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Abstract

In this paper, we investigate the stability of nth order linear ordinary differential non-homogeneous
equation with initial conditions in the Hyers-Ulam-Rassias sense.
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1 Introduction

In 1940, S.M. Ulam while he was giving talk at Wisconsin University, he proposed the following problem:
Under what conditions does there exist an additive mapping near an approximately additive mapping? for
details see [18]. A year later, D.H. Hyers in [4] gave an answer to the problem of Ulam for additive functions
defined on Banach spaces. Let E1 and E2 be two real Banach spaces and f : X1 → X2 be a mapping. If there
exist an ε ≥ 0 such that

‖ f (x + y)− f (x)− f (y)‖ ≤ ε

for all x, y ∈ X1, then there exist a unique additive mapping g : X1 → X2 with the property

‖ f (x)− g(x)‖ ≤ ε,

∀x ∈ X1. A generalized solution to Ulam’s problem for approximately linear mappings was proved by Th.M.
Rassias in 1978 [13]. He considered a mapping f : E1 → E2 such that t → f (tx) is continuous in t for each
fixed x. Assume that there exists θ ≥ 0 and 0 ≥ p < 1 such that

‖ f (x + y)− f (x)− f (y)‖ ≤ θ
(
‖x‖p + ‖y‖p)

for any x, y ∈ E1. After Hyers result, many mathematicians have extended Ulam’s problem to other functional
equations and generalized Hyers result in various directions, see ([2], [5]).

Soon-Mo Jung [17], investigated the Hyers-Ulam stability of a system of first order linear differential
equations with constant coefficients. Miura et al [11], proved the Hyers-Ulam stability of the first-order linear
differential equations of the form y′(t) + g(t)y(t) = 0, where g(t) is a continuous function, while Jung [14],
proved the Hyers-Ulam stability of differential equations of the form ϕ(t)y′(t) = y(t). Furthermore, the result
of Hyers-Ulam stability for first-order linear differential equations has been generalized in ([15], [16], [19]).

A. Javadian, E. Sorouri, G.H. Kim and M. Eshaghi Gordji [6], investigated generalized Hyers-Ulam stability
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of the second order linear differential equations of the form y′′+ P(x)y′+ q(x)y = f (x) with some conditions.
Maher Nazmi Qorawani [10], investigated Hyers-Ulam stability of second order linear differential equations
of the form z′′ + p(x)z′ + (q(x)− α(x)) z = 0 and nonlinear differential equations of the form z′′ + p(x)z′ +

q(x)z = h(x) |z|β e(
β−1

2 )
∫

p(x)dxsgnz with initial conditions. Li and Yan [8], investigated the Hyers-Ulam
Stability of nonhomogeneous second order Linear Differential Equations of the form y′′ + p(x)y′ + q(x)y +

r(x) = 0 under some special conditions. Pasc Gavruta, Jung, Li [3], investigated the Hyers-Ulam stability for
second order linear differential equations with boundary conditions of the form y′′ + β(x)y(x) = 0. Jinghao
Huang, Qusuay H. Alqifiary, and Yongjin Li [7], proved the generalized superstability of nth order linear
differential equations with initial conditions of the form y(n)(x) + β(x)y(x) = 0. Recently, M.I. Modebei,
O.O. Olaiya, I. Otaide [12], investigated generalized Hyers-Ulam stability of second order linear ordinary
differential equation y′′ + β(x)y = f (x) with initial condition.

In this paper, we investigate the Hyers-Ulam-Rassias Stability of nth order linear ordinary differential
equations with initial condtions

y(n) + β(x)y(x) = f (x)

y(a) = y′(a) = y′′(a) = ... = y(n−1)(a) = 0,

where y ∈ Cn[a, b], β ∈ C[a, b] and f : [a, b]→ R continuous.
Let (X, ‖.‖) be a real or complex Banach space with a, b ∈ R where −∞ < a < b < ∞, ε be a positive real

number. Let y : (a, b)→ X be a continuouus function. We consider the following differential equation

y(n)(t) =
n−1

∑
k=0

Pky(k)(t), t ∈ I (1.1)

and the following differential inequality∣∣∣∣∣y(n)(t)− n−1

∑
k=0

Pky(k)(t)

∣∣∣∣∣ ≤ ε, t ∈ I (1.2)

and ∣∣∣∣∣y(n)(t)− n−1

∑
k=0

Pky(k)(t)

