

ORTHOGONAL STABILITY OF THE NEW GENERALIZED QUADRATIC FUNCTIONAL EQUATION

K. Ravi ${ }^{a, *}$ and S.Suresh ${ }^{b}$
${ }^{a}$ Department of Mathematics, Sacred Hart College, Tiruppatur, India.
${ }^{b}$ Research Scholar, Bharathiar University, Coimbatore-642046, Tamil Nadu, India.

Abstract

In this paper, the authors investigate the Hyers - Ulam - Rassias stability and J. M. Rassias mixed type product- sum of powers of norms stability of a orthogonally generalized quadratic functional equation of the form $$
f(n x+y)+f(n x-y)=n[f(x+y)+f(x-y)]+2 n(n-1) f(x)-2(n-1) f(y) .
$$

Where $f: A \rightarrow B$ be a mapping from a orthogonality normed space A into a Banach Space B, \perp is orthogonality in the sense of Ratz with $x \perp y$ for all $x, y \in A$.

Keywords: :Hyers - Ulam - Rassias stability, J. M. Rassias mixed type product - sum of powers of norms stability,Example, Orthogonally quadratic functional equation, Orthogonality space, Quadratic mapping.

2010 MSC: : 39B55, 39B52, 39B82,46H25
(C) 2012 MJM. All rights reserved.

1 Introduction

The stability problem of functional equations originated from the following question of Ulam [19]: Under what condition does there exist an additive mapping near an approximately additive mapping? In 1941, Hyers [8] gave a partial armative answer to the question of Ulam in the context of Banach spaces. In 1978, Th.M. Rassias [14] extended the theorem of Hyers by considering the unbounded Cauchy dierence.

The idea of generalized Hyers-Ulam stability is extended to various functional equations like additive equations, Jensen's equations, Hosszu's equations, homogeneous equations, logarithmic equations, exponential equations, multiplicative equations, trigonometric and gamma functional equations .

It is easy to see that the quadratic function $f(x)=k x^{2}$ is a solution of each of the following functional equations

$$
\begin{gather*}
f(x+y)+f(x-y)=2 f(x)+2 f(y), \tag{1.1}\\
f(x+y+z)+f(x)+f(y)+f(z)=f(x+y)+f(y+z)+f(z+x), \tag{1.2}\\
f(x-y-z)+f(x)+f(y)+f(z)=f(x-y)+f(y+z)+f(z-x), \tag{1.3}\\
f(x+y+z)+f(x-y+z)+f(x+y-z)+f(x-y-z)=4 f(x)+4 f(y)+4 f(z) . \tag{1.4}
\end{gather*}
$$

So it is natural that each equation is called a quadratic functional equation. In particular, every solution of the quadratic equation $\sqrt{1.1}$ is said to be quadratic function. It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric biadditive function B such that $f(x)=B(x, x)$ for all x (see [1, 9]). The bi-additive function B is given by

$$
\begin{equation*}
B(x, y)=\frac{1}{4}[f(x+y)-f(x-y)] . \tag{1.5}
\end{equation*}
$$

Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.1) was first treated by F. Skof for functions $f: A \rightarrow B$ where A is a normed space and B is a Banach space (see [17]). Cholewa [2] noticed that the theorem of Skof is still true if relevent domain A is replaced by abelian group. Czerwik [3] proved the Hyers-Ulam-Rassias stability of the equation (1.1).

In 1982-1984, J.M. Rassias [12, 13] proved the following theorem in which he generalized the Hyers stability result by presenting a weaker condition controlled by a product of different powers of norms.

