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Intersection graph of subgroups of some non-abelian groups
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Abstract

The intersection graph of subgroups of a group G is a graph whose vertex set is the set of all proper
subgroups of G and two distinct vertices are adjacent if and only if their intersection is non-trivial. In this
paper, we obtain the clique number and degree of vertices of intersection graph of subgroups of dihedral
group, quaternion group and quasi-dihedral group.
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1 Introduction

There are several graphs associated with algebraic structures to investigate some specific properties of
algebraic structures. Among them the intersection graphs have its own importance, which have been studied
in the literature over the past fifty years. In 1964, Bosak [1] initiated the study of the intersection graphs
of semigroups. Later, Csákány and Pollák [5] defined the intersection graph of subgroups of finite group.
Followed by this, Zelinca investigated the intersection graph of subgroups of a finite abelian group [7]. In the
recent years, several interesting properties of the intersection graphs of subgroups groups have been obtained
in the literature, see for instance [2], [4], [5], [6] and the references therein.

Let G be a group. The intersection graph of subgroups of G, denoted by I (G), is a graph with all the proper
subgroups of G as its vertices and two distinct vertices in I (G) are adjacent if and only if the corresponding
subgroups have a non-trivial intersection in G.

Let G be a simple graph. The degree of a vertex v in G, denoted by degG(v) is the number of vertices to
which v is adjacent. A clique of G is a complete subgraph of G. The clique number of G is the is the cardinality
of a largest clique in G and it is denoted by ω(G).

For a positive integer n, τ(n) denotes the number of positive divisor of n; σ(n) denotes the sum of all the
positive divisors of n.

The aim of this paper is to find the clique number and degree of vertices of the intersection graph of
subgroups of dihedral group, quaternion group and quasi-dihedral group.

We will use the following result of Chakrabarty et al. in the subsequent section.

Theorem 1.1. ([3]) Let n = pα1
1 pα2

2 . . . pαk
k , where pi’s are distinct primes and αi ≥ 1. If H is a proper subgroup of Zn

with |H| = p
βi1
i1

p
βi2
i2

. . . pβir
ir , then degI (Zn)

(H) = τ(n)− ∏
j/∈{i1,i2,...ir}

(αj + 1)− 3.

2 Properties of I (Dn), I (Qn), I (QD2α)

First, we start with the dihedral group. The dihedral group of order 2n (n ≥ 3) is defined by

Dn = 〈a, b | an = b2 = 1, ab = ba−1〉.
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The subgroups of Dn are listed below:

(i) cyclic groups Hr
0 := 〈a n

r 〉 of order r, where r is a divisor of n;

(ii) cyclic groups H1
i := 〈aib〉 of order 2, where i = 1, 2, . . . , n;

(iii) dihedral groups Hr
i := 〈a n

r , aib〉 of order 2r, where r is a divisor of n, r 6= 1, n and i = 1, 2, . . . , n
r .

The number of subgroups of Dn listed in (i), (ii), (iii) are τ(n)− 1, n, σ(n)− n− 1 respectively and so the total
number of proper subgroups of Dn is τ(n) + σ(n)− 2.

Theorem 2.2. Let n ≥ 3 be an integer with n = pα1
1 pα2

2 . . . pαk
k , where pi’s are distinct primes and αi ≥ 1, and let

r = p
βi1
i1

p
βi2
i2

. . . pβir
ir be a divisor of n. Then

(1) degI (Dn)
(Hr

0) = τ(n) + σ(n)− n− 3− ∏
j/∈{i1,i2,...,ir}

(αj + 1)− ∑
d|s

d 6=1

n
d

, where s = n

p
αi1
i1

p
αi2
i2

...p
αik
ik

;

(2) for each r 6= 1, n and i = 1, 2, . . . , n
r , degI (Dn)

(Hr
i ) = τ(n) + σ(n)− n− 2− ∏

j/∈{i1,i2,...ir}
(αj + 1);

(3) for each i = 1, 2, . . . , n, degI (Dn)
(H1

i ) = τ(n)− 2.