∣∣∣∣∣ ≤ ϕ(t), t ∈ I (1.3)

Definition 1.1. The equation (1.1) is said to have the Hyers-Ulam stability for any ε > 0, there exist a real number
K > 0 such that for each approximate solution y ∈ Cn(I, X) of (1.2) there exist a solution y0 ∈ Cn(I, X) of (1.1) with

|y− y0| ≤ Kε ∀t ∈ I. (1.4)

Definition 1.2. The equation (1.1) is said to have the Hyers-Ulam-Rassias stability if there exist θϕ ∈ C (R+, R+) ,
such that for each approximate solution y ∈ Cn(I, X) of (1.3) there exist a solution y0 ∈ Cn(I, X) of (1.1) with

|y− y0| ≤ θϕ(t) ∀t ∈ I. (1.5)

Definition 1.3. The equation y(n)(x) + β(x)y(x) = 0 has the Hyers-Ulam stability with initial conditions y(a) =

y′(a) = ... = y(n−1)(a) = 0, if there exists a positive constant K with the following property: For every ε > 0, y ∈
Cn[a, b], if ∣∣∣y(n)(x) + β(x)y(x)

∣∣∣ ≤ ε, (1.6)

and y(a) = y′(a) = ... = y(n−1)(a) = 0, then there exists some z ∈ Cn[a, b] satisfying Z(n) + β(x)z(x) = 0 and
z(a) = z′(a) = ... = z(n−1)(a) = 0, such that

|y(x)− z(x)| ≤ Kε.

We need the following Lemma to prove our main results.

Lemma 1.1. (Generalized Replacement Lemma) Suppose that g : [a, b]→ R is a continuous. Then∫ sn−1

a

∫ sn−2

a
...
∫ s2

a

∫ s1

a

∫ x

a
g(s)dsds1ds2...dsn−1 =

∫ x

a

(x− s)n−1

(n− 1)!
g(s)ds, ∀x ∈ [a, b]

The details of the proof we can see [1].
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Theorem 1.1. If max |β(x)| < n!
(b− a)n Then

y(n)(x) + β(x)y(x) = 0 (1.7)

has the Hyers-Ulam stability with initial conditions

y(a) = y′(a) = ... = y(n−1)(a) = 0 (1.8)

where y ∈ Cn[a, b], β ∈ C[a, b] and f : [a, b]→ R continuous.

Proof. For every ε > 0, By using the Taylor formula, we have

y(x) = y(a) + y′(x− a) + ... +
y(n)(ξ)

n!
(x− a)n.

Thus

|y(x)| =
∣∣∣∣∣y(n)(ξ)n!

(x− a)n

∣∣∣∣∣
≤ max

∣∣∣y(n)(x)
∣∣∣ (b− a)n

n!
∀x ∈ [a, b],

then

max |y(x)| ≤ (b− a)n

n!

[
max

∣∣∣y(n)(x)− β(x)y(x) + β(x)y(x)
∣∣∣]

Now using (1.7), we obtain

max |y(x)| ≤ (b− a)n

n!

[
max

∣∣∣y(n)(x)− β(x)y(x)
∣∣∣+ max |β(x)|max |y(x)|

]
≤ (b− a)n

n!
ε +

(b− a)n

n!
max |β(x)|max |y(x)| .

Let η = ((b− a)n max |β(x)|) /n!, K = (b− a)n/ (n!(1− η)) . It is easy to see that z0(x) = 0 is a solution of
y(n)(x)− β(x)y = 0 with initial conditions (1.8).

|y− z0| ≤ Kε.

Hence (1.7) has the Hyers-Ulam-Rassias stability with initial conditions (1.8).

2 Main Result

In this section, we shall prove the Generalized Hyers-Ulam-Rassias Stability of the IVP

y(n) + β(x)y(x) = f (x) (2.9)

y(a) = y′(a) = y′′(a) = ... = y(n−1)(a) = 0, (2.10)

where y ∈ Cn[a, b], β ∈ C[a, b] and f : [a, b]→ R continuous.

Theorem 2.2. Suppose |β(x)| < M where M =
n!

