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Abstract

In this paper we examine the existence of bicomplexified inverse Fourier transform as an extension of its
complexified inverse version within the region of convergence of bicomplex Fourier transform. In this paper
we use the idempotent representation of bicomplex-valued functions as projections on the auxiliary complex
spaces of the components of bicomplex numbers along two orthogonal,idempotent hyperbolic directions.
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1 Introduction

In 1892, in search for special algebras, Corrado Segre [11] published a paper in which he treated an infinite
family of algebras whose elements are commutative generalization of complex numbers called bicomplex
numbers, tricomplex numbers,.....etc. Segre [11] defined a bicomplex number ξ as follows:

ξ = x1 + i1x2 + i2x3 + i1i2x4,

where x1, x2, x3, x4 are real numbers, i21 = i22 = −1 and i1i2 = i2i1. The set of bicomplex numbers, complex
numbers and real numbers are respectively denoted by C2, C1 and C0 . Thus

C2 = {ξ : ξ = x1 + i1x2 + i2x3 + i1i2x4 : x1, x2, x3, x4 ∈ C0}

i.e., C2 = {ξ = z1 + i2z2 : z1(= x1 + i1x2), z2(= x3 + i1x4) ∈ C1}.

There are two non trivial elements e1 = 1+i1i2
2 and e2 = 1−i1i2

2 in C2 with the properties e2
1 = e1, e2

2 =
e2, e1 · e2 = e2 · e1 = 0 and e1 + e2 = 1 which means that e1 and e2 are idempotents alternatively called
orthogonal idempotents. By the help of the idempotent elements e1 and e2, any bicomplex number

ξ = a0 + i1a1 + i2a2 + i1i2a3 = (a0 + i1a1) + i2(a2 + i1a3) = z1 + i2z2

where a0, a1, a2, a3 ∈ C0,, z1(= a0 + i1a1) and z2(= a2 + i1a3) ∈ C1 can be expressed as

ξ = z1 + i2z2 = ξ1e1 + ξ2e2

where ξ1(= z1 − i1z2) ∈ C1 and ξ2(= z1 + i1z2) ∈ C1.

2 Fourier Transform
Let f (t) be a real valued continuous function in (−∞, ∞) which satisfies the estimates

| f (t)| ≤ C1 exp(−αt), t ≥ 0, α > 0
and | f (t)| ≤ C2 exp(−βt), t ≤ 0, β > 0. (1)
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Then the bicomplex Fourier transform [2] of f (t) can be defined as

f̂ (ω) = F{ f (t)} =
∫ ∞

−∞
exp(i1ωt) f (t)dt, ω ∈ C2.

The Fourier transform f̂ (ω) exists and holomorphic for all ω ∈ Ω where

Ω = {ω = a0 + i1a1 + i2a2 + i1i2a3 ∈ C2 : −∞ < a0, a3 < ∞,

−α + |a2| < a1 < β− |a2| and 0 ≤ |a2| <
α + β

2
}

is the region of absolute convergence of f̂ (ω) (see the figure 1 in the appendix).

2.1 Complex version of Fourier inverse transform.
We start with the complex version of Fourier inverse transform and in this connection we consider a
continuous function f (t) for −∞ < t < ∞ satisfying the estimates (1) possessing the Fourier transform f̂1 in
complex variable ω1=x1 + i1x2 i.e.,

f̂1(ω1) =
∫ ∞

−∞
exp(i1ω1t) f (t)dt

=
∫ ∞

−∞
exp(i1x1t){exp(−x2t) f (t)}dt = φ(x1, x2).

In fact, one may identify φ(x1, x2) as the Fourier transform of g(t) = exp(−x2t) f (t) in usual complex
exponential form [1, 6].

