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Abstract

In this paper, we consider a class of first order neutral difference equations of the form

∆[r(n)(x(n) + p(n)x(n− τ))] + q(n)x(n− σ) = 0, n ≥ n0. (∗)

Some sufficient conditions for the oscillation of all solutions of (*) are established. Our result extend and
improve some of the previous results in the literature. Some examples are considered to illustrate our results.
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1 Introduction

During the past few decades, neutral difference equations have been studied extensively and the
oscillatory theory for these equations is well developed; see [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
[14] [15] [16] [17] [18] and the references cited therein. A survey of the most significant efforts in this theory
can be found in the excellent monographs of Györi and Ladas [6] and Agarwal [1], [2].

Consider the first order neutral difference equations of the form

∆[r(n)(x(n) + p(n)x(n− τ))] + q(n)x(n− σ) = 0, n ≥ n0 (1.1)

where {p(n)} is a sequence of real numbers, {r(n)} and {q(n)} are sequences of positive real numbers, τ and
σ are positive integers, and ∆ is the forward difference operator given by ∆x(n) = x(n + 1)− x(n).

Let us choose a positive integer n∗ > max {τ, σ}. By a solution of (1.1) on N(n0) = {n0, n0 + 1, ...}, we
mean a real sequence {x(n)} which is defined on n ≥ n0 − n∗ and which satisfies (1.1) for n ∈ N(n0). A
solution {x(n)} of (1.1) on N(n0) is said to be oscillatory if for every positive integer N0 > n0 there exists
n ≥ N0 such that x(n)x(n + 1) ≤ 0, otherwise {x(n)} is said to be non-oscillatory.

There are numerous numbers of oscillation criteria obtained for oscillation of all solutions of (1.1). In
particular, Murugesan and Suganthi [9] investigated the oscillation behavior of (1.1) and obtained some new
oscillation results under the condition

∞

∑
n=n0

q(n) = ∞. (1.2)

For oscillation of (1.1) when r(n) ≡ 1 and p(n) is equal to a constant, we refer the readers to the papers by
Lalli [7] and the references cited therein. For further oscillation results on the oscillating behavior of solutions
of (1.1), when r(n) ≡ 1, we refer the reader to the monographs by Agarwal [1], [2] as well as the papers of
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Ying Gao and Zhang [15], Murugesan and Suganthi [9], Chen et. al [3], Tang et. al [13] and the references cited
therein.

Define the sequences {z(n)} and {w(n)} as follows:

z(n) = x(n) + p(n)x(n− τ), (1.3)

w(n) = z(n) + p(n)z(n− τ). (1.4)

If {x(n)} is an eventually positive solution of the equation

∆[x(n) + px(n− τ)] + q(n)x(n− σ) = 0, (1.5)

where p is a real constant then {z(n)} and {w(n)} are also solutions of (1.5).
In the sequel, unless otherwise specified, when we write a functional inequality, we assume that it holds

for all sufficiently large n.

2 Some Useful Lemmas

In the proof of our main results, we need the following Lemmas. The Lemma 2.2 and 2.3 are discrete analogues
of the Lemma 1.5.1 and 1.5.3 respectively in [6].

Lemma 2.1. [9] Assume that (1.2) holds. Let {x(n)} be an eventually positive solution of equation (1.1). Then the
following statements are true.

(i) if p(n) ≤ −1 then z(n) < 0;

(ii) if −1 ≤ p(n) ≤ 0 and {r(n)} is a decreasing sequence of positive real numbers, then z(n) > 0 and
limn→∞ z(n) = 0.

Lemma 2.2. Let { f (n)} and {g(n)} be sequence of real numbers such that

f (n) = g(n) + µg(n− c); n ≥ n0 + max {0, c} ,

where µ ∈ R, µ 6= 1 and c is a positive integer. Assume that limn→∞ f (n) = l ∈ R exists and lim infn→∞ g(n) = a ∈
R. Then l = (1 + p)a.

Lemma 2.3. Let 0 ≤ λ < 1, c be a positive integer and n0 ∈ N and {x(n)} be a sequence of positive real numbers and
assume that for every ∈> 0 there exists a n∈ ≥ n0 such that

x(n) ≤ (λ+ ∈)x(n− c)+ ∈ f or n ≥ n∈.

