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Radio Number for Strong Product P2 � Pn
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Abstract

A radio labeling of a graph G is a function f from the vertex set V (G) to the set of non-negative integers such

that |f(u) − f(v)| ≥ diam(G) + 1 − dG(u, v), where diam(G) and dG(u, v) are diameter and distance between u and v

in graph G respectively. The radio number rn(G) of G is the smallest number k such that G has radio labeling with

max{f(v) : v ∈ V (G)} = k. We investigate radio number for strong product of P2 and Pn.
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1 Introduction

In 1980, Hale[5] initiated the problem to determine the minimum number of channels in a given network
which is now popular as a channel assignment problem. He classified transmitter as very close and close trans-
mitter according to the interference between them. He called very close transmitters if a pair of transmitters
has major interference and called close transmitters if a pair of transmitters has minor interference. Hale[5]
gave the graphical representation for the channel assignment problem wherein he represented transmitters by
vertices and interference between a pair of transmitters by edges. Two transmitters are joined by an edge if
major interference occurs between them and minor interference is taken as vertices at distance two in a graph.

In 1991, Roberts[10] suggested a solution for channel assignment problem and proposed that a pair of
transmitters having minor interference must receive different channels and a pair of transmitters having major
interference must receive channels that are at least two apart. Motivated through this Griggs and Yeh[4]
introduced the distance two labeling which is defined as follows:

A distance two labeling (or L(2, 1)-labeling) of a graph G = (V (G), E(G)) is a function f from vertex set
V (G) to the set of nonnegative integers such that the following conditions are satisfied:

(1) |f(u)− f(v)| ≥ 2 if d(u, v) = 1.

(2) |f(u)− f(v)| ≥ 1 if d(u, v) = 2.

The difference between the largest and the smallest label assigned by f is called the span of f and the
minimum span over all L(2, 1)-labeling of G is called the λ-number of G, denoted by λ(G). The L(2, 1)-
labeling has been explored in past two decades by many researchers like Yeh[17, 18], Georges and Mauro[3],
Sakai[11], Chang and Kuo[1], Wang[15], Vaidya and Bantva[12] and Vaidya et al.[13].

But as time passed, practically it has been observed that the interference among transmitters might go
beyond two levels. Radio labeling extends the number of interference level considered in L(2, 1)-labeling from
two to the largest possible - the diameter of G. The diameter of G is denoted by diam(G) or simply by d is
the maximum distance among all pairs of vertices in G. Motivated through the problem of channel assignment
of FM radio stations Chartrand et. al[2] introduced the concept of radio labeling of graph as follows.
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A radio labeling of a graph G is an injective function f : V (G) → {0, 1, 2, ...} such that the following is
satisfied for all u, v ∈ V (G):

|f(u)− f(v)| ≥ diam(G) + 1− dG(u, v).

The radio number denoted by rn(G) is the minimum span of a radio labeling for G. Note that when
diam(G) is two then radio labeling and distance two labeling are identical. The radio labeling is studied in the
past decade by many researchers like Liu[6], Liu and Xie[7, 8], Liu and Zhu[9] and Vaidya and Vihol[14].

In this paper, we completely determine the radio number of strong product of P2 with Pn. Through out this
discussion, the order of P2 � Pn is p and we consider n ≥ 3 as P2 � P2 is simply K4 for which L(2, 1)-labeling
and radio labeling coincide. Moreover terms not defined here are used in the sense of West[16].

