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Abstract

In this paper, we obtain the general solution and the generalized Ulam-Hyers stability of the 2-variable
k-AC mixed type functional equation

f (x + ky, z + kw) + f (x− ky, z− kw)

= k2[ f (x + y, z + w) + f (x− y, z− w)] + 2(1− k2) f (x, z).

for any k ∈ Z− {0,±1} in α-Šerstnev Menger Probabilistic normed spaces.
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1 Introduction

Menger introduced probabilistic metric space in 1942 [16]. A probabilistic normed space (PN space) is a
natural generalization of an ordinary normed linear space. Such spaces were first introduced by Šerstnev in
1963, (see, [28]). Alsina et al. generalized the definition of PN space [1]. This definition became the standard
one and has been adopted by all researchers, who after them have investigated the properties of PN spaces.
In this article, we adopt the new definition of α-Šerstnev PN spaces (or generalized Šerstnev PN spaces) given
in the paper [14] by Lafuerza-Guillén and Rodrı́guez.

The problem of Ulam-Hyers stability for functional equations concerns deriving conditions under which,
given an approximate solution of a functional equation, one may find an exact solution that is near it in some
sense. The problem was first stated by Ulam [30] in 1940 for the case of group homomorphisms, and solved by
Hyers [9] in the setting of Banach spaces. Hyers result has since then seen many significant generalizations,
both in terms of the control condition used to define the concept of approximate solution ([2, 7, 22]) and in
terms of the methods used for the proof ([4, 6, 8, 10, 29]). Many interesting results concerning this problem
can be found, for example, in [11–13, 15, 17–20, 23, 24].

The stability of generalized mixed type functional equation of the form

f (x + ky) + f (x− ky) = k2[ f (x + y) + f (x− y)] + 2(1− k2) f (x) (1.1)
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for fixed integers k and k 6= 0,±1 in quasi-Banach spaces was introduced by M. Eshaghi Gordji and H. Khodaie
[5]. The mixed type functional equation (1.1) is having the property additive, quadratic and cubic.

J.H. Bae and W.G. Park proved the general solution and investigated the generalized Hyers-Ulam stability
of the 2-variable quadratic functional equation

f (x + y, z + w) + f (x− y, z− w) = 2 f (x, z) + 2(y, w). (1.2)

The functional equation (1.2) has solution

f (x, y) = ax2 + bxy + cy2 (1.3)

The general solution and generalized Hyers-Ulam stability of a 3-variable quadratic functional equation

f (x + y, z + w, u + v) + f (x− y, z− w, u− v) = 2 f (x, z, u) + 2(y, w, v) (1.4)

was discussed by K. Ravi and M. Arun Kumar [25]. The solution of (1.4) is of the form

f (x, y, z) = ax2 + by2 + cz2 + dxy + eyz + f zx (1.5)

Very recently, M. Aruk Kumar et al., introduced and investigated the solution and generalized Ulam-Hyers
stability of a 2-varibale AC-mixed type functional equation

f (2x + y, 2z + w)− f (2x− y, 2z− w) = 4[ f (x + y, z + w)− f (x− y, z− w)]− 6 f (y, w) (1.6)

having solutions
f (x, y) = ax + by (1.7)

and
f (x, y) = ax3 + bx2y + cxy2 + dy3 (1.8)

in Banach spaces [3] and Quasi-Beta normed space [21].
Following the same approach, in this paper, we investigate the general solution and establish that

generalized Ulam-Hyers stability of the 2-variable k-AC mixed type functional equation

f (x + ky, z + kw) + f (x− ky, z− kw)