Proof. (1): First we count the number of subgroups listed in (i) to which Hr
0 is adjacent in I (Dn). Here

〈a〉 ∼= Zn, so by Theorem 1.1, Hr
0 is adjacent with τ(n) − ∏

j/∈{i1,i2,...ir}
(αj + 1) − 2 subgroups of Zn including

Zn. Clearly Hr
0 is not adjacent with all the n subgroups of Dn listed in (ii). Finally, we count the number of

subgroups listed in (iii) to which Hr
0 is adjacent. For every divisor d 6= 1 of s = n

p
αi1
i1

p
αi2
i2

...p
αik
ik

, Hr
0 is not adjacent

with Hd
i , i = 1, 2, . . . , n

d ; Hr
0 is adjacent with each of the remaining proper subgroups of Dn listed in (iii). The

total number of such subgroups is σ(n)− n− 1− ∑
d|s

d 6=1

n
d

. Summing up all these values gives the degree of Hr
0.

(2): For each r 6= 1, n and i = 1, 2, . . . , n
r , Hr

0 is the maximal cyclic subgroup of Hr
i and so the number of

subgroups listed in (i) to which Hr
i is adjacent is the same as the number of subgroups listed in (i) to which

Hr
0 is adjacent including Hr

0. The number of such subgroup is τ(n) − ∏
j/∈{i1,i2,...ir}

(αj + 1) − 1. Among the

subgroups of Dn listed in (ii), Hr
i has exactly r subgroups as its subgroups and so Hr

i is adjacent with only
these subgroups in the list. Finally, we count the number of subgroups listed in (iii) to which Hr

i is adjacent.
For every divisor l of r, Hr

i is intersect with Hl
i ; for every divisor d of s, (d, r) = 1 and so by chinese remainder

theorem there exist an integer, let it be t such that H1
t is a subgroup of both Hr

i and Hd
i . So Hr

i adjacent with all
the subgroups of Dn listed in (iii). The total number of such subgroups is σ(n)− n− 1. The degree of is just
the sum of these three values.
(3): For each i = 1, 2, . . . , n, the order of H1

i is 2. The number of subgroups of Dn contains H1
i is τ(n)− 2 and

H1
i is not intersect with remaining proper subgroups of Dn, since order of H1

i is prime. This completes the
proof.

Theorem 2.3. For n ≥ 3, ω(I (Dn)) = σ(n)− n− 1 +
k

∏
i=1

αi.

Proof. Take A := C1 ∪ C2, where C1 := {Hr
i | r | n, r 6= 1, n, i = 1, 2, . . . , n

r } and C2 :=
⋃{〈a n

r 〉 | r | n, r 6= 1
with r has every prime divisor of n as a factor}. Clearly A is a maximal clique and |A| = |C1| + |C2| =

(σ(n) − n − 1) +
k

∏
i=1

αi. Let B be another clique different from A. Then B should contains either 〈a n
r 〉, for

some r | n, r 6= 1 and r does not contains all the prime divisors of n or 〈aib〉, for some i = 1, 2, . . ., n. If B
contains the subgroup 〈a n

r 〉, for some r | n, r 6= 1 and r does not contains all the prime divisors of n, then let
pj be the prime divisor of n which is not a divisor of r. Here G has at least two subgroups of order 2pj and so
we cannot take the subgroups of order 2pj in B. It follows that |B| < |A|. If B contains the subgroup 〈aib〉, for
some i = 1, 2, . . ., n, then 〈aib〉 adjacent with τ(n)− 2 and so we cannot take σ(n)− τ(n) + 1 subgroups in B.
It follows that |B| < |A|. This completes the proof.
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Next, we consider the quaternion group. For any integer n > 1, the quaternion group of order 4n, is
defined by

Qn = 〈a, b|a2n = b4 = 1, b2 = an, ab = ba−1〉.
The subgroups of Qn are listed below:

(i) cyclic groups H0,r := 〈a 2n
r 〉, of order r, where r is a divisor of 2n;

(ii) cyclic groups Hi,1 := 〈aib〉 of order 4, where i = 1, . . . , n;

(iii) quaternion groups Hi,r := 〈a n
r , aib〉 of order 4r, where r is a divisor of n, i = 1, . . . , n

r .

The number of subgroups of Qn listed in (i), (ii), (iii) are τ(2n)− 1, n, σ(n)− n− 1 and so the total number of
proper subgroups of Qn is τ(2n) + σ(n)− 2.

