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Abstract
In this paper, we consider a class of first order neutral difference equations of the form
Alr(n)(x(n) + p(n)x(n — 7)) +q(n)x(n — o) =0, n = no. (+)
Some sufficient conditions for the oscillation of all solutions of (*) are established. Our result extend and

improve some of the previous results in the literature. Some examples are considered to illustrate our results.
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1 Introduction

During the past few decades, neutral difference equations have been studied extensively and the
oscillatory theory for these equations is well developed; see [1]] [2] [3] [4] [5] (6] [7] [8] [©] [10] [11] [12] [13]
[14] [15] [16] [17] [18] and the references cited therein. A survey of the most significant efforts in this theory
can be found in the excellent monographs of Gydri and Ladas [6] and Agarwal [1], [2].

Consider the first order neutral difference equations of the form

Alr(n)(x(n) + p(n)x(n — 1)) +q(n)x(n—0c) =0, n>ny (1.1)

where {p(n)} is a sequence of real numbers, {r(n)} and {q(n)} are sequences of positive real numbers, T and
o are positive integers, and A is the forward difference operator given by Ax(n) = x(n +1) — x(n).

Let us choose a positive integer n* > max {t,0}. By a solution of on N(ng) = {ng,no+1,..}, we
mean a real sequence {x(n)} which is defined on n > ny — n* and which satisfies for n € N(ng). A
solution {x(n)} of on N(ng) is said to be oscillatory if for every positive integer Ny > ng there exists
n > Np such that x(n)x(n + 1) < 0, otherwise {x(n)} is said to be non-oscillatory.

There are numerous numbers of oscillation criteria obtained for oscillation of all solutions of (L.I). In
particular, Murugesan and Suganthi [9] investigated the oscillation behavior of and obtained some new
oscillation results under the condition .

Y g(n) = co. (1.2)

n=ng
For oscillation of when r(n) = 1 and p(n) is equal to a constant, we refer the readers to the papers by
Lalli [7] and the references cited therein. For further oscillation results on the oscillating behavior of solutions
of (L1), when r(n) = 1, we refer the reader to the monographs by Agarwal [, [2] as well as the papers of
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Ying Gao and Zhang [15], Murugesan and Suganthi [9], Chen et. al [3], Tang et. al [13] and the references cited
therein.
Define the sequences {z(n)} and {w(n)} as follows:

z(n) = x(n) + p(n)x(n — 1), (1.3)
w(n) = z(n) + p(n)z(n — 7). (1.4)

If {x(n)} is an eventually positive solution of the equation
Alx(n) + px(n —1)] + g(n)x(n — o) =0, (1.5)

where p is a real constant then {z(n)} and {w(n)} are also solutions of (L.5).
In the sequel, unless otherwise specified, when we write a functional inequality, we assume that it holds
for all sufficiently large n.

2 Some Useful Lemmas

In the proof of our main results, we need the following Lemmas. The Lemma[2.2]and 2.3]are discrete analogues
of the Lemma 1.5.1 and 1.5.3 respectively in [6].

Lemma 2.1. [9] Assume that holds. Let {x(n)} be an eventually positive solution of equation (I.1). Then the
following statements are true.

(i) if p(n) < —1thenz(n) <0;
(ii) if =1 < p(n) < 0 and {r(n)} is a decreasing sequence of positive real numbers, then z(n) > 0 and
lim;, 00 z(n) = 0.

Lemma 2.2. Let {f(n)} and {g(n)} be sequence of real numbers such that

f(n) =g(n) +ug(n—c); n=>no+max{0c},

where y € R, u # 1 and c is a positive integer. Assume that lim,_, f(n) =1 € R exists and liminf, , ¢(n) =a €
R. Thenl = (1+p)a.

Lemma 2.3. Let 0 < A < 1, ¢ be a positive integer and ny € N and {x(n)} be a sequence of positive real numbers and
assume that for every €> 0 there exists a ne > ng such that

x(n) < A+ €)x(n—c)+ € for n>ne.

Then

nlg‘go x(n) =0.