= k2[ f (x + y, z + w) + f (x− y, z− w)] + 2(1− k2) f (x, z) (1.9)

having solutions
f (x, y) = ax + by (1.10)

and
f (x, y) = ax3 + bx2y + cxy2 + dy3 (1.11)

for fixed integers k with k 6= 0,±1 in α-Šestnev (or generalized Šerstnev) Menger Probabilistic normed spaces.
∆+ is the space of distribution functions that is, the space of all mappings F : R ∪ {−∞, ∞} → [0, 1] that is

non-decreasing, left-continuous on R and such that F(0) = 0 and F(+∞) = 1. D+ is a subset of ∆+ consisting
of all functions F for which lim

x→+∞
F(x) = 1. The space ∆+ is partially ordered by the usual point-wise ordering

of functions. The maximal element for ∆+ in this order is the distribution function ε0 given by

ε0(t) =

{
0, if t ≤ 0

1, if t > 0

Definition 1.1. [26, 27] A triangle function is a mapping τ : ∆+ × ∆+ → ∆+ such that, for all F, G, H, K in ∆+,

(1) τ(F, ε0) = F,

(2) τ(F, G) = τ(G, F),

(3) τ(F, G) ≤ τ(H, K) whenever F ≤ H, G ≤ K,

(4) τ(τ(F, G), H) = τ(F, τ(G, H)).
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Moreover, a triangle function is continuous if it is continuous in the metric space (∆+, ds).
Typical continuous triangle functions are

τT(F, G)(x) := sup
s+t=x

T(F(s), G(t)) (1.12)

and
τT∗(F, G)(x) := inf

s+t=x
T∗(F(s), G(t)) (1.13)

for all F, G ∈ ∆+ and all x ∈ R. Here, T is a continuous t-norm and T∗ is the corresponding continuous t-conorm, i.e.,
both are continuous binary operations on [0, 1] that are commutative, associative, and non decreasing in each variable;
T has 1 as identity and T∗ has 0 as identity. Also T∗(x, y) = 1− T(1− x, 1− y).

Definition 1.2 (PN spaces redefined [1]). A PN space is a quadruple (V, ν, τ, τ∗), where V is a real vector space, τ

and τ∗ are continuous triangle functions such that τ ≤ τ∗, and the mapping ν : V → ∆+ satisfies, for all p and q in V,
the conditions:

(N1) νp = ε0 if, and only if, p = θ (θ is the null vector in V);

(N2) ∀ p ∈ V, ν−p = νp;

(N3) νp+q ≥ τ(νp, νq);

(N4) ∀ α ∈ [0, 1], νp ≤ τ∗(ναp, ν(1−α)p).

A PN space is called a Šerstnev-space if it satisfies (N1), (N3) and the following condition:

(Š) ναp(x) = νp

(
x
|α|

)
(1.14)

holds for every α 6= 0 ∈ R and x > 0.
If τ = τT and τ∗ = τT∗ for some continuous t-norm T and its t-conorm T∗, then the PN space (V, ν, τT , τT∗) is

called Menger PN space (briefly, MPN space), and is denoted by (V, ν, T).
Let φ : [0,+∞] → [0,+∞] be a non-decreasing, left-continuous function with φ(0) = 0, φ(+∞) = +∞ and

φ(x) > 0 for x > 0. Let φ̂ be the (unique) quasi-inverse of φ which is left-continuous. φ̂ is defined by φ̂(0) = 0,
φ̂(+∞) = +∞ and φ̂(t) = sup{u : φ(u) < t} for all 0 < t < +∞. It follows that φ̂(φ(x)) ≤ x and φ(φ̂(y)) ≤ y for
all x and y.

Definition 1.3. [14] A quadruple (V, ν, τ, τ∗) satisfy the

(φ− Š) νλp(x) = νp

(
φ̂

(
φ(x)
|λ|

))
(1.15)

for all x ∈ R+, p ∈ V and λ ∈ R\{0} is called a φ-Šerstnev PN space (generalized Šerstnev space).
If φ(x) = x1/α for a fixed positive real number α, the condition (φ− Š) takes the form

(α− Š) νλp(x) = νp

(
x
|λ|α

)
(1.16)

for every p ∈ V, for every x > 0 and λ ∈ R\{0}.
PN spaces satisfying the condition (α− Š) are called α-Šerstnev PN spaces.