Theorem 1.1. 12, 13] Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\|x\|^{p}\|y\|^{q}
$$

for all $x, y \in E$, where ϵ and p, q are constants with $\epsilon>0$ and $r=p+q \neq 1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\|f(x)-L(x)\| \leq \frac{\epsilon}{2-2^{r}}\|x\|^{r}
$$

for all $x \in E$. If, in addition, for every $x \in E, f(t x)$ is continuous in real t for each fixed x, then L is linear.
The above-mentioned stability involving a product of different powers of norms is called Ulam-GavrutaRassias stability. Later, J.M.Rassias [15] discused the stability of quadratic functional equation

$$
f(m x+y)+f(m x-y)=2 f(x+y)+2 f(x-y)+2\left(m^{2}-2\right) f(x)-2 f(y)
$$

for any arbitrary but fixed real constant m with $m \neq 0 ; m \neq \pm 1 ; m \neq \pm \sqrt{2}$ using the mixed powers of norms.
Now we present the results connected with functional equation in orthogonal space. The orthogonal Cauchy functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y), x \perp y \tag{1.6}
\end{equation*}
$$

in which \perp is an abstract orthogonally was first investigated by S. Gudder and D. Strawther . R. Ger and J. Sikorska discussed the orthogonal stability of the equation (1.6) in [7]. The orthogonally quadratic functional equation (1.1) was first investigated by F. Vajzovic [20] when X is a Hilbert space, Y is the scalar field, f is continuous and \perp means the Hilbert space orthogonality. This result was then generalized by H. Drljevic [4], M. Fochi [5], M.Moslehian [10, 11] and G. Szabo [18].

Definition 1.1. A vector space X is called an orthogonality vector space if there is a relation $x \perp y$ on X such that
(i) totality of \perp for zero: $\quad x \perp 0,0 \perp x$ for all $x \in X$;
(ii) independence: if $x \perp y$ and $x, y \neq 0$, then x, y are linearly independent;
(iii) homogeneity: if $x \perp y$, then $a x \perp$ by for all $a, b \in \mathbb{R}$;
(iv) the Thalesian property: if P is a two-dimensional subspace of X; then
(a) for every $x \in P$ there exists $0 \neq y \in P$ such that $x \perp y$;
(b) there exists vectors $x, y \neq 0$ such that $x \perp y$ and $x+y \perp x-y$.

Any vector space can be made into an orthogonality vector space if we define $x \perp 0,0 \perp x$ for all x and for non zero vector x, y define $x \perp y$ iff x, y are linearly independent. The relation \perp is called symmetric if $x \perp y$ implies that $y \perp x$ for all $x, y \in X$.

Definition 1.2. The pair (x, \perp) is called an orthogonality space. It becomes orthogonality normed space when the orthogonality space is equipped with a norm.

Definition 1.3. Let X be an orthogonality space and Y be a real Banach space. A mapping $f: X \rightarrow Y$ is called orthogonally quadratic if it satisfies the so called orthogonally Euler-Lagrange (or Jordan - von Neumann) quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.7}
\end{equation*}
$$

for all $x, y \in X$ with $x \perp y$.

In this paper, we obtain the general solution of new quadratic functional equation

$$
\begin{equation*}
f(n x+y)+f(n x-y)=n[f(x+y)+f(x-y)]+2 n(n-1) f(x)-2(n-1) f(y) \tag{1.8}
\end{equation*}
$$

and study the Hyers - Ulam - Rassias stability and J. M. Rassias mixed type product-sum of powers of norms stability in the concept of orthogonality.

Definition 1.4. A mapping $f: A \rightarrow B$ is called orthogonal quadratic if it satisfies the quadratic functional equation (1.8) for all $x, y \in A$ with $x \perp y$ where A be an orthogonality space and B be a real Banach space.

Through out this paper, let (A, \perp) denote an orthogonality normed space with norm $\|\cdot\|_{A}$ and $\left(B,\|\cdot\|_{B}\right)$ is a Banach space. We define

$$
\begin{align*}
& D f(x, y)=f(n x+y)+f(n x-y) \tag{1.9}\\
& -n[f(x+y)+f(x-y)]-2 n(n-1) f(x)+2(n-1) f(y)
\end{align*}
$$

for all $x, y \in A$ with $x \perp y$.
Now we proceed to find the general solution of the functional equation (1.8).

2 The General Solution of the Functional Equation (1.8)

In this section, we obtain the general solution of the functional equation 1.8 . Through out this section, let X and Y be real vector spaces.