Then
lim

n→∞
x(n) = 0.

Lemma 2.4. Assume that (1.2) holds, p is a real number with p 6= 1 and {q(n)} is a τ-periodic sequence of positive
real numbers. Let {x(n)} be an eventually positive solution of (1.5).

Then
(a) {z(n)} is decreasing sequence and either

lim
n→∞

z(n) = −∞; (2.6)

or
lim

n→∞
z(n) = 0. (2.7)

(b) The following statements are equivalent:

(i) (2.6) holds;

(ii) p < −1;
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(iii) limn→∞ x(n) = ∞;

(iv) w(n) > 0, ∆w(n) > 0.

(c) The following statements are equivalent:

(i) (2.7) holds;

(ii) p > −1;

(iii) limn→∞ x(n) = 0;

(iv) w(n) > 0, ∆w(n) < 0.

Proof. (a) we have
∆z(n) = −q(n)x(n− σ) < 0 (2.8)

and so {z(n)} is strictly decreasing sequence. If (2.6) is not true, then there exists l ∈ R such that
limn→∞ z(n) = l. By summing (2.8) from n1 to ∞, with n1 sufficiently large, we find

l − z(n) = −
∞

∑
s=n1

q(s)x(s− σ). (2.9)

In view of (1.2) this implies that lim infn→∞ x(n) = 0 and so by Lemma 2.2, l = (1 + p)0 = 0. The proof of (a)
is complete.

Now we turn to the proofs of (b) and (c). First assume that (2.6) holds. Then p must be negative and {x(n)}
is unbounded. Therefore there exists a n∗ ≥ n0 such that z(n∗) < 0 and

x(n∗) ≥ max
s≤n∗

x(s) > 0.

Then
0 > z(n∗) = x(n∗) + px(n∗ − τ) ≥ x(n∗)(1 + p)

which implies that p < −1. Also

z(n) = x(n) + px(n− τ) > px(n− τ)

and (2.6) implies that limn→∞ x(n) = ∞. Now assume that (2.7) holds.
If p ≥ 0, then from (1.3) it follows that limn→∞ x(n) = 0. Next assume that p ∈ (−1, 0). Then by Lemma

2.3, limn→∞ x(n) = 0.
Finally if p ≤ −1, then x(n) > −px(n− τ) ≥ x(n− τ) which shows that {x(n)} is bounded from below

by a positive constant, say m. Then (2.9) yields.

l − z(n1) + m
∞

∑
s=n1

q(s) ≤ 0,

which is a contradiction. Therefore, if (2.7) holds p > −1. Observe that under the hypothesis (2.6), we have

∆w(n) = −q(n)z(n− σ) > 0. (2.10)

If (2.6) holds, then
lim

n→∞
w(n) = ∞. (2.11)

From (2.10) and (2.11) we have w(n) > 0 eventually. By a similar proof, under the hypothesis (2.7), we have
∆w(n) < 0 and w(n) > 0. On the basis of the above discussions, the proof of (b) and (c) are now obvious.

Lemma 2.5. Assume that

lim sup
n→∞

n+σ−1

∑
s=n

q(s) > 0. (2.12)

If {x(n)} is an eventually positive solution of the delay difference equation

∆x(n) + q(n)x(n− σ) = 0, n ≥ n0, (2.13)

then

lim inf
n→∞

x(n− σ)

x(n)
< ∞. (2.14)
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Proof. In view of the assumption there exists a constant d > 0 and a sequence {nk} of positive integers such
that nk → ∞ as k→ ∞ and

nk+σ−1

∑
s=nk

q(s) ≥ d; k = 1, 2, 3, ....