Definition 1.4. Let (V, ν, τ) be a PN space and {xn} be a sequence in V. Then {xn} is said to be convergent if there
exists x ∈ V such that

lim
n→∞

νxn−x(t) = 1 (1.17)

for all t > 0. In this case x is called the limit of {xn}.

Definition 1.5. The sequence {xn} in (V, ν, τ) is called a Cauchy sequence if, for every ε > 0 and δ > 0, there exists
a positive integer n0 such that ν(xn − xm)(δ) > 1− ε for all m, n ≥ n0. Clearly, every convergent sequence in a PN-
space is Cauchy. If every Cauchy sequence is convergent in a PN-space (V, ν, τ), then (V, ν, τ) is called a probabilistic
Banach space (PB-space).
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2 General Solution

Through out this section let U and V be real vector spaces and we present the solution of (1.9) using Lemma
2.1, 2.2, 2.3.

Lemma 2.1. If f : U2 → V is a mapping satisfying (1.9) and let g : U2 → V be a mapping given by

g(x, x) = f (2x, 2x)− 8 f (x, x) (2.1)

for all x ∈ U then
g(2x, 2x) = 2g(x, x) (2.2)

for all x ∈ U such that g is additive.

Proof. Letting (x, y, z, w) by (0, 0, 0, 0) in (1.9), we get

f (0, 0) = 0 (2.3)

Setting (x, y, z, w) by (y, x, w, z) in (1.9), we obtain

f (y + kx, w + kz) + f (y− kx, w− kz)

= k2[ f (x + y, w + z) + f (y− x, w− z)] + 2(1− k2) f (z, x) (2.4)

for all x, y, z, w ∈ U.
Replacing (x, y, z, w) by (x,−y, z,−w) in (2.4), we get

f (−y + kx,−w + kz) + f (−y− kz,−w− kz)

= k2[ f (x− y), (w− z)) + f (−y− x,−w− z)] + 2(1− k2) f (z, x) (2.5)

for all x, y, z, w ∈ U.
From (2.4) and (2.5) we arrive at

f (y + kx, w + kz) + f (y− kx, w− kz) + f (−y + kx,−w + kz)

+ f (−y− kx,−w− kz) = k2[ f (x + y, w + z) + f (y− x, w− z)

+ f (x− y, z− w) + f (−y− x,−w− z)] + 4(1− k2) f (z, x) (2.6)

Now, letting (x, y, z, w) by (0, y, 0, y) in (2.6), we obtain

2[k2 − 1][ f (y, y) + f (−y,−y)] = 0

which implies

f (y, y) = − f (−y,−y) (2.7)

for all y ∈ U.
Replacing (x, y, z, w) by (x, x, x, x) in (1.9), we get

f ((1 + k)x, (1 + k)x) + f ((1− k)x, (1− k)x)

= k2 f (2x, 2x) + 2(1− k2) f (x, x) (2.8)

for all x ∈ U. Now, replacing x by 2x in (2.8), we have

f (2(1 + k)x, 2(1 + k)x) + f (2(1− k)x, 2(1− k)x)

= k2 f (4x, 4x) + 2(1− k2) f (2x, 2x) (2.9)

for all x ∈ U. Again replacing (x, y, z, w) by (2x, x, 2x, x) in (1.9), we obtain

f ((2 + k)x, (2 + k)x) + f ((2− k)x, (2− k)x)

= k2 f (3x, 3x) + k2 f (x, x) + 2(1− k2) f (2x, 2x) (2.10)
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for all x ∈ U.
Replacing (x, y, z, w) by (x, 2x, x, 2x) in (1.9), we get

f ((1 + 2k)x, (1 + 2k)x) + f ((1− 2k)x, (1− 2k)x)