Lemma 2.4. Assume that holds, p is a real number with p # 1 and {q(n)} is a T-periodic sequence of positive
real numbers. Let {x(n)} be an eventually positive solution of (1.5).

Then
(a) {z(n)} is decreasing sequence and either

,}grt}oz(n) = —o0; (2.6)
or
nl% z(n) = 0. (2.7)

(b) The following statements are equivalent:

(i) holds;
(i) p< —1;
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(iii) limy e (1) = oo;
(iv) w(n) > 0, Aw(n) > 0.
(c) The following statements are equivalent:

(i) holds;

(ii) p > —1;

(iii) limy—ye0 x(1) = 0;

(iv) w(n) >0, Aw(n) < 0.
Proof. (a) we have

Az(n) = —g(n)x(n—0) <0 (2.8)

and so {z(n)} is strictly decreasing sequence. If is not true, then there exists I € R such that
limy 0 z(n) = I. By summing from nq to co, with nj sufficiently large, we find

o]

I—z(n)=— Y q(s)x(s —0). (2.9)

S=Mnq

In view of this implies that lim inf, e x(11) = 0 and so by Lemma[2.2} I = (1 + p)0 = 0. The proof of (a)
is complete.

Now we turn to the proofs of (b) and (c). First assume that holds. Then p must be negative and {x(n)}
is unbounded. Therefore there exists a n* > 1y such that z(n*) < 0 and

x(n*) > maxx(s) > 0.
s<n*

Then
0>z(n*) =x(n*) +px(n* — 1) > x(n*)(1+p)
which implies that p < —1. Also
z(n) = x(n) + px(n —t) > px(n — 1)
and implies that lim,,_,« (1) = co. Now assume that holds.

If p > 0, then from it follows that lim,, e x(1) = 0. Next assume that p € (—1,0). Then by Lemma
limy, 00 x(1) = 0.

Finally if p < —1, then x(n) > —px(n — ) > x(n — T) which shows that {x(n)} is bounded from below
by a positive constant, say m. Then yields.

l—z(ny)+m i q(s) <0,

S=M1q
which is a contradiction. Therefore, if holds p > —1. Observe that under the hypothesis 2.6), we have
Aw(n) = —g(n)z(n — o) > 0. (2.10)

If holds, then
lim w(n) = oo. (2.11)

n—oo

From (2.10) and (2.11) we have w(n) > 0 eventually. By a similar proof, under the hypothesis (2.7), we have
Aw(n) < 0and w(n) > 0. On the basis of the above discussions, the proof of (b) and (c) are now obvious. [

Lemma 2.5. Assume that
n+o—1

limsup ) g(s) > 0. (2.12)

n—oo sS=n
If {x(n)} is an eventually positive solution of the delay difference equation
Ax(n)+q(n)x(n—0) =0, n>n, (2.13)

then

liminf =) _ o, (2.14)
n—00 x(n)
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Proof. In view of the assumption there exists a constant d > 0 and a sequence {n;} of positive integers such

that ny — oo as k — oo and
nk+(771

Y. q(s)>d; k=1,2,3,..

S=ny

Then there exists a ¢ € {ng, ny + 1,...,nx + o} for each k such that

Cr d ng+o d
Y aq(s) > 3 and Y q(s) > > (2.15)
§=Mg s=C
Summing the equation (2.13)) from #n; to & and ¢y to ny + o, we find
Ck
X(Ge+1) —x(m)+ Y qls)x(s—0o) =0 (2.16)
S=Mnj
and
ng+o
x(ng+o+1)—x (&) + Y q(s)x(s —a) =0. (2.17)
s=C

n)} and (2.15), we find

By omitting the first terms in (2.16) and (2.17) and by using the decreasing nature of {x

—x(m) + S (G —0) <0

and
d
—x(Gx) + 5x () <0
(or)
2
o) (7))
x (Ck) d
This completes the proof. O
Lemma 2.6. If the equation has an eventually positive solution, then one has eventually that
nto
Y. a(s) < (2.18)
s=n+1
Proof. Let {x(n)} be an eventually positive solution of (2.13). On the contrary, assume that
nto
Yo q(s)>1 (2.19)
s=n+1

eventually. Summing the equation (2.13) from n + 1 to n + ¢ and using the decreasing nature of {x(n)}, we

n+o

have
x(n+o+1)—x(n+1)+ Y q(s)x(s—0) <0,
s=n+1
or
n+o
x(n+o+1)— ) Y. qls
s=n+1
or
n+to
x(n+o+1)+x(n) | Y, q(s 0,
s=n+1
eventually.