Theorem 2.4. Let n > 1 be an integer with n = pα1
1 pα2

2 . . . pαk
k , where pi’s are distinct primes and αi ≥ 1, and let

r = p
βi1
i1

p
βi2
i2

. . . pβir
ir be a divisor of n.

(1) If r is even, then degI (Qn)
(H0,r) = τ(2n) + σ(n)− 3− ∏

j/∈{i1,i2,...ir}
(αj + 1);

(2) If r is odd, then degI (Qn)
(H0,r) = τ(2n) + σ(n)− n− 3− ∏

j/∈{i1,i2,...ir}
(αj + 1)− ∑

d|s
d 6=1

n
d

, where s = n

p
αi1
i1

p
αi2
i2

...p
αik
ik

;

(3) For each i = 1, . . . , n
r , degI (Qn)

(Hi,r) = τ(2n) + σ(n)− 3− ∏
j/∈{i1,i2,...ir}

(αj + 1);

(4) For each i = 1, . . . , n, degI (Qn)
(Hi,1) = τ(2n) + σ(n)− 3− ∏

j/∈{i1,i2,...ir}
(αj + 1), where αj’s are powers of odd

prime factors of n.

Proof. (1)-(2): First we count the number of subgroups listed in (i) to which H0,r is adjacent. Here 〈a〉 ∼= Z2n,
by Theorem 1.1, H0,r adjacent with τ(2n)− ∏

j/∈{i1,i2,...ir}
(αj + 1)− 2 subgroups of Z2n including Z2n. Now we

consider the following two cases:
Case a: r is even. Here Qn has an unique subgroup of order 2 and so every subgroup of even order in Qn are
adjacent with each other, so H0,r is adjacent with σ(n) − 1 subgroups of Qn excluding Qn listed in (ii), (iii).
This completes the proof of part (1).
Case b: r is odd. Clearly H0,r is not adjacent with all the n subgroups of Qn listed in (ii), since order of H1,r
is 4. Finally we count the number of subgroups listed in (iii) to which H0,r is adjacent. For every divisor
d 6= 1 of s = n

p
αi1
i1

p
αi2
i2

...p
αik
ik

, H0,r is not adjacent with Hi,d, i = 1, 2, . . ., n
d ; H0,r is adjacent with remaining proper

subgroups of Qn listed in (iii). The total number of such subgroups is σ(n)− n− 1− ∑
d|s

d 6=1

n
d

. This completes

the proof of part (2).
(3): For each i = 1, . . . , n

r , H0,r is the maximal cyclic subgroup of Hi,r and so the number of subgroups listed
in (i) to which Hi,r is adjacent is the same as the number of subgroups listed in (i) to which H0,r is adjacent
including H0,r. The number of such subgroups is τ(n)− ∏

j/∈{i1,i2,...ir}
(αj + 1)− 1. Also Qn has a unique subgroup

of order 2 and so Hi,r is adjacent with all the subgroups listed in (ii), (iii), since order of subgroups of Qn listed
in (ii), (iii) is even. The total number of such subgroups is σ(n)− 1. This completes the proof of part (3).
(4): Since Qn has an unique subgroup of order 2, so Hi,1 is adjacent with all the subgroups listed in (ii), (iii).
Also Hi,1 is adjacent all the even order subgroups of Qn listed in (i). But Hi,1 is not adjacent with an odd order
subgroups of Qn listed in (i). The number of such subgroups is τ(2n) + σ(n)− ∏

j/∈{i1,i2,...ir}
(αj + 1)− 2, where

αj’s are powers of odd prime factors of n. This completes the proof of part (4).

Theorem 2.5. Let n > 1 be an integer and 2n = 2α1 pα2
2 . . . pαk

k , where pi’s are distinct primes and αi ≥ 1. Then

ω(I (Qn)) = σ(n) + α1

k

∏
i=2

(αi + 1)− 1.
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Proof. Let A be the set of all even order subgroups of Qn. Then |A| = σ(n) + α1

k

∏
i=2

(αi + 1)− 1 and A is a

maximal clique in I (Qn). Let B be another clique different from A. Then B should contains 〈a 2n
r 〉, for some

an odd divisor r of n, r 6= 1. Then B cannot contain the subgroups of order 4. It follows that |B| < |A|. This
completes the proof.