Then there exists a ξk ∈ {nk, nk + 1, ..., nk + σ} for each k such that

ξk

∑
s=nk

q(s) ≥ d
2

and
nk+σ

∑
s=ξk

q(s) ≥ d
2

. (2.15)

Summing the equation (2.13) from nk to ξk and ξk to nk + σ, we find

x (ξk + 1)− x (nk) +
ξk

∑
s=nk

q(s)x(s− σ) = 0 (2.16)

and

x (nk + σ + 1)− x (ξk) +
nk+σ

∑
s=ξk

q(s)x(s− σ) = 0. (2.17)

By omitting the first terms in (2.16) and (2.17) and by using the decreasing nature of {x(n)} and (2.15), we find

−x (nk) +
d
2

x (ξk − σ) ≤ 0

and

−x (ξk) +
d
2

x (nk) ≤ 0

(or)
x (ξk − σ)

x (ξk)
≤
(

2
d

)2
.

This completes the proof.

Lemma 2.6. If the equation (2.13) has an eventually positive solution, then one has eventually that

n+σ

∑
s=n+1

q(s) ≤ 1. (2.18)

Proof. Let {x(n)} be an eventually positive solution of (2.13). On the contrary, assume that

n+σ

∑
s=n+1

q(s) > 1, (2.19)

eventually. Summing the equation (2.13) from n + 1 to n + σ and using the decreasing nature of {x(n)}, we
have

x(n + σ + 1)− x(n + 1) +
n+σ

∑
s=n+1

q(s)x(s− σ) ≤ 0,

or

x(n + σ + 1)− x(n) + x(n)
n+σ

∑
s=n+1

q(s) ≤ 0,

or

x(n + σ + 1) + x(n)

(
n+σ

∑
s=n+1

q(s)− 1

)
≤ 0,

eventually.
This is a contradiction and the proof is complete.
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Lemma 2.7. [6] The delay difference inequality

∆x(n) + q(n)x(n− σ) ≤ 0 (2.20)

has an eventually positive solution if and only if the delay difference equation

∆y(n) + q(n)y(n− σ) = 0 (2.21)

has an eventually positive solution.

Lemma 2.8. [6] The advanced difference inequality

∆x(n)− q(n)x(n + σ) ≤ 0 (2.22)

has an eventually negative solution if and only if the advanced difference equation

∆y(n)− q(n)y(n + σ) = 0 (2.23)

has an eventually negative solution.

Lemma 2.9. Assume that

lim sup
n→∞

n−1

∑
s=n−σ+1

q(s) > 0. (2.24)

If {x(n)} is an eventually negative solution of the advanced difference equation

∆x(n)− q(n)x(n + σ) = 0, n ≥ n0, (2.25)

then

lim inf
n→∞

x(n + σ)

x(n + 1)
< ∞.

Proof. In view of the assumption there exists a constant d > 0 and a sequence {nk} of positive integers such
that nk → ∞ as k→ ∞ and

nk−1

∑
s=nk−σ+1

q(s) ≥ d, k = 1, 2, 3....

Then there exists ξk ∈ {nk − σ, nk − σ + 1, ..., nk} for all k such that

ξk

∑
s=nk−σ+1

q(s) ≥ d
2

and
nk

∑
s=ξk

q(s) ≥ d
2

. (2.26)

Summing the equation (2.25) from nk − σ to ξk and ξk to nk, we find

x(ξk + 1)− x(nk − σ)−
ξk

∑
s=nk−σ+1

q(s)x(s + σ) = 0 (2.27)

and

x(ξk + 1)− x(ξk)−
nk

∑
s=ξk

q(s)x(s + σ) = 0. (2.28)

By omitting the second terms in (2.27) and (2.16) and by using the decreasing nature of {x(n)} and (2.26), we
find

x(ξk + 1)− x(nk + 1)
d
2
≤ 0

and
x(nk + 1)− x(ξk + σ)

d
2
≤ 0

or
x(ξk + σ)

x(ξk + 1)
≤
(

2
d

)2
.

This completes the proof.
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Lemma 2.10. If the equation (2.25) has an eventually negative solution, than one has eventually that

n−1

∑
s=n−σ+1

q(s) ≤ 1. (2.29)

Proof. Let {x(n)} be an eventually negative solution of (2.25). On the contrary, let us assume that

n−1

∑
s=n−σ+1

q(s) > 1, (2.30)

eventually. Summing the equation (2.25) from n− σ + 1 to n and using the decreasing nature of {x(n)}, we
have

x(n + 1)− x(n− σ + 1)−
n

∑
s=n−σ+1

q(s)x(s + σ) = 0

or

x(n + 1)− x(n− σ + 1)− x(n + 1)
n

∑
s=n−σ+1

q(s) ≤ 0

or

−x(n− σ + 1) + x(n + 1)

(
1−

n

∑
s=n−σ+1

q(s)

)
≤ 0.