2 Main results

The strong product G � H of G and H is the graph in which the vertex (u, v) is adjacent to the vertex
(u

′
, v

′
) if and only if u = u

′
and vv

′ ∈ E(H), or v = v
′
and uu

′ ∈ E(G), or uu
′ ∈ E(G) and vv

′ ∈ E(H).
For P2 � P2k+1, let v0 and v

′

0 be the centers. Let vL1, vL2, ... ,vLk be the vertices on the left side and vR1,
vR2, ... ,vRk be the vertices on the right side with respect to center v0 and v

′

L1, v
′

L2, ... ,v
′

Lk be the vertices on
the left side and v

′

R1, v
′

R2, ... ,v
′

Rk be the vertices on the right side with respect to center v
′

0.
For P2 � P2k, let vL0 and vR0, v

′

L0 and v
′

R0 be the centers. Let vL1, vL2, ... ,vL(k−1) be the vertices on the
left side and vR1, vR2, ... ,vR(k−1) be the vertices on the right side with respect to centers vL0 and vR0 and
v

′

L1, v
′

L2, ... ,v
′

L(k−1) be the vertices on the left side and v
′

R1, v
′

R2, ... ,v
′

R(k−1) be the vertices on the right side

with respect to centers v
′

L0 and v
′

R0.
Let for P2 � P2k+1, V (P2 � P2k+1) = VL ∪ VR ∪ V

′

L ∪ V
′

R

VL = {v0, vL1, vL2, ... ,vLk}

VR = {v0, vR1, vR2, ... ,vRk}

V
′

L = {v′

0, v
′

L1, v
′

L2, ... ,v
′

Lk}

V
′

R = {v′

0, v
′

R1, v
′

R2, ... ,v
′

Rk}

Let for P2 � P2k, V (P2 � P2k) = VL ∪ VR ∪ V
′

L ∪ V
′

R

VL = {vL0, vL1, vL2, ... ,vL(k−1)}

VR = {vR0, vR1, vR2, ... ,vR(k−1)}

V
′

L = {v′

L0, v
′

L1, v
′

L2, ... ,v
′

L(k−1)}

V
′

R = {v′

R0, v
′

R1, v
′

R2, ... ,v
′

R(k−1)}

In P2 � Pn, we say two vertices u and v are on opposite side if u ∈ VL or V
′

L and v ∈ VR or V
′

R.

We define the level function on V (P2 � Pn) to the set of whole numbers W from a center vertex w by

L(u) = {d(u, w) : w is a center vertex }, for any u ∈ V (P2 � Pn).

In P2 � Pn, the maximum level is k if n = 2k + 1 and k − 1 if n = 2k.

Observation 2.1. For P2 � Pn,

(1) |V (P2 � Pn)| =
{

4k + 2 if n = 2k + 1
4k if n = 2k
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(2) d(u, v) ≤
{

L(u) + L(v) if n = 2k + 1
L(u) + L(v) + 1 if n = 2k

(3) If ui, ui+1 ∈ V (P2 � Pn), 1 ≤ i ≤ p− 1 are on opposite side and d(ui, ui+1) = d(ui+1, ui+2) or d(ui, ui+1)
= d(ui+1, ui+2)± 1 then d(ui, ui+2) = 1.

Theorem 2.2. Let P2 � Pn be a strong product of P2 and Pn and k = bn
2 c then

rn(P2 � Pn) ≥
{

2k(2k + 1) + 1 if n = 2k + 1
2k(2k − 1) + 1 if n = 2k

Moreover, the equality holds if and only if there exist a radio labeling f with ordering {u1, u2, ... ,up} of
vertices of P2 � Pn such that f(u1) = 0 < f(u2) < f(u3) < ... < f(up), where all the following holds (for all
1 ≤ i ≤ p− 1):
(1) ui and ui+1 are on opposite side,
(2) {u1, up} = {w1, w2} where w1, w2 are center vertex.

Proof. Let f be an optimal radio labeling for P2 � Pn, where f(u1) = 0 < f(u2) < f(u3) < ... < f(up). Then
f(ui+1)− f(ui) ≥ (d + 1) - d(ui, ui+1), for all 1 ≤ i ≤ p− 1. Summing these p− 1 inequalities we get

rn(P2 � Pn) = f(up) ≥ (p− 1)(d + 1) -
p−1∑
i=1

d(ui, ui+1) (2.1)

Case - 1 : n is odd.