= k2 f (3x, 3x)− k2 f (x, x) + 2(1− k2) f (x, x) (2.11)

for all x ∈ U. Replacing (x, y, z, w) by (x, 3x, x, 3x) in (1.9), we obtain

f ((1 + 3k)x, (1 + 3k)x) + f ((1− 3k)x, (1− 3k)x)

= k2 f (4x, 4x)− k2 f (2x, 2x) + 2(1− k2) f (x, x) (2.12)

for all x ∈ U. We substitute (x, y, z, w) by ((1 + k)x, x, (1 + k)x, x) in (1.9) and then (x, y, z, w) by ((1 −
k)x, x, (1− k)x, x) in (1.9) to obtain

f ((1 + 2k)x, (1 + 2k)x) + f (x, x) = k2 f ((2 + k)x, (2 + k)x)

+ k2 f (kx, kx) + 2(1− k2) f ((1 + k)x, (1 + k)x) (2.13)

and

f ((1− 2k)x, (1− 2k)x) + f (x, x) = k2 f ((2− k)x, (2− k)x)

− k2 f (kx, kx) + 2(1− k2) f ((1− k)x, (1− k)x) (2.14)

for all x ∈ U. Then, by adding (2.13) to (2.14), we have

f ((1 + 2k)x, (1 + 2k)x) + f ((1− 2k)x, (1− 2k)x) + 2 f (x, x)

= k2 f ((2 + k)x, (2 + k)x) + k2 f ((2− k)x, (2− k)x)

+ 2(1− k2)[ f ((1 + k)x, (1 + k)x) + f ((1− k)x, (1− k)x)] (2.15)

for all x ∈ U. Now, substitute (x, y, z, w) by ((1 + 2k)x, x, (1 + 2k)x, x) in (1.9) and (x, y, z, w) by ((1 −
2k)x, x, (1− 2k)x, x) in (1.9) to obtain

f ((1 + 3k)x, (1 + 3k)x) + f ((1 + k)x, (1 + k)x)

= k2 f (2(1 + k)x, 2(1 + k)x) + k2 f (2kx, 2kx)

+ 2(1− k2) f ((1 + 2k)x, (1 + 2k)x) (2.16)

and

f ((1− 3k)x, (1− 3k)x) + f ((1− k)x, (1− k)x)

= k2 f (2(1− k)x, 2(1− k)x)− k2 f (2kx, 2kx)

+ 2(1− k2) f ((1− 2k)x, (1− 2k)x) (2.17)

for all x ∈ U. Now, adding (2.16) to (2.17), we have,

f ((1 + 3k)x, (1 + 3k)x) + f ((1− 3k)x, (1− 3k)x) + f ((1 + k)x, (1 + k)x)

+ f ((1− k)x, (1− k)x) = k2 f (2(1 + k)x, 2(1 + k)x)

+ k2 f (2(1− k)x, 2(1− k)x)

+ 2(1− k2)[ f ((1 + 2k)x, (1 + 2k)x) + f ((1− 2k)x, (1− 2k)x)] (2.18)

for all x ∈ U. From (2.8), (2.10), (2.11) and (2.15), we arrive at

f (3x, 3x) = 4 f (2x, 2x)− 5 f (x, x) (2.19)

for all x ∈ U. From (2.9), (2.11), (2.8), (2.12) and (2.18), we have

f (4x, 4x) = 2 f (2x, 2x) + 2 f (3x, 3x)− 6 f (x, x) (2.20)
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for all x ∈ U. Using (2.19) in (2.20), we obtain

f (4x, 4x) = 10 f (2x, 2x)− 16 f (x, x) (2.21)

for all x ∈ U. From (2.21), we establish

f (4x, 4x)− 8 f (2x, 2x) = 2 f (2x, 2x)− 16 f (x, x) (2.22)

for all x ∈ U. Using (2.1) in (2.22), we get our desired result.