This is a contradiction and the proof is complete.

3 Main Results

Theorem 3.1. Assume that (1.2) hold with−1 ≤ p(n) ≤ 0 and {r(n)} is a decreasing sequence positive real numbers.
Suppose that

∞

∑
n=n0

[
q(n)

r(n− σ)
ln

(
e

n+σ

∑
s=n+1

q(s)
r(s− σ

)]
= ∞. (3.31)

Then every solution of (1.1) is oscillatory.

Proof. Assume, for the sake of a contradiction, that (1.1) has an eventually positive solution {x(n)}. Then
there exists an integers n1 ≥ n0 such that x(n) > 0, x(n− τ) > 0 and x(n− σ > 0 for n ≥ n1.

Set z(n) to be defined as in (1.3). Then by Lemma 2.1 (ii), it follows that

z(n) > 0, eventually. (3.32)

As x(n) > z(n), it follows from (1.1) that

∆(r(n)z(n)) + q(n)z(n− σ) ≤ 0. (3.33)

Dividing the last inequality by r(n) > 0, we obtain

∆z(n) +
∆r(n)
r(n)

z(n + 1) +
q(n)
r(n)

z(n− σ) ≤ 0. (3.34)

Let

z(n) =
y(n)
r(n)

. (3.35)

This implies that y(n) > 0. Substituting in (3.34) yields

∆y(n) +
q(n)

r(n− σ)
y(n− σ) ≤ 0, n ≥ n0 (3.36)

So by Lemma 2.5, we have that the delay difference equation

∆y(n) +
q(n)

r(n− σ)
y(n− σ) = 0, n ≥ n0 (3.37)
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has an eventually positive solution as well. Let

λ(n) = −∆y(n)
y(n)

(3.38)

Then {λ(n)} satisfies

λ(n) ≥ Q̄(n) exp

{
n−1

∑
s=n−σ

λ(s)

}
, (3.39)

where

Q̄(n) =
q(n)

r(n− σ)
. (3.40)

Let

R(n) =
n+σ

∑
s=n+1

Q̄(s). (3.41)

Therefore

λ(n) ≥ Q̄(n) exp

{
1

R(n)
R(n)

n−1

∑
s=n−σ

λ(s)

}
. (3.42)

Applying the inequality

eax ≥ x +
ln(ea)

a
, ∀ x, a > 0, (3.43)

to (3.42), we have

λ(n) ≥ Q̄(n)

{
1

R(n)

n−1

∑
s=n−σ

λ(s) +
ln(e(R(n))

R(n)

}
, (3.44)

or

λ(n)

(
n+σ

∑
s=n+1

Q̄(s)

)
− Q̄(n)

n−1

∑
s=n−σ

λ(s) ≥ Q̄(n) ln

(
e

n+σ

∑
s=n+1

Q̄(s)

)
. (3.45)

Then, for M > N, we have

M−1

∑
n=N

λ(n)

(
n+σ

∑
s=n+1

Q̄(s)

)
−

M−1

∑
n=N

Q̄(n)
n−1

∑
s=n−σ

λ(s) ≥
M−1

∑
n=N

Q̄(n) ln

(
e

n+σ

∑
s=n+1

Q̄(s)

)
. (3.46)

By interchanging the order of summation, we get

M−1

∑
n=N

Q̄(n)
n−1

∑
s=n−σ

λ(s) ≥
M−σ−1

∑
s=N

λ(n)

(
n+σ

∑
s=n+1

Q̄(s)

)
. (3.47)

From (3.45) and (3.47), we find that

M−1

∑
n=M−σ

λ(n)

(
n+σ

∑
s=n+1

Q̄(s)

)
≥

M−1

∑
n=N

Q̄(n) ln

(
e

n+σ

∑
s=n+1

Q̄(s)