Finally, we consider the quasi-dihedral group. For any positive integer α > 3, the quasi-dihedral group of
order 2α, is defined by

QD2α = 〈a, b | a2α−1
= b2 = 1, bab−1 = a2α−2−1〉.

The proper subgroups of QD2α are listed below:

(i) cyclic groups Hr
0 = 〈a 2α−1

r 〉, where r is a divisor of 2α−1, r 6= 1;

(ii) the dihedral group H2α−2

1 = 〈a2, b〉 ∼= D2α−2 and the dihedral subgroups Hr
i of H2α−2

1 , where r is a divisor
of 2α−2, r 6= 2α−2, i ∈ {1, 2, . . . , 2α−2

r };

(iii) the quaternion group H2,2α−3 = 〈a2, ab〉 ∼= Q2α−3 and the quaternion subgroups Hi,r of H2,2α−3 , where r is

a divisor of 2α−3, r 6= 2α−3, i ∈ {1, 2, . . . , 2α−3

r }.

The number of subgroups of QD2α listed in (i), (ii), (iii) are τ(2α−1) − 1, 2α−1 − 1, 2α−2 − 1 and so the total
number of proper subgroups of QD2α is α + 3(2α−2 − 1).

Theorem 2.6. If α ≥ 4, then

(1) for each divisor r of 2α−1, r 6= 1, degI (QD2α )(Hr
0) = α + 2α−1 − 4;

(2) for each divisor r of 2α−2, r 6= 1, i = 1, 2, . . ., 2α−2

r , degI (QD2α )(Hr
i ) = α + 2α−1 + r− 4;

(3) for each divisor r of 2α−3, r 6= 1, i = 1, 2, . . ., 2α−2

r , degI (QD2α )(Hi,r) = α + 2α−1 − 4;

(4) for i = 2, 22, . . ., 2α−2, degI (QD2α )(H1
i ) = α− 2;

(5) for i = 1, 3, . . ., 2α−3, degI (QD2α )(Hi,1) = α + 2α−1 − 4.

Proof. The only maximal subgroups of QDα
2 are H2α−1

0 , the dihedral subgroup H2α−2

1 and quaternion subgroup
H2,2α−3 . Here H2

0 is a subgroup of all the subgroup of QD2α other than H1
i , i = 2, 22, . . ., 2α−2; also no

subgroups listed in (i), (iii) are adjacent with H1
i , i = 2, 22, . . ., 2α−2. It follows that degI (QD2α )(Hr

0) =

α + 3(2α−2 − 1)− 2α−2 − 1 = α + 2α−1 − 4. Proofs of parts (3) and (5) are similar to the above.
Next, we count the number of subgroups of QD2α to which Hr

i is adjacent. By the above argument Hr
i is

adjacent with all the subgroups listed in (i), (iii) and the dihedral subgroups of H2α−2

1 ; also Hr
i has r subgroups

of order 2 as its subgroups and so Hr
i adjacent with these subgroups, so degI (QD2α )(Hr

i ) = α + 3(2α−2 − 1)−
(2α−2 − r)− 1 = α + 2α−1 + r− 4.

Finally, we count the number of subgroups of QD2α to which H1
i is adjacent. Note that degI (QD2α )(H1

i ) =

degI (Dn)
(H1

i ) + 1, since order of H1
i is 2, and it is not a subgroup of any subgroups of Hi,2α−3 ; H2α−2

1 is also
a vertex of I (QD2α). So by Theorem 2.2(3), we have degI (QD2α )(H1

i ) = τ(2α−2) − 1 = α − 2. Hence the
proof.

Theorem 2.7. For α ≥ 3, ω(I (QD2α)) = α + 2α−1 − 3.

Proof. Let A be the set of all subgroups of QD2α other than 〈bai〉, i = 2, 22, . . ., 2α−2. Clearly A is a maximal
clique in I (QD2α) and |A| = α + 3(2α−2 − 1)− 2α−2 = α + 2α−1 − 3. Let B be another clique in I (QD2α).
Then B contains exactly one subgroup of the form 〈bai〉, i = 2, 22, . . ., 2α−2. It follow that |B| < |A|, since for
one cyclic subgroup in B, we take more than one quaternion subgroups in A. This completes the proof.
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