This is a contradiction and the proof is complete.
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Lemma 2.7. [6] The delay difference inequality
Ax(n)+q(n)x(n—0) <0
has an eventually positive solution if and only if the delay difference equation
Ay(n) +q(n)y(n—0o) =0
has an eventually positive solution.
Lemma 2.8. [6] The advanced difference inequality
Ax(n) - g(n)x(n+0) <0
has an eventually negative solution if and only if the advanced difference equation
Ay(n) —q(n)y(n+0) =0
has an eventually negative solution.
Lemma 2.9. Assume that

n—1
limsup ) g(s) >0.

n—=0 s=p—g+1

If {x(n)} is an eventually negative solution of the advanced difference equation
Ax(n) —q(n)x(n+0) =0, n>ny,

then

69

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

Proof. In view of the assumption there exists a constant d > 0 and a sequence {1} of positive integers such

that n; — oo as k — oo and
}’lk—l

Y q(s)>d, k=1,23..

s=np—o+1

Then there exists § € {ny — o, ny — o+ 1, ..., n} for all k such that

Gk d Mg d

Y, qs)=5 and ) q(s) >3
_ 2 & 2
ankfﬂJrl S—[:k

Summing the equation (2.25)) from 1, — o to §; and ¢ to ng, we find
Ck
2(C+1) —x(me—o)— ) q(s)x(s+0)

s=np—o+1

and

(& +1) — x(&) — Zq x(s+0) =0.

s=Cx

By omitting the second terms in ( and (2.16) and by using the decreasing nature of {x(

find p
x(@k + 1) — x(nk +1)§ <0
and i
x(ng+1) = x(Gx +0)5 <0
or

s = ()

This completes the proof.

=0

(2.26)

(2.27)

(2.28)

n)} and (2.26), we
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Lemma 2.10. If the equation has an eventually negative solution, than one has eventually that

n—1
q(s) < 1. (2.29)

s=n—oc+1
Proof. Let {x(n)} be an eventually negative solution of (2.25). On the contrary, let us assume that

n—1
q(s) > 1, (2.30)

s=n—o+1

eventually. Summing the equation (2.25) from n — ¢ + 1 to n and using the decreasing nature of {x(n)}, we

have
n

x(n+1)—x(n—c+1)— Y g(s)x(s+0)=0

s=n—o+1
or .,
x(n+1)—x(n—oc+1)—x(n+1) Y g(s)<0
s=n—o+1
or
n
—x(n—oc+1)+x(n+1) (1 - ) q(s)) <0.
s=n—o+1
This is a contradiction and the proof is complete. O

3 Main Results

Theorem 3.1. Assume that hold with —1 < p(n) < 0and {r(n)} is a decreasing sequence positive real numbers.

Suppose that
) n+o
y [r(z(f)g)ln (e L r(qs(s_)aﬂ — oo, (3.31)

n=ny

Then every solution of is oscillatory.

Proof. Assume, for the sake of a contradiction, that has an eventually positive solution {x(n)}. Then
there exists an integers 1y > ng such that x(n) > 0, x(n —7) > 0and x(n — o > 0 for n > ny.
Set z(n) to be defined as in (1.3). Then by Lemma[2.1](ii), it follows that

z(n) >0, eventually. (3.32)
As x(n) > z(n), it follows from that

A(r(n)z(n)) +q(n)z(n—0o) <0 (3.33)

Dividing the last inequality by r(n) > 0, we obtain

Az(n) + Arr(:;)z(n +1)+ ZEZ;Z(n —0) <0. (3.34)
Let (n)
_yun
This implies that y(n) > 0. Substituting in yields
Ay(n) + r(z(ﬁ)a)y(n —0)<0, n>ny (3.36)