)
. (3.48)

By Lemma 2.4, we have
n−σ

∑
s=n+1

Q̄(s) ≤ 1 eventually. (3.49)

Therefore, from (3.48) and (3.49), we get

M−1

∑
n=M−σ

λ(n) ≥
M−1

∑
n=N

Q̄(n) ln

(
e

n+σ

∑
s=n+1

Q̄(s)

)
, (3.50)

M−1

∑
n=M−σ

(
1− y(n + 1)

y(n)

)
≥

M−1

∑
n=N

Q̄(n) ln

(
e

n+σ

∑
s=n+1

Q̄(s)

)
. (3.51)

Using the inequality
log x < x− 1, f or 0 < x < 1
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in (3.51), we get

ln
y(M− σ)

y(M)
≥

M−1

∑
n=N

Q̄(n) ln

(
e

n+σ

∑
s=n+1

Q̄(s)

)
(3.52)

which implies by condition (3.31) that

lim
n→∞

y(n− σ)

y(n)
= ∞. (3.53)

On the other hand, (3.31) implies that there exists a sequence {nk} of positive integers with nk → ∞ as k→ ∞
such that

nk+σ

∑
s=nk+1

q(s)
r(s− σ)

≥ 1
e

for all k. (3.54)

Hence by Lemma 2.3, we obtain

lim inf
n→∞

y(n− σ)

y(n)
< ∞ (3.55)

This contradicts (3.53) and completes the proof.

Theorem 3.2. Assume that (1.2) hold with p(n) ≡ p > −1, r(n) ≡ r > 0 and σ > τ. Assume further that {q(n)} is
a τ -periodic and

∞

∑
n=n0

[
q(n)

r(1 + p)
ln

(
e

n+σ−τ

∑
s=n+1

q(s)
r(1 + p)

)]
= ∞. (3.56)

Then every solution of (1.1) is oscillatory.

Proof. Assume the contrary. Without loss of generality we may assume that {x(n)} be an eventually positive
solution of (1.1). Then there exists an integers n1 ≥ n0 such that

x(n) > 0, x(n− τ) > 0 and x(n− σ) > 0 for all n ≥ n1. (3.57)

Let z(n) and w(n) be defined as in (1.3) and (1.4). It is easily seen, by direct substituting, that {z(n)} and
{w(n)} are also solutions of (1.1) when p and r are constants, that is

r∆z(n) + pr∆z(n− τ) + q(n)z(n− σ) = 0, (3.58)

r∆w(n) + pr∆w(n− τ) + q(n)w(n− σ) = 0. (3.59)

By Lemma 2.2, we have that {z(n)} is decreasing and w(n) > 0. Also we have indeed that

∆w(n) =
−1
r

q(n)z(n− σ) ≥ −1
r

q(n) ≥ (n− σ− τ)

=
−1
r

q(n− τ)z(n− σ− τ) = ∆w(n− τ).

Then
∆w(n) ≥ ∆w(n− τ) (3.60)

Using (3.60) in (3.59) implies that

r(1 + p)∆w(n− τ) + q(n)w(n− σ) ≤ 0. (3.61)

As p > −1, we have 1 + p > 0. Then

∆w(n− τ) +
q(n)

r(1 + p)
w(n− σ) ≤ 0. (3.62)

In view of the τ -periodicity of q(n), (3.62) implies that

∆w(n) +
q(n)

r(1 + p)
w(n− (σ− τ)) ≤ 0. (3.63)
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As {w(n)} is a positive solution, so by Lemma 2.5, the delay difference equation

∆w(n) +
q(n)

r(1 + p)
w(n− (σ− τ)) = 0 (3.64)

has an eventually positive solution as well. Let

λ(n) = −∆w(n)
w(n)

. (3.65)

Then λ(n) satisfies

λ(n) ≥ Q̄1(n) exp

{
n−1

∑
s=n−σ+τ

λ(s)

}
, (3.66)

where

Q̄1(x) =
q(n)

r(1 + p)
.