For P2 � P2k+1, we have

p−1∑
i=1

d(ui, ui+1) ≤
p−1∑
i=1

[L(ui) + L(ui+1)]

= 2
∑

u∈V (G)

L(u) - L(u1) - L(up)

= 2
∑

u∈V (G)

L(u) (2.2)

Substituting (2.2) in (2.1), we get

rn(P2 � Pn) = f(up) ≥ (p− 1)(d + 1) - 2
∑

u∈V (G)

L(u)

For P2 � P2k+1, p = 4k + 2, d = 2k and
∑

u∈V (G)

L(u) = 2k(k + 1)

rn(P2 � Pn) = f(up) ≥ (4k + 2− 1)(2k + 1) - 4(k(k + 1))

= (4k + 1)(2k + 1) - 4k(k + 1)

= 8k2 + 4k + 2k + 1 - 4k2 - 4k

= 4k2 + 2k + 1

= 2k(2k + 1) + 1

Case - 2 : n is even.

For P2 � P2k, we have

p−1∑
i=1

d(ui, ui+1) ≤
p−1∑
i=1

[L(ui) + L(ui+1) + 1]
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= 2
∑

u∈V (G)

L(u) - L(u1) - L(up) + (p− 1)

= 2
∑

u∈V (G)

L(u) + (p− 1) (2.3)

Substituting (2.3) in (2.1), we get

rn(P2 � Pn) = f(up) ≥ (p− 1)(d + 1) - 2
∑

u∈V (G)

L(u) - (p− 1)

For P2 � P2k, p = 4k, d = 2k − 1 and
∑

v∈V (G)

L(u) = 2k(k − 1)

rn(P2 � Pn) = f(up) ≥ (4k − 1)(2k − 1 + 1) - 4(k(k − 1)) - (4k − 1)

= 8k2 - 2k - 4k2 + 1

= 4k2 - 2k + 1

= 2k(2k − 1) + 1

Thus, from Case - 1 and Case - 2, we have

rn(P2 � Pn) ≥
{

2k(2k + 1) + 1 if n = 2k + 1
2k(2k − 1) + 1 if n = 2k

Theorem 2.3. Let f be an assignment of distinct non-negative integers to V (P2 � Pn) and {u1, u2, u3 ,...,
up} be the ordering of V (P2 � Pn) such that f(ui) < f(ui+1) defined by f(u1) = 0 and f(ui+1) = f(ui) + d +
1− d(ui, ui+1). Then f is a radio labeling if for any 1 ≤ i ≤ p− 2 and k = bn

2 c the following holds.
(1) d(ui, ui+1) ≤ k + 1 if n is odd,
(2) d(ui, ui+1) ≤ k + 1 and d(ui, ui+1) 6= d(ui+1, ui+2) if n is even.

Proof. Let f(u1) = 0 and f(ui+1) = f(ui) + d + 1− d(ui, ui+1), for any 1 ≤ i ≤ p− 1 and k = bn
2 c.

For each i = 1, 2, ..., p− 1, let fi = f(ui+1)− f(ui). Now we want to prove that f is a radio labeling if (1)
and (2) holds. i.e. for any i 6= j, |f(uj)− f(ui)| ≥ d + 1− d(ui, uj)

Case - 1 : n is odd.

If n = 2k + 1 then d = 2k and let (1) holds.

Let j > i then f(uj)− f(ui) = fi + fi+1 + ... + fj−1

= (j − i)(d + 1) - d(ui, ui+1) - d(ui+1, ui+2) - ... - d(uj−1, uj)

≥ (j − i)(d + 1)− (j − i)(k + 1) as d(ui, ui+1) ≤ k + 1

= (j − i)(2k + 2)− (j − i)(k + 1)

= (j − i)(2k + 2− k − 1)

= (j − i)(k + 1)

≥ d + 1− d(ui, uj).
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Case - 2 : n is even.

If n = 2k then d = 2k − 1 and let (2) holds.