Towards this end, we assume that f (t) is continuous and f ′(t) is piecewise continuous on the whole real
line. Then f̂1(ω1) converges absolutely for −α < x2 < β and

| f̂1(ω1) | < ∞

which implies that ∫ ∞

−∞
| exp(i1ω1t) f (t)|dt

=
∫ ∞

−∞
| exp(i1x1)g(t)|dt

=
∫ ∞

−∞
|g(t)|dt < ∞.

The later condition shows g(t) is absolutely integrable. Then by the Fourier inverse transform in complex
exponential form [1, 6],

g(t) =
1

2π

∫ ∞

−∞
exp(−i1x1t)φ(x1, x2)dx1

which implies that

f (t) =
1

2π

∫ ∞

−∞
exp(x2t) exp(−i1x1t)φ(x1, x2)dx1.

Now if we integrate along a horizontal line then x2 is constant and so for complex variable ω1=x1 + i1x2
(which implies dω1 = dx1), the above inversion formula can be extended upto complex Fourier inverse
transform

f (t) =
1

2π

∫ ∞

−∞
exp{−i1(x1 + i1x2)t}φ(x1, x2)dx1

=
1

2π

∫ ∞+i1x2

−∞+i1x2

exp(−i1ω1t) f̂1(ω1)dω1

=
1

2π
lim

x1−→∞

∫ x1+i1x2

−x1+i1x2

exp(−i1ω1t) f̂1(ω1)dω1. (2)
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Here the integration is to be performed along a horizontal line in complex ω1-plane employing contour
integration method.

We first consider the case Im(ω1) = x2 ≥ 0.We observe that f̂1(ω1) is continuous for x2 ≥ 0 and in
particular it is holomorphic (and so it has no singularities) for 0 ≤ x2 < β . We now introduce a contour ΓR
consisting of the segment [−R, R] and a semicircle CR of radius |ω1| = R > β with centre at the origin. Then
all possible singularities (if exists) of f̂1(ω1) must lie in the region above the horizontal line x2 = β . At this
stage we now consider the following two cases:

CaseI:We assume that f̂1(ω1) is holomorphic in x2 > β except for having a finite number of poles ω
(k)
1 for

k = 1, 2, ...n therein (See Figure 2 in Appendix). By taking R → ∞, we can guarantee that all these poles lie
inside the contour ΓR. Since exp(−i1ω1t) never vanishes then the status of these poles ω

(k)
1 of f̂1(ω1) is not

affected by multiplication of it with exp(−i1ω1t).Then by Cauchy’s residue theorem,

lim
R−→∞

∫
ΓR

exp(−i1ω1t) f̂1(ω1)dω1

= 2πi1 ∑
Im(ω

(k)
1 )>0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 }. (3)

Furthermore as x2 ≥ 0, we can get | exp(−i1ω1t)| ≤ 1 for ω1 ∈ CR only when t ≤ 0. In particular for
t < 0,

M(R) = max
ω1∈CR

| f̂1(ω1)| = max
ω1∈CR

|
∫ 0

−∞
exp(i1ω1t) f (t)dt|

≤ C2 max
ω1∈CR

|
∫ 0

−∞
exp{(β + i1ω1)t}dt| = C2 max

ω1∈CR
| 1
β + i1ω1

|

≤ C2 max
ω1∈CR

1
β + |i1||ω1|

where we use the estimate 1. Now for ω1| = R → ∞ , we obtain that M(R) → 0. Thus the conditions for
Jordan’s lemma [10] are met and so employing it we get that

lim
R−→∞

∫
CR

exp(−i1ω1t) f̂1(ω1)dω1 = 0. (4)

Finally as,

lim
R−→∞

∫
ΓR

exp(−i1ω1t) f̂1(ω1)dω1

=
∫

CR

exp(−i1ω1t) f̂1(ω1)dω1 +
∫ R+i1x2

−R+i1x2

exp(−i1ω1t) f̂1(ω1)dω1

then for R→ ∞, on using (3) and (4) we obtain that∫ ∞+i1x2

−∞+i1x2

exp(−i1ω1t) f̂1(ω1)dω1

= 2πi1 ∑
Im(ω

(k)
1 )>0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 } for t < 0

and so

f (t) = i1 ∑
Im(ω

(k)
1 )>0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 } for t < 0.