Theorem 2.2. Let X and Y be real vector spaces. A function $f: X \rightarrow Y$ satisfies the functional equation

$$
\begin{align*}
& f(n x+y)+f(n x-y)=n[f(x+y) \tag{2.1}\\
& +f(x-y)]+2 n(n-1) f(x)-2(n-1) f(y)
\end{align*}
$$

for all $x, y \in X$ if and only if it satisfies the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$.
Proof. Suppose a function $f: X \rightarrow Y$ satisfies 2.1. Putting $x=y=0$ in 2.1, we get $f(0)=0$. Let $x=0$ and $y=0$ in 2.1, we obtain $f(-y)=f(y)$ and $f(n x)=n^{2} f(x)$, respectively. Setting $(x, y)=(x, x+y)$ in 2.1, we obtain

$$
\begin{equation*}
f((n+1) x+y)+f((n-1) x-y)=n[f(2 x+y)+f(-y)]+2 f(n x)-2 n f(x) \tag{2.3}
\end{equation*}
$$

for all $x, y \in X$. Replacing y by $-y$ in 2.3 and adding the resultant with 2.3 , we obtain

$$
\begin{align*}
& f((n+1) x+y)+f((n+1) x-y)+f((n-1) x+y)+f((n-1) x-y) \tag{2.4}\\
& =n[f(2 x+y)+f(2 x-y)]+2 n[f(x+y)+f(x-y)]+2[f(x+y)+f(x-y)] \\
& +2 n f(y)+4 f(n x)-4 n f(x)
\end{align*}
$$

for all $x, y \in X$. Setting $n=n+1, n=n-1$ and $n=2$ respectively in 2.1 , we obtain the following equations

$$
\begin{align*}
& f((n+1) x+y)+f((n+1) x-y) \tag{2.5}\\
& \quad=(n+1)[f(x+y)+f(x-y)]+2 n^{2} f(x)+2 n f(x)-2 n f(y) \\
& f((n-1) x+y)+f((n-1) x-y)=(n-1)[f(x+y)+f(x-y)] \tag{2.6}\\
& +2 n^{2} f(x)-6 n f(x)+4 f(x)-2 n f(y)+4 f(y) \\
& f(2 x+y)+f(2 x-y)=2[f(x+y)+f(x-y)]+4 f(x)-2 f(y) \tag{2.7}
\end{align*}
$$

for all $x, y \in X$. Substitute (2.5, (2.6) and (2.7) in (2.4), we arrive 2.2.

Conversely, assume f satisfies the functional equation (2.2). Letting (x, y) by $(0,0)$ in (2.2), we get $f(0)=0$. Putting $x=0$ in $(2.2$, we obtain $f(-y)=f(y)$ for all $y \in X$. Thus f is an even function. Substituting (x, y) by (x, x) and $(x, 2 x)$ in 2.2 , we get

$$
\begin{equation*}
f(2 x)=4 f(x), f(3 x)=9 f(x) \tag{2.8}
\end{equation*}
$$

respectively for all $x \in X$. Setting $(x, y)=(n x+y, n x-y)$ in 2.2 , we obtain

$$
\begin{equation*}
f(n x+y)+f(n x-y)=2 n^{2} f(x)+2 f(y) \tag{2.9}
\end{equation*}
$$

for all $x, y \in X$. Multiplying $\sqrt{2.2)}$ by n and subtracting the resultant from (2.9), we arrive (2.1).

3 Hyers - Ulam - Rassias Stability of (1.8)

In this section, we present the Hyers - Ulam - Rassias stability of the functional equation (1.8) involving sum of powers of norms.

