u, T}^{*}$ is an n-power quasiisometry operator if and only if u.h. $E[u . h] \circ T^{-1} . E[u . h] \circ T^{-2} \ldots . E[u . h] \circ T^{-(n-2)} E\left[u \circ T . u \circ T^{2} . u \circ T^{2}\right] \circ T^{-(n-1)}$. $E[h] \circ T^{-(n-3)} \cdot E[u . h] \circ T^{-(n-2)} \cdot E[f] \circ T^{-(n-1)}=u \circ T . u \circ T . h \circ T . E[u . h] . E[u . h] \circ T^{-1} \cdot E[u . h] \circ T^{-2} \ldots . E[u . h] \circ$ $T^{-(n-2)} \cdot E[f] \circ T^{-(n-1)}$.

Proof.

$$
\begin{equation*}
M_{u, T}^{*} \text { is n-power quasi-isometry } \Leftrightarrow M_{u, T}^{*^{n-1}} M_{u, T}^{2} M_{u, T}^{*^{2}} f=M_{u, T} M_{u, T}^{*} M_{u, T}^{*^{n-1}} f \tag{5.7}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& M_{u, T}^{*^{n-1}} M_{u, T}^{2} M_{u, T}^{*^{2}} f=M_{u, T}^{*^{n-1}}\left[u \circ T . u \circ T^{2} . u \circ T^{2} . h \circ T^{2} . E[u . h] \circ T . E[f]\right] \\
& =M_{u, T}^{*^{n-2}} u . h . E\left[u \circ T . u \circ T^{2} . u \circ T^{2} . h \circ T^{2} \cdot E[u . h] \circ T . E[f]\right] \circ T^{-1} \\
& =M_{u, T}^{*^{n-2}} u . h . E\left[u \circ T . u \circ T^{2} . u \circ T^{2}\right] \circ T^{-1} . h \circ T . E[u . h] . E[f] \circ T^{-1} \\
& =M_{u, T}^{*^{n-3}} u . h . E\left[u . h . E\left[u \circ T . u \circ T^{2} . u \circ T^{2}\right] \circ T^{-1}\right. \text {. } \\
& \left.h \circ T . E[u . h] . E[f] \circ T^{-1}\right] \circ T^{-1} \\
& =M_{u, T}^{*^{n-3}} u . h . E[u . h] \circ T^{-1} . E\left[u \circ T . u \circ T^{2} . u \circ T^{2}\right] \circ T^{-2} . \\
& h . E[u . h] \circ T^{-1} \cdot E[f] \circ T^{-2} \\
& =\text {. } \\
& =\text {. } \\
& =\text {. } \\
& =u . h \cdot E[u . h] \circ T^{-1} \cdot E[u . h] \circ T^{-2} \ldots . E[u . h] \circ T^{-(n-2)} \\
& E\left[u \circ T . u \circ T^{2} \cdot u \circ T^{2}\right] \circ T^{-(n-1)} \cdot E[h] \circ T^{-(n-3)} \\
& E[u . h] \circ T^{-(n-2)} \cdot E[f] \circ T^{-(n-1)} .
\end{aligned}
$$