Let

R1(n) =
n+σ−τ

∑
s=n+1

Q̄1(s). (3.67)

Therefore,

λ(n) ≥ Q̄1(n) exp

{
1

R1(n)
R1(n)

n−1

∑
s=n−σ+τ

λ(s)

}
. (3.68)

Applying the inequality (3.43) to (3.68), we have

λ(n) ≥ Q̄1(n)

{
1

R1(n)

n−1

∑
s=n−σ+τ

λ(s) +
ln(eR1(n))

R1(n)

}
, (3.69)

or

λ(n)
n+σ−τ

∑
s=n+1

Q̄1(s)− Q̄1(n)
n−1

∑
s=n−σ+τ

λ(s) ≥ Q̄1(n)

{
ln

(
e

n+σ−τ

∑
s=n+1

Q̄1(s)

)}
.

Then, for M > N, we have

M−1

∑
n=N

λ(n)

(
n+σ−1

∑
s=n+1

Q̄1(s)

)
−

M−1

∑
n=N

Q̄1(n)
n−1

∑
s=n−σ+τ

λ(s)

≥
M−1

∑
n=N

Q̄1(n)

(
ln

(
e

n+σ−τ

∑
s=n+1

Q̄1(s)

))
. (3.70)

By interchanging the order of summation, we get

M−1

∑
n=N

Q̄1(n)
n−1

∑
s=n−σ+τ

λ(s) ≥
M−σ+τ−1

∑
n=N

λ(n)
n+σ−τ

∑
s=n+1

Q1(s). (3.71)

From (3.70) and (3.71), we find that

M−1

∑
n=M−σ+τ

λ(n)
n+σ−τ

∑
s=n+1

Q̄1(s) ≥
M−1

∑
n=N

Q̄1(n)

(
ln

(
e

n+σ−τ

∑
s=n+1

Q̄1(s)

))
. (3.72)

By Lemma 2.4, we have
n+σ−τ

∑
s=n+1

Q̄1(s) ≤ 1 eventually. (3.73)

Using (3.73) in (3.72), we get

M−1

∑
n=M−σ+τ

λ(n) ≥
M−1

∑
n=N

Q1(n)

(
ln

(
e

n+σ−τ

∑
s=n+1

Q̄1(s)

))
, (3.74)
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or
M−1

∑
n=M−σ+τ

(
1− y(n + 1)

y(n)

)
≥

M−1

∑
n=N

Q1(n)

(
ln

(
e

n+σ−τ

∑
s=n+1

Q̄1(s)

))
. (3.75)

Using the inequality ln x < x− 1 for 0 < x < 1 in (3.75), we get

ln
(

y(M− σ + τ)

y(M)

)
≥

M−1

∑
n=N

Q̄1(n)

(
ln

(
e

n+σ−τ

∑
s=n+1

Q̄1(s)

))
, (3.76)

which implies by condition (3.56) that

lim
n→∞

y(n− σ + τ)

y(n)
= ∞. (3.77)

On the other hand, (3.56) implies that there exists a sequence {nk} of positive integers with nk → ∞ as k→ ∞
such that

nk+σ−τ

∑
s=nk+1

q(s)
r(1 + p)

≥ 1
e

for all k. (3.78)

Hence by Lemma 2.3, we obtain

lim inf
n→∞

y(n− σ + τ)

y(n)
< ∞.

This contradicts (3.77) and completes the proof.

Theorem 3.3. Assume that (1.2) hold with p(n) ≤ −1 and τ − σ > 1. Assume further that

∞

∑
n=n0

[
−q(n)

p(n + τ − σ)r(n + τ − σ)
ln

(
e

n−1

∑
s=n−τ+σ+1

−q(s)
p(s + τ − σ)r(s + τ − σ)

)]
= ∞. (3.79)

Then every solution of (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution. Without loss of generality we may assume that {x(n)}
is an eventually positive solution of (1.1). Then there exists an integer n1 ≥ n0 such that x(n) > 0, x(n− τ) > 0
and x(n− σ) > 0 for n ≥ n1.

Set z(n) to be defined as in (1.3). Then by Lemma 2.1, it follows that

z(n) < 0 eventually.