Theorem 3.3. Let μ and $s(s<2)$ be non-negative real numbers. Let $f: A \rightarrow B$ be a mapping fulfilling

$$
\begin{equation*}
\|D f(x, y)\|_{B} \leq \mu\left\{\|x\|_{A}^{S}+\|y\|_{A}^{S}\right\} \tag{3.1}
\end{equation*}
$$

for all $x, y \in A$ with $x \perp y$. Then there exists a unique orthogonally quadratic mapping $Q: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{B} \leq \frac{\mu}{2\left(n^{2}-n^{s}\right)}\|x\|_{A}^{s} \tag{3.2}
\end{equation*}
$$

for all $x \in A$. The function $Q(x)$ is defined by

$$
\begin{equation*}
Q(x)=\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{\left(n^{2}\right)^{k}} \tag{3.3}
\end{equation*}
$$

for all $x \in A$.
Proof. Replacing (x, y) by $(0,0)$ in (3.1) we get $f(0)=0$. Setting (x, y) by $(x, 0)$ in (3.1), we obtain

$$
\begin{equation*}
\left\|f(n x)-n^{2} f(x)\right\|_{B} \leq \frac{\mu}{2}\left(\|x\|_{A}^{s}\right) \tag{3.4}
\end{equation*}
$$

for all $x \in A$. Since $x \perp 0$, we have

$$
\begin{equation*}
\left\|\frac{f(n x)}{n^{2}}-f(x)\right\|_{B} \leq \frac{\mu}{2 n^{2}}\|x\|_{A}^{s} \tag{3.5}
\end{equation*}
$$

for all $x \in A$. Now replacing x by $n x$ and dividing by n^{2} in 3.5 and summing resulting inequality with 3.5 , we arrive

$$
\begin{equation*}
\left\|\frac{f\left(n^{2} x\right)}{\left(n^{2}\right)^{2}}-f(x)\right\|_{B} \leq \frac{\mu}{2 n^{2}}\left\{1+\frac{n^{s}}{n^{2}}\right\}\|x\|_{A}^{s} \tag{3.6}
\end{equation*}
$$

for all $x \in A$. In general, using induction on a positive integer n we obtain that

$$
\begin{align*}
\left\|\frac{f\left(n^{k} x\right)}{\left(n^{2}\right)^{k}}-f(x)\right\|_{B} & \leq \frac{\mu}{2 n^{2}} \sum_{t=0}^{k-1} \frac{n^{s t}}{\left(n^{2}\right)^{t}}\|x\|_{A}^{s} \tag{3.7}\\
& \leq \frac{\mu}{2 n^{2}} \sum_{t=0}^{\infty} \frac{n^{s t}}{\left(n^{2}\right)^{t}}\|x\|_{A}^{s}
\end{align*}
$$

for all $x \in A$. In order to prove the convergence of the sequence $\left\{f\left(n^{k} x\right) /\left(n^{2}\right)^{k}\right\}$ replace x by $n^{m} x$ and divide by $\left(n^{2}\right)^{m}$ in 3.7, for any $k, m>0$, we obtain

$$
\begin{align*}
\left\|\frac{f\left(n^{k} n^{m} x\right)}{\left(n^{2}\right)^{(k+m)}}-\frac{f\left(n^{m} x\right)}{\left(n^{2}\right)^{m}}\right\|_{B} & =\frac{1}{\left(n^{2}\right)^{m}}\left\|\frac{f\left(n^{k} n^{m} x\right)}{\left(n^{2}\right)^{k}}-f\left(n^{m} x\right)\right\|_{B} \\
& \leq \frac{1}{\left(n^{2}\right)^{m}} \frac{\mu}{2 n^{2}} \sum_{t=0}^{k-1} \frac{n^{s t}}{\left(n^{2}\right)^{t}}\left\|n^{m} x\right\|_{A}^{s} \\
& \leq \frac{\mu}{2 n^{2}} \sum_{t=0}^{\infty} \frac{1}{n^{(2-s)(t+m)}}\|x\|_{A}^{s} . \tag{3.8}
\end{align*}
$$

As $s<2$, the right hand side of 3.8 tends to 0 as $m \rightarrow \infty$ for all $x \in A$. Thus $\left\{f\left(n^{k} x\right) /\left(n^{2}\right)^{k}\right\}$ is a Cauchy sequence. Since B is complete, there exists a mapping $Q: A \rightarrow B$ such that

$$
Q(x)=\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{\left(n^{2}\right)^{k}} \quad \forall x \in A
$$