So by Lemma [2.5] we have that the delay difference equation

Ay(n) + r(jz(n)a)y(n —0)=0, n>n (3.37)



A. Murugesan et al. / Oscillation of First Order......

has an eventually positive solution as well. Let

Then {A(n)} satisfies

where (n)
— - q n
Q) = r(n—o)
Let Y
R(n)= Y Q(s)
s=n+1
Therefore

Applying the inequality

e”x2x+lnfa>, vV x,a>0,
to (3.42), we have
n_l n(e(R(n
A(n) > Q(n){R(ln) L AG) ! (R((I;() ))},

n—+o n—1 n+o
A(n) < ilQ_(s)> —Q(n) Z A(s) > Q(n)In (e i Q(s)) )
s=n+ s=n—0o s

Then, for M > N, we have

n+o

=n—o n=N

M-1 B M-1 B n—1 M-1 _ n+o
;V)\(n)< Z Q(s)) — ;\]Q(n) Z A(s) > Q(n)In <e Z Q(s)).

s=n+1
By interchanging the order of summation, we get

M-1 n—1 M—c—1 nto
ZNQ(n) Y. Als) = ;\r A(n)( Y Q(s)).

=n—o S

From (3.45) and (3.47), we find that

n=M-o =n+1 n=N s=n+1
By Lemma[2.4] we have
n—o
Y. Q(s) <1 eventually.
s=n+1
Therefore, from (3.48) and (3.49), we get
M-1 M-1 nto
Y, A(m)> ) Q(n)ln (6 Y. Q(S)) ,
n=M-o n=N s=n+1
M-1 nt1 M-1 nto
y (1y()) > Y Qmin{e Y Q) ).
n=M-—o y(n) n=N s=n+1

Using the inequality
logx <x—-1, for 0<x<1

71

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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in , we get
M—o0 M-1 nto
lny(y(M)) > Q(n)In <e ) Q(s)) (3.52)
n=N s=n+1
which implies by condition that
im Y19 _ (3.53)

we ()

On the other hand, (3.31) implies that there exists a sequence {n} of positive integers with nj — oo as k — oo
such that

n+o
16) 1 g an k. (3.54)
s=np+1 T(S B U) e
Hence by Lemma [2.3] we obtain
liminf " =) _ o (3.55)
n—eo  y(n)
This contradicts (3.53) and completes the proof. O

Theorem 3.2. Assume that hold with p(n) = p > —1,r(n) =r > 0and o > 7. Assume further that {q(n)} is

a T -periodic and
q(n) T a0
Inf{e
r(1+p) ( SZ;H r(1+p)

(o]
n=ny

Then every solution of is oscillatory.

(3.56)

Proof. Assume the contrary. Without loss of generality we may assume that {x(n)} be an eventually positive
solution of (1.1). Then there exists an integers 17 > ng such that

x(n) >0, x(n—7)>0 and x(n—0c) >0 for all n>n. (3.57)

Let z(n) and w(n) be defined as in and (1.4). It is easily seen, by direct substituting, that {z(n)} and
{w(n)} are also solutions of when p and r are constants, that is

rAz(n) + prAz(n —t) +gq(n)z(n — o) =0, (3.58)

rAw(n) + prAw(n — 1) + q(n)w(n — o) = 0. (3.59)
By Lemma[2.2) we have that {z(n)} is decreasing and w(n) > 0. Also we have indeed that

Ba(n) = Lq(n)a(n —0) > “Lq(n) > (1— 1)
-1
= Tq(n —T)z(n—0—1) =Aw(n—1)
Then
Aw(n) > Aw(n — 1) (3.60)
Using in implies that
r(1+p)Aw(n — 1) +q(n)w(n —o) <O0. (3.61)
Asp > —1,wehavel+p > 0. Then
Aw(n — ) + r(z(i)p)w(n —0) <0. (3.62)

In view of the T -periodicity of q(n), (3.62) implies that

Aw(n) + 9(1) w(n—(c—1)) <0. (3.63)
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As {w(n)} is a positive solution, so by Lemma 2.5, the delay difference equation

q(n) _
Aw(n) + mw(m —(c—1))=0

has an eventually positive solution as well. Let

Then A(n) satisfies

n—o
where (n)
- o q n
Ql(x) - 1’(1 +P)
Let
n+o—1 B
Ri(n)= Y Qi(s)
s=n+1
Therefore,

n—1
A(m) > Gu(n) exp { Rll(n)Rl(n) T A(s)} .