Let j > i then f(uj)− f(ui) = fi + fi+1 + ... + fj−1

= (j − i)(d + 1) - d(ui, ui+1) - d(ui+1, ui+2) - ... - d(uj−1, uj)

If j − i = even then

≥ (j − i)(d + 1)− j−i
2 (k + 1)− j−i

2 (k)

= (j − i)(2k)− (j − i)(k)− j−i
2

= (j − i)(k)− j−i
2

≥ d + 1− d(ui, uj)

If j − i = odd then

≥ (j − i)(d + 1)− j−i+1
2 (k + 1)− j−i−1

2 (k)

≥ d + 1− d(ui, uj)

Thus, in both the cases f is a radio labeling and hence the result.

Theorem 2.4. Let P2 � Pn be a strong product of P2 and Pn and k = bn
2 c then

rn(P2 � Pn) ≤
{

2k(2k + 1) + 1 if n = 2k + 1
2k(2k − 1) + 1 if n = 2k

Proof. Here we consider following two cases.

Case - 1 : n is odd.

For P2 � P2k+1, define f : V(P2 � P2k+1) → {0,1,2, ... ,2k(2k + 1) + 1} by f(ui+1) = f(ui) + d + 1 - L(ui)
- L(ui+1) as per ordering of vertices shown in Table 1:

Table 1

Case - 2 : n is even.
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For P2 �P2k, define f : V(P2 �P2k) → {0,1,2, ... ,2k(2k−1)+1} by f(ui+1) = f(ui) + d - L(ui) - L(ui+1)
as per ordering of vertices shown in Table 2:

Table 2

Thus in Case - 1 and Case - 2, it is possible to assign labeling to the vertices of P2 � Pn with span equal to
the lower bound satisfying the condition of Theorem 2.3. Hence f is a radio labeling.

Theorem 2.5. Let P2 � Pn be a strong product of P2 and Pn and k = bn
2 c then

rn(P2 � Pn) =
{

2k(2k + 1) + 1 if n = 2k + 1
2k(2k − 1) + 1 if n = 2k

Proof. The proof follows from Theorem 2.2 and Theorem 2.4.

Example 2.1. In Figure 1, ordering of the vertices and optimal radio labeling of P2 � P9 is shown.

v0 → vR4 → vL1 → v
′

R4 → v
′

L1 → vR3 → vL2 → v
′

R3 → v
′

L2 → vR2 → vL3 →

v
′

R2 → v
′

L3 → vR1 → vL4 → v
′

R1 → v
′

L4 → v
′

0= rn(P2 � P9)

Example 2.2. In Figure 2, ordering of the vertices and optimal radio labeling of P2 � P10 is shown.

vL0 → vR4 → vL1 → vR3 → vL2 → vR2 → vL3 → vR1 → vL4 → vR0 → v
′

L0 →

v
′

R4 → v
′

L1 → v
′

R3 → v
′

L2 → v
′

R2 → v
′

L3 → v
′

R1 → v
′

L4 → v
′

R0= rn(P2 � P10)

60

68 51 34 17 73 64 47 30 13

5223956092643

v0vL4 vL3 vL2 vL1 vR1 vR2 vR3 vR4

v0vL4 vL3 vL2 vL1 vR1 vR2 vR3 vR4
' ' ' ' ' ' ' ' '

Figure 1. rn(P2 � P9) = 73
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68 59 50 91 82 73 64 55

514233241091827

vL4 vL3 vL2 vL1 vR1 vR2 vR3 vR4vL0 vR0

vL4 vL3 vL2 vL1 vR1 vR2 vR3 vR4
' ' ' ' ' ' ' 'vL0

' vR0
'

36

86 77

Figure 2. rn(P2 � P10) = 91

3 Concluding Remarks

The assignment of channels is of great importance for the establishment of transmitter network which is
free of interference. The radio labeling is an intelligent move in this direction because the level of interference
is maximum at diametrical distance. We take up this problem in the context of strong product of P2 and Pn

and determine radio number for the same. To derive similar results for other graph families is an open area of
research.
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