Case II: Suppose f̂1(ω1) has infinitely many poles ω
(k)
1 for k = 1, 2, ...n in x2 > β and we arrange them in

such a way that ω
(1)
1 ≤ |ω

(2)
1 | ≤ |ω

(3)
1 |..... where ω

(k)
1 | → ∞ as k→ ∞. We then consider a sequence of contours

Γk consisting of the segments [− x(k)1 + i1x2, x(k)1 + i1x2] and the semicircles Ck of radii rk = ω
(k)
1 | > β enclosing

the first k poles ω
(1)
1 , ω

(2)
1 , ω

(3)
1 , .......ω(k)

1 (See Figure 3 in Appendix).Then by Cauchy’s residue theorem we get
that
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2πi1 ∑
Im(ω

(k)
1 )>0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 }

=
∫

ΓR

exp(−i1ω1t) f̂1(ω1)dω1

=
∫

CR

exp(−i1ω1t) f̂1(ω1)dω1

+
∫ x(k)1 +i1x2

−x(k)1 +i1x2

exp(−i1ω1t) f̂1(ω1)dω1. (5)

Now for t < 0, in the procedure similar to Case I, employing Jordan lemma here also we may deduce that

lim
|ω(k)

1 |−→∞

∫
CR

exp(−i1ω1t) f̂1(ω1)dω1 = 0.

Hence in the limit |ω(k)
1 | −→ ∞ ( which implies that |x(k)1 | −→ ∞) , (5) leads to∫ ∞+i1x2

−∞+i1x2

exp(−i1ω1t) f̂1(ω1)dω1

= 2πi1 ∑
Im(ω

(k)
1 )>0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 } for t < 0

and as its consequence

f (t) = i1 ∑
Im(ω

(k)
1 )>0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 } for t < 0.

Thus for x2 ≥ 0, whatever the number of poles is finite or infinite, from the above two cases we obtain the
complex version of Fourier inverse transform as

f (t) = i1 ∑
Im(ω

(k)
1 )>0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 } for t < 0. (6)

We now consider the Case Im (ω1) = x2 ≤ 0. The complex valued function f̂1(ω1) is continuous for x2 ≤ 0 and
holomorphic in −α < x2 ≤ 0. Introducing a contour Γ′R′ consisting of the segment [−R′, R′] and a semicircle
C′R′ of radius ω1| = R′ > α with centre at the origin, we see that all possible singularities (if exists) of f̂1(ω1)

must lie in the region below the horizontal line x2 = −α . If ω
(k)
1 for k = 1, 2... are the poles in x2 < α, whatever

the number of poles are finite or not for R′ → ∞, in similar to the previous consideration for x2 ≥ 0 we see
that for t > 0 the conditions for Jordan lemma are met and so

f (t) = −i1 ∑
Im(ω

(k)
1 )<0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 } for t > 0. (7)

We then assign the value of f (t) at t = 0 fulfilling the requirement of continuity of it in −∞ < t < ∞. This
completes our procedure in complex ω1 plane.

Similarly in ω2(= y1 + i1y2) plane the complex version of Fourier inverse transform of f̂2(ω2) will be

f (t) =
1

2π
lim

y1−→∞

∫ y1+i1y2

−y1+i1y2

exp(−i1ω2t) f̂2(ω2)dω2 (8)

where the integration is to be performed along the horizontal line in ω2 plane. Employing the contour
integration method, we can obtain that

f (t) = i1 ∑
Im(ω

(k)
2 )>0

Res {exp(−i1ω2t) f̂2(ω2) : ω2 = ω
(k)
2 } for t < 0

= −i1 ∑
Im(ω

(k)
2 )<0

Res {exp(−i1ω2t) f̂2(ω2) : ω2 = ω
(k)
2 } for t > 0 (9)

and the value of f (t) at t = 0 can be assigned fulfilling the requirement of continuity of it in −∞ < t < ∞.