Applying the inequality (3.43) to (3.68), we have

= n(eRqy(n
un)zg‘l(n){Rll() 3 A(SHl(Riln()))},

n S=n—o+T

or

n=N s=n+1 n=N S=n—o+T
M-1 _ n4-0—1
> Qi(n) (Infe Y Qils)
n=N s=n+1
By interchanging the order of summation, we get

M-1 _ n—1 M—o+1-1 n+o—T1

Y Qi(n) As)= ) A Qi(s)

n=N s=n—o+T n=N s=n+1

From (3.70) and (3.71)), we find that

M-1 n+a T M-1 _ nto—t
) ) Y. Qs ;\,Q 1(n) <ln (e ) Q1(5)>>-

”:M—0'+T s=n+1 s=n+1
By Lemma we have
n+o—-t
Y Qi(s) <1 eventually.
s=n+1

Using (3.73) in (3.72), we get

M-1 M- n+o—1
£ o= o (o[ 500
n:M*lTJrT n=N s=n+1

| \Y

73

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)



74 A. Murugesan et al. / Oscillation of First Order...

or
M-1 M-1 n+o—1
) (1 _yn +1)> > Y Qi(n) (ln (e ) Q_l(s)>> . (3.75)
n=M-o+T1 y(n) n=N s=n+1
Using the inequality Inx < x — 1 for 0 < x < 1in (3.75), we get
M—0o+7T M-1 n+o—t
In (y( 2 )) > Y Qiln) <1n (e Y )] (376)
]/( ) n=N s=n+1
which implies by condition (3.56) that
lim Y0+ _ 3.77)
n—o0 y(n)

On the other hand, (3.56) implies that there exists a sequence {n;} of positive integers with 1, — oo as k — oo
such that

ng+o—T1 1
Z (s) > — for all k. (3.78)
s r(L+p) ~ e
Hence by Lemma [2.3] we obtain
lim inf yn=o+7) < co.
e y(n)
This contradicts (3.77) and completes the proof. O

Theorem 3.3. Assume that hold with p(n) < —1and T — o > 1. Assume further that

[e9)

—q(1) v —q(s) -
» P(”+T—0)T(n+f—0)ln<e )3 s—i—r—a)r(s—i—r—g))}_m' (3.79)

n=no s=n—T+0+1 P(

Then every solution of is oscillatory.

Proof. Assume that has a nonoscillatory solution. Without loss of generality we may assume that {x(n)}
is an eventually positive solution of (1.1). Then there exists an integer n; > ng such that x(n) > 0, x(n — 1) >0
and x(n — o) > 0forn > ny.

Set z(n) to be defined as in (1.3). Then by Lemma[2.1} it follows that

z(n) <0 eventually.

As z(n) > p(n)x(n — 1), it follows from that

q(n)
A(r(n)z(n)) + mz(ﬂ +17—0)<0. (3.80)

Dividing the last inequality by r(1n) > 0, we obtain

Ar(n) q(n)
—0) <0. .
Az(n) + r () z(n+1)+ = U)r(n)z(n +7—0)<0 (3.81)
Let
y(n) =r(n)z(n). (3.82)
This implies that y(n) > 0. Substituting in yields
Ay(n) + a(n) yin+t—0) <0, n>n (3.83)
pin+t—0o)r(n+1t—0) - =
So by Lemma we have that the advanced difference equation
Ay(n) + q(n) yn+t—0)=0, n>ng (3.84)

pln+t—0)r(n+t—0)

has an eventually negative solution as well as.
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Let

_ Ay(n)
Aln) = y(n+1)

Then {A(n)} is positive sequence. Furthermore, {A(n)} satisfies

B n+t—o—1
Aln) > 2(n)exp< Z A(s)),

s=n-+1
where (n)
- B —q(n
Qa(m) = p(n+t—0)r(n+1—0) > 0.
Let
n—1 _
Ro(n)= ),  Qafs)
s=n—T1+0+1
Therefore

_ 1 n+t—0o—1
/\(W)ZQz(n)eXP{Rz(n Ro(n) Y A(s)}.