Lemma 2.2. If f : U2 → V be a mapping satisfying (1.9) and let h : U2 → V be a mapping given by

h(x, x) = f (2x, 2x)− 2 f (x, x) (2.23)

for all x ∈ U then

h(2x, 2x) = 8h(x, x) (2.24)

for all x ∈ U such that h is cubic.

Proof. Proceeding as in Lemma 2.1, it follows from (2.21)

f (4x, 4x)− 2 f (2x, 2x) = 8 f (2x, 2x)− 16 f (x, x) (2.25)

for all x ∈ U. Using (2.23) in (2.25), we arrive at our desired result.

Remark 2.1. If f : U2 → V be a mapping satisfying (1.9) let g, h : U2 → V be mappings defined by (2.1) and (2.23)
then

f (x, x) =
1
6
(h(x, x)− g(x, x)) (2.26)

for all x ∈ U.

Lemma 2.3. If f : U2 → V is a mapping satisfying (1.9) and let t : U → V be a mapping given by

t(x) = f (x, x) (2.27)

for all x ∈ U, then t satisfies

t(x + ky) + t(x− ky) = k2[t(x + y) + t(x− y)] + 2(1− k2)t(x) (2.28)

for all x, y ∈ U.

Proof. From (1.9) and (2.27), we get

t(x + ky) + t(x− ky) = f (x + ky, x + ky)− f (x− ky, x− ky)

= k2[ f (x + y, x + y) + f (x− y, x− y)] + 2(1− k2) f (x, x)

= k2[t(x + y) + t(x− y)] + 2(1− k2)t(x)

for all x, y ∈ U.

3 Stability Results : Direct Method

In this section, we investigate the generalized Ulam-Hyers stability problem of (1.9) using direct method.
Let U be a real linear space and (Y, ν, τT) be a α-Šerstnev MPB space. Now, we define a difference operator
∆ f : U4 → Y by

∆ f (x, y, z, w) = f (x + ky, z + kw) + f (x− ky, z− kw)− k2 f (x + y, z + w)

− k2 f (x− y, z− w)− 2(1− k2) f (x, z) (3.1)

∀ x, y, z, w ∈ U, where f : U2 → Y is a mapping.
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Theorem 3.1. Let f : U2 → Y be a mapping for which there exist a function ξ : U4 → D+ with the condition

lim
m→∞

τT

[
ξ(2mx,2my,2mz,2mw)(2

mαt), ξ(2mx,2my,2mz,2mw)(2
(m−3)α−1t)

]
= 1 (3.2)

such that the functional inequality

ν∆ f (x,y,z,w)(t) ≥ ξx,y,z,w(t) (3.3)

for all x, y, z, w ∈ U, t > 0 and α > 0. Then there exists a unique 2-variable additive mapping A(x, x) : U2 → Y
satisfying (1.9) and

ν f (2x,2x)−8 f (x,x)−A(x,x)(t) ≥ Φ̃ (3.4)

where

A(x, x) = lim
n→∞

f (2(n+1)x, 2(n+1)x)− 8 f (2nx, 2nx)
2n (3.5)

Φ̃ = limn→∞ Φn = 1

Φn = τT

[
τ̃T(2n−1x)(t), Φn−1

]
, for n > 1

(3.6)

Φ1 = τ̃T(x)(t) (3.7)

and

τ̃T(x)(t) = τT

(
τT

(
τT

(
τT

(
ξ(x,2x,x,2x)

(
k2αt
242α

)
,

ξ((1−2k)x,x,(1−2k)x,x)

(
k2α|k2 − 1|αt

24

))
, τT

(
ξ((1+2k)x,x,(1+2k)x,x)

(
k2α|k2 − 1|αt

24

)
,

ξ(x,x,x,x)

(
k2α|k2 − 1|αt

24

)))
, τT

(
ξ(2x,2x,2x,2x)

(
|k2 − 1|αt

23

)
,

ξ(x,3x,x,3x)