(b− a)n , ϕ : [a, b]→ [0, ∞) in an increasing function. The equation

(2.9) has the Hyers-Ulam-Rassias stability if for θϕ ∈ C (R+, R+) and for each approximate solution y ∈ Cn[a, b] of
(2.9) satisfying ∣∣∣y(n) − β(x)y(x)− f (x)

∣∣∣ ≤ ϕ(x) (2.11)

there exist a solution z0 ∈ Cn[a, b] of (2.9) with condition (2.10) such that

|y(x)− z0(x)| ≤ θϕ(x). (2.12)
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Proof. From (2.11) we have that

−ϕ(x) ≤ y(n) − β(x)y(x)− f (x) ≤ ϕ(x).

Integrating from a to x, and applying condition (2.10) we have

−
∫ x

a
ϕ(s)ds ≤ y(n−1)(x)−

∫ x

a
β(s)y(s)ds−

∫ x

a
f (s)ds ≤

∫ x

a
ϕ(s)ds.

On further integration and also applying condition (2.10) we have

−
∫ s1

a

∫ x

a
ϕ(s)dsds1 ≤ y(n−2)(x)−

∫ s1

a

∫ x

a
β(s)y(s)dsds1

−
∫ s1

a

∫ x

a
f (s)dsds1 ≤

∫ s1

a

∫ x

a
ϕ(s)dsds1.

Continuing the process finally we can get,

−
∫ sn−1

a

∫ sn−2

a
. . .
∫ s2

a

∫ s1

a

∫ x

a
ϕ(s)dsds1 . . . dsn−1

≤ y(x)−
∫ sn−1

a

∫ sn−2

a
. . .
∫ s2

a

∫ s1

a

∫ x

a
β(s)y(s)dsds1 . . . dsn−1

−
∫ sn−1

a

∫ sn−2

a
. . .
∫ s2

a

∫ s1

a

∫ x

a
f (s)dsds1 . . . dsn−1

≤
∫ sn−1

a

∫ sn−2

a
. . .
∫ s2

a

∫ s1

a

∫ x

a
ϕ(s)dsds1 . . . dsn−1.

Now applying Lemma (1.1), we obtain

−
∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds ≤ y(x)−

∫ x

a

(x− s)n−1

(n− 1)!
β(s)y(s)ds−

∫ x

a

(x− s)n−1

(n− 1)!
f (s)ds

≤
∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds.

Hence we have ∣∣∣∣y(x)−
∫ x

a

(x− s)n−1

(n− 1)!
(β(s)y(s)ds + f (s)ds)

∣∣∣∣ ≤ ∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds. (2.13)

If we choose z0(x) such that it solves equation (2.9) with (2.10) such that

z0(x) =
∫ x

a

(x− s)n−1

(n− 1)!
(β(s)z0(s)ds + f (s)ds) ,

thus we estimate

|y(x)− z0(x)| ≤
∣∣∣∣y(x)−

∫ x

a

(x− s)n−1

(n− 1)!
(β(s)y(s)ds + f (s)ds)

∣∣∣∣
+
∫ x

a

∣∣∣∣ (x− s)n−1

(n− 1)!
(β(s)y(s)ds + f (s)ds)−

∫ x

a

(x− s)n−1

(n− 1)!
(β(s)z0(s)ds + f (s))

∣∣∣∣ ds

|y(x)− z0(x)| ≤
∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds +

∫ x

a

∣∣∣∣ (x− s)n−1

(n− 1)!
β(s)[y(s)− z0(s)]

∣∣∣∣ ds.

Now applying (2.13) and Theorem 1.1, we get

|y(x)− z0(x)| ≤
∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds + |β(s)|

∫ x

a

(x− s)n−1

(n− 1)!
|y(s)− z0(s)| ds

|y(x)− z0(x)| ≤
∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds + M

∫ x

a

(x− s)n−1

(n− 1)!
|y(s)− z0(s)| ds.
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Applying Gronwall’s inequality, we have

|y(x)− z0(x)| ≤
∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds exp

{
M
∫ x

a

(x− s)n−1

(n− 1)!
ds
}

|y(x)− z0(x)| ≤
∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds exp

{
M
[
(x− a)n

n!

]}
|y(x)− z0(x)| ≤ c

∫ x

a

(x− s)n−1

(n− 1)!
ϕ(s)ds

with

c = exp
{[

x− a
b− a

]n}
and the proof is completed.
Remark: Note that as x → b, then the above system considered is Hyers-Ulam stable.

Conclusion
We obtained the Hyers-Ulam-Rassias stability of nth order linear ordinary differential nonhomogeneous
equation with initial conditions. Hyers-Ulam-Rassias stability guarantees that there is a close exact solution
of the system.
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