Letting $k \rightarrow \infty$ in (3.7), we arrive the formula $\sqrt{3.2}$) for all $x \in A$. To prove Q satisfies $\sqrt{1.8}$, replace (x, y) by $\left(n^{k} x, n^{k} y\right)$ in 3.1 and divide by $\left(n^{2}\right)^{k}$ then it follows that

$$
\begin{aligned}
& \frac{1}{\left(n^{2}\right)^{k}} \| f\left(n^{k}(n x+y)\right)+f\left(n^{k}(n x-y)\right)-n\left[f\left(n^{k}(x+y)\right)-f\left(n^{k}(x-y)\right)\right] \\
& \quad-2 n(n-1) f\left(n^{k} x\right)-2(n-1) f\left(n^{k} y\right) \|_{B} \leq \frac{\mu}{\left(n^{2}\right)^{k}}\left\{\left\|n^{k} x\right\|_{A}^{s}+\left\|n^{k} y\right\|_{A}^{s}\right\}
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ in the above inequality, we get

$$
\begin{gathered}
\| Q(n x+y)+Q(n x-y)-n[Q(x+y)-Q(x-y)] \\
-2 n(n-1) Q(x)+2(n-1) Q(y) \|_{B} \leq 0
\end{gathered}
$$

which gives

$$
Q(n x+y)+Q(n x-y)=n[Q(x+y)-Q(x-y)]+2 n(n-1) Q(x)-2(n-1) Q(y)
$$

by taking limit as $k \rightarrow \infty$ in (3.7), we obtain

$$
\begin{equation*}
\|f(x)-Q(x)\|_{B} \leq \frac{\mu}{2\left(n^{2}-n^{s}\right)}\|x\|_{A}^{s} \tag{3.9}
\end{equation*}
$$

for all $x, y \in A$ with $x \perp y$. Therefore $Q: A \rightarrow B$ is an orthogonally quadratic mapping which satisfies 1.8). To prove the uniqueness: Let Q^{\prime} be another orthogonally quadratic mapping satisfying (1.8) and the inequality 3.2. Then

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\|_{B}= & \frac{1}{\left(n^{2}\right)^{k}}\left\|Q\left(n^{k} x\right)-Q^{\prime}\left(n^{k} x\right)\right\|_{B} \\
\leq & \frac{1}{\left(n^{2}\right)^{k}}\left(\left\|Q\left(k^{t} x\right)-f\left(k^{t} x\right)\right\|_{B}+\left\|f\left(n^{k} x\right)-Q^{\prime}\left(n^{k} x\right)\right\|_{B}\right) \\
\leq & \frac{\mu}{n^{2}-n^{s}} \frac{1}{n^{k(2-s)}}\|x\|_{A}^{s} \\
& \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

for all $x \in A$. Therefore Q is unique. This completes the proof of the theorem.

Theorem 3.4. Let μ and $s(s>2)$ be nonnegative real numbers. Let $f: A \rightarrow B$ be a mapping satisfying (3.1) for all $x, y \in A$ with $x \perp y$. Then there exists a unique orthogonally quadratic mapping $Q: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{B} \leq \frac{\mu}{2\left(n^{s}-n^{2}\right)}\|x\|_{A}^{s} \tag{3.10}
\end{equation*}
$$

for all $x \in A$. The function $Q(x)$ is defined by

$$
\begin{equation*}
Q(x)=\lim _{k \rightarrow \infty}\left(n^{2}\right)^{n} f\left(\frac{x}{n^{k}}\right) \tag{3.11}
\end{equation*}
$$

for all $x \in A$.
Proof. Replacing x by $\frac{x}{2}$ in 3.4 , the rest of the proof is similar to that of Theorem 3.1.