And,

$$
\begin{aligned}
M_{u, T} M_{u, T}^{*^{n}}= & M_{u, T} M_{u, T}^{*^{n-1}} u \cdot h \cdot E[f] \circ T^{-1} \\
= & M_{u, T} M_{u, T}^{*^{n-2}} u \cdot h \cdot E\left[u \cdot h \cdot E[f] \circ T^{-1}\right] \circ T^{-1} \\
= & M_{u, T} M_{u, T}^{*^{n-2}} u \cdot h \cdot E[u \cdot h] \circ T^{-1} \cdot E[f] \circ T^{-2} \\
= & \cdot \\
= & \cdot \\
= & \cdot \\
= & M_{u, T} u \cdot h \cdot E[u \cdot h] \circ T^{-1} \cdot E[u \cdot h] \circ T^{-2} \cdot E[u \cdot h] \circ T^{-3} \ldots . \\
& E[u \cdot h] \circ T^{-(n-1)} \cdot E[f] \circ T^{-n} \\
= & u \circ T\left[u \cdot h \cdot E[u \cdot h] \circ T^{-1} \cdot E[u \cdot h] \circ T^{-2} \cdot E[u \cdot h] \circ T^{-3} \ldots .\right. \\
& \left.E[u \cdot h] \circ T^{-(n-1)} \cdot E[f] \circ T^{-n}\right] \circ T \\
= & u \circ T \cdot u \circ T \cdot h \circ T \cdot E[u \cdot h] \cdot E[u \cdot h] \circ T^{-1} \cdot E[u \cdot h] \circ T^{-2} \ldots . \\
& E[u \cdot h] \circ T^{-(n-2)} \cdot E[f] \circ T^{-(n-1)} .
\end{aligned}
$$

Hence equation (5.7) becomes,
$M_{u, T}^{*}$ is n-power quasi-isometry \Leftrightarrow u.h. $E[u . h] \circ T^{-1} . E[u . h] \circ T^{-2} \ldots . E[u . h] \circ T^{-(n-2)} . E\left[u \circ T . u \circ T^{2} . u \circ T^{2}\right] \circ$
$T^{-(n-1)} \cdot E[h] \circ T^{-(n-3)} \cdot E[u . h] \circ T^{-(n-2)} \cdot E[f] \circ T^{-(n-1)}=u \circ T . u \circ T . h \circ T \cdot E[u . h] \cdot E[u \cdot h] \circ T^{-1} \cdot E[u . h] \circ T^{-2}$ $\ldots . E[u . h] \circ T^{-(n-2)} . E[f] \circ T^{-(n-1)}$.

Corollary 5.4. $C_{T}^{*} \in B\left(L^{2}(\lambda)\right)$ is n-power quasi-isometry if and only if $h . E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \ldots . E[h] \circ T^{-(n-2)}$. $E[h] \circ T^{-(n-3)} \cdot E[h] \circ T^{-(n-2)} \cdot E[f] \circ T^{-(n-1)}=h \circ T \cdot E[h] \cdot E[h] \circ T^{-1} \cdot E[h] \circ T^{-2} \ldots . E[h] \circ T^{-(n-2)} \cdot E[f] \circ T^{-(n-1)}$.

Proof. The proof is obtained by putting $u=1$ in Theorem 5.15

References

[1] C. Burnap, I. B. Jung and A. Lambert, Separating partial normality classes with composition opertors, J.Operator Theory, 53(2) (2005), 381-397.
[2] D. J. Harrington and R. Whitley, Seminormal composition operator, J. Operator Theory, 11(1981), 125-135.
[3] A. A. S. Jibril, On n-Power normal operators, The Arabian Journal for Science and Engineering, 33(2A)(2008), 247-251.
[4] J. S. I. Mary , Spectra of composition operators and their Alugthe transformations, Indian J. of Mathematics,51(3)(2009), 549-555.
[5] J. S. I. Mary and P. Vijayalakshmi, A note on the class of N-power quasi isometry, International J. Applied Mathematics and Statistical Sciences, 2(5)(2013), 1-8.
[6] W. C. Ridge, Proc. Am. Math. Soc., 37(1973), 121-127.
[7] S. Senthil, P. Thangaraju and D. C. Kumar, n-normal and n-quasi-normal composite multiplication operator on L^{2}-spaces, J. Scientific Research and Reports,8(4)(2015), 1-9.
[8] R. K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc.,45(1974), 80-82.

Received: September 2, 2015; Accepted: January 23, 2016

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail address: sreevijis@gmail.com (P. Vijayalakshmi), stellairenemary@gmail.com(J. Stella Irene Mary).