As z(n) > p(n)x(n− τ), it follows from (1.1) that

∆(r(n)z(n)) +
q(n)

p(n + τ − σ)
z(n + τ − σ) ≤ 0. (3.80)

Dividing the last inequality by r(n) > 0, we obtain

∆z(n) +
∆r(n)
r(n)

z(n + 1) +
q(n)

p(n + τ − σ)r(n)
z(n + τ − σ) ≤ 0. (3.81)

Let
y(n) = r(n)z(n). (3.82)

This implies that y(n) > 0. Substituting in (3.82) yields

∆y(n) +
q(n)

p(n + τ − σ)r(n + τ − σ)
y(n + τ − σ) ≤ 0, n ≥ n0. (3.83)

So by Lemma 2.8, we have that the advanced difference equation

∆y(n) +
q(n)

p(n + τ − σ)r(n + τ − σ)
y(n + τ − σ) = 0, n ≥ n0 (3.84)

has an eventually negative solution as well as.
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Let

λ(n) =
∆y(n)

y(n + 1)
. (3.85)

Then {λ(n)} is positive sequence. Furthermore, {λ(n)} satisfies

λ(n) ≥ Q̄2(n) exp

(
n+τ−σ−1

∑
s=n+1

λ(s)

)
, (3.86)

where

Q̄2(n) =
−q(n)

p(n + τ − σ)r(n + τ − σ)
> 0. (3.87)

Let

R2(n) =
n−1

∑
s=n−τ+σ+1

Q̄2(s). (3.88)

Therefore

λ(n) ≥ Q̄2(n) exp

{
1

R2(n)
R2(n)

n+τ−σ−1

∑
s=n+1

λ(s)

}
. (3.89)

Applying the inequality (3.43) to (3.89), we have

λ(n) ≥ Q̄2(n)

{
1

R2(n)

n+τ−σ−1

∑
s=n+1

λ(s) +
ln(eR2(n)

R2(n)

}
, (3.90)

or

λ(n)
n−1

∑
s=n−τ+σ

Q̄2(s)− Q̄2(n)
n+τ−σ−1

∑
s=n+1

λ(s) ≥ Q̄2(n) ln

(
e

n−1

∑
s=n−τ+σ+1

Q̄2(s)

)
.

Then for M > N, we have

M

∑
n=N+1

λ(n)
n−1

∑
s=n−τ+σ+1

Q̄2(s)−
M

∑
n=N+1

Q̄2(n)
n+τ−σ−1

∑
s=n+1

λ(s)

≥
M

∑
n=N+1

Q̄2(n) ln

(
e

n−1

∑
s=n−τ+σ+1

Q̄2(s)

)
. (3.91)

By interchanging the order of summation we get

M

∑
n=N+1

Q̄2(n)
n+τ−σ−1

∑
s=n+1

λ(s) ≥
M

∑
n=N+τ−σ

λ(n)
n−1

∑
s=n−τ+σ+1

Q̄2(s). (3.92)

From (3.91) and (3.92), we find that

n+τ−σ−1

∑
n=N+1

n−1

∑
s=n−τ+σ+1

Q̄2(s) ≥
M−1

∑
n=N

Q̄2(n) ln

(
e

n−1

∑
s=n−τ+σ+1

Q̄2(s)

)
. (3.93)

However, using Lemma 2.10, it follows that

n−1

∑
s=n−τ+σ+1

Q̄2(s) ≤ 1 eventually. (3.94)

Therefore from (3.94) in (3.94), we get

N+τ−σ−1

∑
n=N+1

λ(n) ≥
M−1

∑
n=N

Q̄2(n) ln

(
e

n−1

∑
s=n−τ+σ+1

Q̄2(s)

)
,

or
N+τ−σ−1

∑
n=N+1

(
1− y(n)

y(n + 1)

)
≥

M−1

∑
n=N

Q̄2(n) ln

(
e

n−1

∑
s=n−τ+σ+1

Q̄2(s)

)
. (3.95)
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Using the inequality ln x < x− 1, for 0 < x < 1 in (3.95), we get

log
y(N + τ − σ)

y(N + 1)
≥

M−1

∑
n=N

Q̄2(n) ln

(
e

n−1

∑
s=n−τ+σ+1

Q̄2(s)

)

which implies by condition (3.79) that

lim
n→∞

y(n + τ − σ)

y(n + 1)
= ∞. (3.96)

On the other hand, (3.79) implies that there exists a sequence {nk} of positive integers with nk → ∞ as k→ ∞
such that

nk−1

∑
s=nk−τ+σ+1

−q(s)
p(s + τ − σ)r(s + τ − σ)

≥ 1
e

, for all k. (3.97)

Hence by Lemma 2.9, we obtain

lim inf
n→∞

y(n + τ − σ)

y(n + 1)
< ∞. (3.98)

This contradicts (3.96) and completes the proof.