4 J.M. Rassias Mixed Type Product - Sum of Powers of Norms Stability of (1.8)

In this section, we discuss the J.M. Rassias mixed type product - sum of powers of norms stability of the functional equation (1.8).
Theorem 4.5. Let $f: A \rightarrow B$ be a mapping satisfying the inequality

$$
\begin{equation*}
\|D f(x, y)\|_{B} \leq \mu\left\{\|x\|_{A}^{2 s}+\|y\|_{A}^{2 s}+\|x\|_{A}^{s}\|y\|_{A}^{s}\right\} \tag{4.1}
\end{equation*}
$$

for all $x, y \in A$ where μ and sare constants with $\mu, s>0$ and $s<1$. Then the limit

$$
\begin{equation*}
Q(x)=\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{\left(n^{2}\right)^{k}} \tag{4.2}
\end{equation*}
$$

exists for all $x \in A$ and $Q: A \rightarrow B$ is the unique quadratic mapping such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{B} \leq \frac{\mu}{2\left(n^{2}-n^{2 s}\right)}\|x\|_{A}^{n s} \tag{4.3}
\end{equation*}
$$

for all $x \in A$.
Proof. Letting (x, y) by $(0,0)$ in 4.1), we get $f(0)=0$. Again substituting (x, y) by $(x, 0)$ in (4.1), we obtain

$$
\begin{equation*}
\left\|\frac{f(n x)}{n^{2}}-f(x)\right\|_{B} \leq \frac{\mu}{2 n^{2}}\|x\|_{A}^{n s} \tag{4.4}
\end{equation*}
$$

for all $x \in A$. Now replacing x by $n x$ and dividing by n^{2} in 4.4 and summing resulting inequality with 4.4, we arrive

$$
\begin{equation*}
\left\|\frac{f\left(n^{2} x\right)}{\left(n^{2}\right)^{2}}-f(x)\right\|_{B} \leq \frac{\mu}{2 n^{2}}\left\{1+\frac{n^{2 s}}{n^{2}}\right\}\|x\|_{A}^{2 s} \tag{4.5}
\end{equation*}
$$

for all $x \in A$. Using induction on a positive integer k, we obtain that

$$
\begin{align*}
\left\|\frac{f\left(n^{k} x\right)}{\left(n^{2}\right)^{k}}-f(x)\right\|_{B} & \leq \frac{\mu}{2 n^{2}} \sum_{t=0}^{k-1}\left(\frac{n^{2 s}}{n^{2}}\right)^{t}\|x\|_{A}^{2 s} \tag{4.6}\\
& \leq \frac{\mu}{2 n^{2}} \sum_{t=0}^{\infty}\left(\frac{n^{2 s}}{n^{2}}\right)^{t}\|x\|_{A}^{2 s}
\end{align*}
$$

for all $x \in A$. In order to prove the convergence of the sequence $\left\{f\left(n^{k} x\right) / 4^{k}\right\}$ replace x by $n^{m} x$ and divide by $\left(n^{2}\right)^{m}$ in 4.6), for any $k, m>0$, we obtain

$$
\begin{align*}
\left\|\frac{f\left(n^{k} n^{m} x\right)}{\left(n^{2}\right)^{(k+m)}}-\frac{f\left(n^{m} x\right)}{\left(n^{2}\right)^{m}}\right\|_{B} & =\frac{1}{\left(n^{2}\right)^{m}}\left\|\frac{f\left(n^{k} n^{m} x\right)}{\left(n^{2}\right)^{k}}-f\left(n^{m} x\right)\right\|_{B} \\
& \leq \frac{1}{\left(n^{2}\right)^{m}} \frac{\mu}{2 n^{2}} \sum_{t=0}^{k-1}\left(\frac{n^{2 s}}{n^{2}}\right)^{t}\left\|n^{m} x\right\|_{A}^{2 s} \\
& \leq \frac{\mu}{2 n^{2}} \sum_{t=0}^{\infty} \frac{1}{n^{(n-2 s)(t+m)}}\|x\|_{A}^{2 s} \tag{4.7}
\end{align*}
$$

As $s<1$, the right hand side of 4.7) tends to 0 as $m \rightarrow \infty$ for all $x \in A$. Thus $\left\{f\left(n^{k} x\right) /\left(n^{2}\right)^{k}\right\}$ is a Cauchy sequence. Since B is complete, there exists a mapping $Q: A \rightarrow B$ such that

$$
Q(x)=\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{\left(n^{2}\right)^{k}} \quad \forall x \in A .
$$