A. Banerjee et al. / Inverse Fourier Transform for Bi-Complex Variables 267

2.2 Bicomplex version of Fourier inverse transform.

Suppose f̂ (ω) is the bicomplex Fourier transform of the real valued continuous function f (t) for−∞ < t < ∞
where ω = ω1e1 + ω2e2 and f̂ (ω) = f̂1(ω1)e1 + f̂2(ω2)e2 in their idempotent representations. Here the
symbols ω1, ω2, f̂1 and f̂2 have their same representation as defined in section 2.1. Then f̂ (ω) is holomorphic
in

Ω = {ω = (x1 + i1x2)e1 + (y1 + i1y2)e2 ∈ C2

: −α < x2, y2 < β,−∞ < x1, y1 < ∞}. (10)

Now using complex inversions 2 and 8, we obtain that

f (t) = f (t)e1 + f (t)e2

= [
1

2π

∫
D1

exp(−i1ω1t) f̂1(ω1)dω1]e1 + [
1

2π

∫
D2

exp(−i1ω2t) f̂2(ω2)dω2]e2

=
1

2π

∫
D

exp{−i1(ω1e1 + ω2e2)t}{ f̂1(ω1)e1 + f̂2(ω2)e2}d(ω1e1 + ω2e2)

=
1

2π

∫
D

exp{−i1(ωt) f̂ (ω)dω (11)

where
D1 = {ω = x1 + i1x2 ∈ C(i1) : −∞ < x1 < ∞,−α < x2 < β},

D2 = {ω = y1 + i1y2 ∈ C(i1) : −∞ < y1 < ∞,−α < y2 < β}
and D be such that D1 = P1(D), D2 = P2(D). The integration in D1 and D2 are to be performed along the lines
parallel to x1 -axis in ω1 plane and y1-axis in ω2 plane respectively inside the respective strips −α < x2 < β
and −α < y2 < β. As a result,

D = {ω ∈ C2 : ω = ω1e1 + ω2e2 = (x1 + i1x2)e1 + (y1 + i1y2)e2} (12)

where −∞ < x1, y1 < ∞,−α < x2, y2 < β. In four-component form D can be alternatively expressed as

D = {ω ∈ C2 :
x1 + y1

2
+ i1

x2 + y2

2
+ i2

y2 − x2

2
+ i1i2

x1 − y1

2
,

−∞ < x1, y1 < ∞,−α < x2, y2 < β}.

Conversely, if the integration in D is performed then the integrations in mutually complementary
projections of D namely D1 and D2 are to be performed along the lines parallel to x1-axis in ω1 plane and
y1-axis in ω2 plane respectively inside the strips −α < x2, y2 < β by using the contour integration technique.
So using 2 and 8, we obtain that

1
2π

∫
D

exp{−i1(ωt) f̂ (ω)dω

=
1

2π

∫
D

exp{−i1(ω1e1 + ω2e2)t}{ f̂1(ω1)e1 + f̂2(ω2)e2}d(ω1e1 + ω2e2)

= [
1

2π

∫
D1

exp(−i1ω1t) f̂1(ω1)dω1]e1 + [
1

2π

∫
D2

exp(−i1ω2t) f̂2(ω2)dω2]e2

= [
1

2π

∫ ∞+i1x2

−∞+i1x2

exp(−i1ω1t) f̂1(ω1)dω1]e1 + [
1

2π

∫ ∞+i1y2

−∞+i1y2

exp(−i1ω2t) f̂2(ω2)dω2]e2

= f (t)e1 + f (t)e2 = f (t)

which guarantees the existence of Fourier inverse transform for bicomplex-valued functions.
In the following, we define the bicomplex version of Fourier inverse transform method.