Applying the inequality (3.43) to (3.89), we have

~—
%
Il
=
+
—_

n+t—o—1 nle n
Aln) = Galn) {Rzl(n) LA o )}

or

n—1 n+t—oc—1 n—1
Am) Y, Qals) — Qa(n) +Z A(s) > Qz(n)In (e Y Qz(s)> .

S=n—T+0 s=n+1

Then for M > N, we have

M n—1 B M B n+t—0o-1
Yo Am) ), Qals)— Y, Qa(m) ). Als)
n=N+1 s=n—t+0+1 n=N+1 s=n+1
M B n—1 _
>y Qz(n)ln<e y Qz(5)>-
n=N+1 s=n—1+0+1
By interchanging the order of summation we get
M _ n+1t—0o—1 M n—1 B
Y Q) Yy AMe= ) Mmoo Y Q)
n=N+1 s=n+1 n=N+t—0 s=n—T+0+1

From (3.91) and (3.92), we find that

n+t—o—1 n—1 B M—1 B n—1 )
YOY Qe Y Gmnle Y %6
n=N+1 s=n—1+0+1 n=N
However, using Lemma it follows that
n—1 _
Z Q2(s) <1 eventually.

s=n—T1+0+1

Therefore from (3.94) in (3.94), we get

or

75

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)
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Using the inequality Inx < x — 1, for 0 < x < 1in (3.95)), we get

y(N+ T— (7) M-1 _ n—1 B
log=—"—5=2> ) Qu(n)Infe Qa(s)
y<N + 1) n:ZN s:n—;-(f-&-l
which implies by condition (3.79) that
lim yn+t—0)
n—eo y(n+1)

(3.96)

On the other hand, (3.79) implies that there exists a sequence {n;} of positive integers with nj — oo as k — oo

such that
Ny —1

Z —4(s) > 1, for all k.
syt ps+t—0)r(s+T—0) " e

Hence by Lemma[2.9] we obtain
liminf L T=9)
)

This contradicts (3.96) and completes the proof.

< 0

4 Some Examples

Example 4.1. Consider the equation

1 n+1 1
A LH—Z (x(n)— n+2x(n—2)>} + o= =0 n=012.,

where . ) .
n
V(H):n+1, Q(”)=n+1, P(H)I—m,TIZ and o =1.
Observe that .
Y q(n) =
n=0
Also
o |_4(n) = q(s)
In|e
Z [r(n —o) ( RN e

=) In(er) = co.
n=0
All conditions of the Theorem 3.1|are satisfied. Then all solutions of oscillate.

Example 4.2. Consider the equation

A [2 (x(n) - %x(n - 2))] @4 (—1))x(n—3) =0, n=01,2,.,

where
—1<p(n) = %,T =2,0=3,r(n)=2 and q(n)=2+(-1)"
Observe that
o | (T als)
L aep! (;l r<1+p>>
= io[(ZJr (=1)") In(e(2 - (=1)"))]

Then all conditions of Theorem 3.2]are satisfied and therefore all solution of (4.100) oscillate.

(3.97)

(3.98)

O

(4.99)

(4.100)
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Example 4.3. Consider the difference equation

1
A {zn(x(n) —2"x(n— 3))] +e'x(n—1)=0, n=0,12,.., (4.101)
where

—1>pn)=-2"r(n)= 27"7(n) =" 1=3 oc=1

Observe that

=

g

—q(n) n <e - —4(s) )]
pin+t—0o)r(n+1t—0) s:nfwﬂlp(s—i—r—a)r(s—i—r—a)

o
= Z ne" = oo.
n=0

Then all conditions of Theorem 3.3|are satisfied and therefore all solutions of (£.101) oscillate.
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