4 Some Examples

Example 4.1. Consider the equation

∆
[

1
n + 2

(
x(n)− n + 1

n + 2
x(n− 2)

)]
+

1
n + 1

x(n− 1) = 0, n = 0, 1, 2, ..., (4.99)

where
r(n) =

1
n + 1

, q(n) =
1

n + 1
, p(n) = −n + 1

n + 2
, τ = 2 and σ = 1.

Observe that
∞

∑
n=0

q(n) = ∞.

Also
∞

∑
n=0

[
q(n)

r(n− σ)
ln

(
e

n+σ

∑
s=n+1

q(s)
r(s− σ)

)]

=
∞

∑
n=0

ln(eσ) = ∞.

All conditions of the Theorem 3.1 are satisfied. Then all solutions of (4.99) oscillate.

Example 4.2. Consider the equation

∆
[

2
(

x(n)− 1
2

x(n− 2)
)]

+ (2 + (−1)n)x(n− 3) = 0, n = 0, 1, 2, ..., (4.100)

where
−1 ≤ p(n) =

1
2

, τ = 2, σ = 3, r(n) = 2 and q(n) = 2 + (−1)n.

Observe that
∞

∑
n=0

[
q(n)

r(1 + p)
ln

(
e

n+σ−τ

∑
s=n+1

q(s)
r(1 + p)

)]

=
∞

∑
n=0

[(2 + (−1)n) ln(e(2− (−1)n))]

= ∞.

Then all conditions of Theorem 3.2 are satisfied and therefore all solution of (4.100) oscillate.
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Example 4.3. Consider the difference equation

∆
[

1
2n (x(n)− 2nx(n− 3))

]
+ enx(n− 1) = 0, n = 0, 1, 2, ..., (4.101)

where
−1 ≥ p(n) = −2n, r(n) =

1
2n , q(n) = en, τ = 3 σ = 1.

Observe that
∞

∑
n=0

[
−q(n)

p(n + τ − σ)r(n + τ − σ)
ln

(
e

n−1

∑
s=n−τ+σ+1

−q(s)
p(s + τ − σ)r(s + τ − σ)

)]

=
∞

∑
n=0

nen = ∞.

Then all conditions of Theorem 3.3 are satisfied and therefore all solutions of (4.101) oscillate.
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[13] Ö. Öcalan, Oscillation criteria for systems of difference equations with variable coefficients, Appl. Math.
E-Notes, 6(2006), 119-125.

[14] R. Rath, L. N. Padhy and N. Misra, Oscillation and nonoscillation of neutral difference equations of first
order with positive and negative coefficients, Fasciculi Mathematici, 37(2007), 57-65.

[15] X. H. Tang, J. S. Yu and D. H. Peng, Oscillation and nonoscillation of neutral difference equations with
positive and negative coefficients, Comput. Math. Appl., 39(2000), 169-181.



78 A. Murugesan et al. / Oscillation of First Order...

[16] X. H. Tang and X. Lin, Necessary and sufficient conditions for oscillation of first-order nonlinear neutral
difference equations, Comput. Math. Appl., 55(2008), 1279-1292.

[17] Ying Gao. and Guang Zhang, Oscillation of nonlinear first order neutral difference equations, App. Math.
E-Notes, 1(2001), 5-10.

[18] Y. Zhou and B. G. Zhang, The semicycles of solutions of neutral difference equations, Appl. Math. Letters,
13(2000), 59-66.

Received: December 22, 2015; Accepted: January 12, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/


	Introduction
	Some Useful Lemmas
	Main Results
	Some Examples