Definition 1. Let f̂ (ω) be the bicomplex Fourier transform of a real valued continuous function f (t) for−∞ < t < ∞
which is holomorphic in 12.The Fourier inverse transform of f̂ (ω) is defined as

f (t) =
1

2π

∫
D

exp{−i1(ωt) f̂ (ω)dω

where D is given by 12. On using 6,7 and 9 this inversion method amounts to



268 A. Banerjee et al. / Inverse Fourier Transform for Bi-Complex Variables

f (t) = i1e1 ∑
Im(ω

(k)
2 )>0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 }

+ i1e2 ∑
Im(ω

(k)
2 )>0

Res {exp(−i1ω2t) f̂2(ω2) : ω2 = ω
(k)
2 } for t < 0 (13)

and
f (t) = −i1e1 ∑

Im(ω
(k)
1 )<0

Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω
(k)
1 }

− i1e2 ∑
Im(ω

(k)
2 )<0

Res {exp(−i1ω2t) f̂2(ω2) : ω2 = ω
(k)
2 } for t > 0. (14)

We assign the value of f (t) at t = 0 fulfilling the requirement of continuity of it in the whole real line (−∞ <
t < ∞).

The following examples will make our notion clear:

Example 2. 1. If f̂ (ω) = 2a
a2+ω2 for a>0 then

f̂1(ω1) =
2a

a2 + ω2
1

,

f̂2(ω2) =
2a

a2 + ω2
2

and in each of ω1 and ω2 planes the poles are simple at i1a and i1a . Now employing 13 and 14, for t < 0
we obtain that

f (t) = i1e1 Res {exp(−i1ω1t)
2a

a2 + ω2
1

: ω1 = i1a}

+i1e2 Res {exp(−i1ω2t)
2a

a2 + ω2
2

: ω2 = i1a}

= i1e1{−i1 exp(at)}+ i1e2{−i1 exp(at)} = exp(−a|t|)
and for t > 0,

f (t) = −i1e1 Res {exp(−i1ω1t)
2a

a2 + ω2
1

: ω1 = i1a}

−i1e2 Res {exp(−i1ω2t)
2a

a2 + ω2
2

: ω2 = i1a}

= −i1e1{i1 exp(−at)} − i1e2{i1 exp(at)} = exp(−a|t|).

Now for the continuity of t in the real line, we find f (0) = 1. Thus the Fourier inverse transform of f̂ (ω)
is f (t) = exp(−a|t|).

Example 3. 2. If

f̂ (ω) =
1
2
[

1

ω + ω0 +
i1
T

− 1

ω−ω0 +
i1
T

] for T, ω0 > 0

then in each of ω1 and ω2 plane the poles are at (ω0− i1
T ) and (−ω0− i1

T ) . For both the poles the imaginary
components are negative and so the poles are in lower half of both the planes. In otherwords, no poles exist
in upper half of ω1 or ω2 planes and as its consequence f (t) = 0 for t < 0. Now at t > 0,

f (t) = −i1e1 Res {exp(−i1ω1t) f̂1(ω1) : ω1 = −ω0 −
i1
T
}

−i1e1 Res {exp(−i1ω1t) f̂1(ω1) : ω1 = ω0 −
i1
T
}

−i1e2 Res {exp(−i1ω2t) f̂2(ω2) : ω2 = −ω0 −
i1
T
}

−i1e2 Res {exp(−i1ω2t) f̂2(ω2) : ω2 = ω0 −
i1
T
}
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= −i1e1
1
2

exp(− t
T
) exp(i1ω0t) + i1e1

1
2

exp(− t
T
) exp(−i1ω0t)

− i1e2
1
2

exp(− t
T
) exp(i1ω0t) + i1e2

1
2

exp(− t
T
) exp(−i1ω0t)

= −i1
1
2

exp(− t
T
) exp(i1ω0t) + i1

1
2

exp(− t
T
) exp(−i1ω0t)

= exp(− t
T
) sin(ω0t).

Finally, the continuity of f (t) in the whole real line implies that f (0) = 0.
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