Letting $n \rightarrow \infty$ in (4.6), we arrive the formula (4.2) for all $x \in A$. To show that Q is unique and it satisfies $\sqrt{1.8}$, the rest of the proof is similar to that of theorem 3.1

Theorem 4.6. Let $f: A \rightarrow B$ be a mapping satisfying the inequality 4.1) for all $x, y \in A$ where μ and sare constants with, $\mu, s>0$ and $s>2$. Then the limit

$$
\begin{equation*}
Q(x)=\lim _{k \rightarrow \infty}\left(n^{2}\right)^{k} f\left(\frac{x}{n^{k}}\right) \tag{4.8}
\end{equation*}
$$

exists for all $x \in A$ and $Q: A \rightarrow B$ is the unique quadratic mapping such that

$$
\begin{equation*}
\|f(x)-Q(x)\|_{B} \leq \frac{\mu}{2\left(n^{2 s}-n^{2}\right)}\|x\|_{A}^{2 s} \tag{4.9}
\end{equation*}
$$

for all $x \in A$.
Proof. Replacing x by $\frac{x}{3}$ in $\sqrt[4.4]{ }$, the proof is similar to that of Theorem 4.5.
Now we will provide an example to illustrate that the functional equation 1.8 is not stable for $s=2$.
Example 4.1. Let $\varphi: X \rightarrow X$ be a function defined by

$$
\phi(x)=\left\{\begin{array}{c}
\mu\|x\|^{2},\|x\|<1 \tag{4.10}\\
\mu \\
\text { otherwise }
\end{array}\right.
$$

where $\mu>0$ is a constant and we define a function $f: X \rightarrow Y$ by

$$
\begin{equation*}
f(x)=\sum_{m=0}^{\infty} \frac{\varphi\left(n^{m} x\right)}{\left(n^{2}\right)^{m}} \tag{4.11}
\end{equation*}
$$

for all $x \in X$. Then f satisfies the functional inequality

$$
\begin{equation*}
\|D(f(x, y))\| \leq \frac{2 n^{2}}{(n-1)} \mu\left(\|x\|^{2}+\|y\|^{2}\right) \tag{4.12}
\end{equation*}
$$

for all $x, y \in X$. Then there exist any quadratic mapping $Q: X \rightarrow Y$ satisfying

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \eta\|x\|^{2} \tag{4.13}
\end{equation*}
$$

for $x \in X$.
Proof. From the equation 4.10 and 4.11, we obtain

$$
\begin{equation*}
f(x) \leq \sum_{m=0}^{\infty} \frac{\phi\left(n^{m} x\right)}{n^{2 m}}=\sum_{k=0}^{\infty} \frac{\mu}{n^{2 m}} \leq \mu\left(\frac{n^{2}}{n^{2}-1}\right) \tag{4.14}
\end{equation*}
$$

for all $x \in X$. Therefore we see that f is bounded. We are going to prove that f satisfies 4.12 .
If $\left(\|x\|^{2}+\|y\|^{2}\right) \geq 1$ then the left hand side of 4.12 is less than

$$
\frac{2 n^{2}}{(n-1)}
$$

. Now we suppose that $0 \leq\|x\|^{2}+\|y\|^{2} \leq 1$. Then there exist a positive integer k such that

$$
\begin{equation*}
\frac{1}{n^{2 k-1}} \leq\|x\|^{2}+\|y\|^{2}<\frac{1}{n^{2 k}} \tag{4.15}
\end{equation*}
$$

for all $x \in X$. so that

$$
n^{2 k}\|x\|^{2}<1, n^{2 k}\|y\|^{2}<1
$$

and consequently, $n^{k-1}\|x\|<1, n^{k-1}\|y\|<1, n^{k-1}\|x+y\|<1, n^{k-1}\|x-y\|<1, n^{k-1}\|n x+y\|<1$, $n^{k}\|n x-y\|<1$ for all $m \in 0,1,2, \ldots, k-1$

$$
\begin{aligned}
& n^{k-1}\|x\|<1, n^{k-1}\|y\|<1, n^{k-1}(\|x+y\|)<1 \\
& \quad n^{k-1}(\|x-y\|)<1, n^{k-1}(\|n x+y\|)<1, n^{k-1}(\|n x-y\|)<1
\end{aligned}
$$

for all $x \in\{0,1,2, \ldots . . k-1\}$.

$$
\begin{aligned}
& \|D(f(x, y))\| \leq \sum_{m=k}^{\infty} \frac{2 n(n+1)}{n^{2 m}} \mu \\
& \leq \frac{2 n(n+1)}{n^{2 m}}\left(\frac{n^{2}}{n^{2}-1}\right) \mu \\
& \leq \frac{2 n^{2}}{n-1} \mu\left(\|x\|^{2}+\|y\|^{2}\right)
\end{aligned}
$$

Thus f satisfies the inequality (4.12) Let us consider the an orthogonally quadratic mapping satisfying $Q: X \rightarrow Y$ and a constant $\eta>0$ such that

$$
\|f(x)-Q(x)\| \leq \eta\|x\|^{2}
$$

for all $x \in X$.Since f is bounded, Q is also bounded on any open interval containing the origin zero. we have

$$
Q(x)=c\|x\|^{2}
$$

for all $x \in X$ and c is constant.Thus we obtain

$$
\begin{align*}
& \|f(x)-c\| x\left\|^{2}\right\| \leq \eta\|x\|^{2} \\
& \|f(x)\| \leq(\|c\|+\eta)\|x\|^{2} \tag{4.16}
\end{align*}
$$

for all $x \in X$. But we can choose a positive integer

$$
p, p \mu>\eta+|c|
$$

. If $x \in\left(0, \frac{1}{n^{p-1}}\right)$, then $n^{m} x \in(0,1)$ for all $m=0,1, \ldots, p-1$. For this x, we get $f(x)=\sum_{m=0}^{\infty} \frac{\phi\left(n^{m} x\right)}{n^{2 m}} \geq$ $\sum_{m=0}^{\infty} \frac{\mu\left(n^{2 m}\right)\|x\|^{2}}{n^{2 m}}=p \mu\|x\|^{2}>(\eta+|c|)\|x\|^{2}$ which contradicts 4.16. Therefore the functional equation 1.8 is not stable in sense of Ulam, Hyers and Rassias if $s=2$, assumed in the inequality 4.16.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
[2] P.W.Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
[3] S.Czerwik, On the stability of the quadratic mappings in normed spaces, Abh.Math.Sem.Univ Hamburg., 62 (1992), 59-64.
[4] F. Drljevic, On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) 54, (1986),63-71.
[5] M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math. 38, (1989), 28-40.
[6] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[7] R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43, (1995), 143-151.
[8] D.H.Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci., U.S.A.,27 (1941) 222-224.
[9] Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math. 27, No.3-4, (1995), 368-372.
[10] M. S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Differ. Equations Appl. (to appear).
[11] M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl. (to appear).
[12] J.M.Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46 (1982) 126-130.
[13] J.M.Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108 (1984), 445-446.
[14] Th.M.Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297300.
[15] K.Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36 47.
[16] K. Ravi R. Kodandan and P. Narasimman, Ulam stability of a quadratic Functional Equation, International Journal of Pure and Applied Mathematics 51(1) 2009, 87-101.
[17] F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53, (1983), 113-129.
[18] Gy. Szabo, Sesquilinear-orthogonally quadratic mappings, Aequationes Math. 40, (1990), 190-200.
[19] S.M.Ulam, Problems in Modern Mathematics, Rend. Chap.VI,Wiley, New York, 1960.
[20] F. Vajzovic, Uber das Funktional H mit der Eigenschaft: $(x, y)=0 \Rightarrow H(x+y)+H(x-y)=2 H(x)+2 H(y)$, Glasnik Mat. Ser. III 2 (22), (1967), 73-81.

Received: October 10, 2015; Accepted: January 23, 2016

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