(
k2α|k2 − 1|αt

23

)
, τT

(
τT

(
τT

(
ξ(x,x,x,x)

(
k2αt

2422α

)
,

ξ((1−k)x,x,(1−k)x,x)

(
k2α|k2 − 1|αt

242α

))
, τT

(
ξ((1+k)x,x,(1+k)x,x)

(
k2α|k2 − 1|αt

242α

)
ξ(x,2x,x,2x)

(
k2α|k2 − 1|αt

242α

)))
, ξ(2x,x,2x,x)

(
|k2 − 1|αt

242α

)))
, (3.8)

for all x ∈ U, t > 0 and α > 0.

Proof. Letting (x, y, z, w) by (x, x, x, x) in (3.3), we obtain

ν f ((1+k)x,(1+k)x)+ f ((1−k)x,(1−k)x)−k2 f (2x,2x)−2(1−k2) f (x,x)(t)

≥ ξ(x,x,x,x)(t), ∀ x ∈ U, t > 0. (3.9)

It follows from (3.9) that

ν f (2(1+k)x,2(1+k)x)+ f (2(1−k)x,2(1−k)x)−k2 f (4x,4x)−2(1−k2) f (2x,2x)(t)

≥ ξ(2x,2x,2x,2x)(t), ∀ x ∈ U, t > 0. (3.10)

Replacing (x, y, z, w) by (2x, x, 2x, x) in (3.3), respectively, we have

ν f ((2+k)x,(2+k)x)+ f ((2−k)x,(2−k)x)−k2 f (3x,3x)−k2 f (x,x)−2(1−k2) f (2x,2x)(t)

≥ ξ(2x,x,2x,x)(t), ∀ x ∈ U, t > 0. (3.11)
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Setting (x, y, z, w) by (x, 2x, x, 2x) in (3.3) gives

ν f ((1+2k)x,(1+2k)x)+ f ((1−2k)x,(1−2k)x)−k2 f (3x,3x)−k2 f (x,x)−2(1−k2) f (x,x)(t)

≥ ξ(x,2x,x,2x)(t), ∀ x ∈ U, t > 0. (3.12)

Replacing (x, y, z, w) by (x, 3x, x, 3x) in (3.3), we obtain

ν f ((1+3k)x,(1+3k)x)+ f ((1−3k)x,(1−3k)x)−k2 f (4x,4x)+k2 f (2x,2x)−2(1−k2) f (x,x)(t)

≥ ξ(x,3x,x,3x)(t), ∀ x ∈ U, t > 0. (3.13)

Replacing (x, y, z, w) by ((1 + k)x, x, (1 + k)x, x) in (3.3), respectively, we get

ν f ((1+2k)x,(1+2k)x)+ f (x,x)−k2 f ((2+k)x,(2+k)x)−k2 f (kx,kx)−2(1−k2) f ((1+k)x,(1+k)x)(t)

≥ ξ((1+k)x,x,(1+k)x,x)(t), ∀ x ∈ U, t > 0. (3.14)

Replacing (x, y, z, w) by ((1− k)x, x, (1− k)x, x) in (3.3), respectively, one gets

ν f ((1−2k)x,(1−2k)x)+ f (x,x)−k2 f ((2−k)x,(2−k)x)+k2 f (kx,kx)−2(1−k2) f ((1−k)x,(1−k)x)(t)

≥ ξ((1−k)x,x,(1−k)x,x)(t), ∀ x ∈ U, t > 0. (3.15)

Replacing (x, y, z, w) by ((1 + 2k)x, x, (1 + 2k)x, x) in (3.3), respectively, we obtain

ν f ((1+3k)x,(1+3k)x)+ f ((1+k)x,(1+k)x)−k2 f (2(1+k)x,2(1+k)x)−k2 f (2kx,2kx)−2(1−k2) f ((1+2k)x,(1+2k)x)(t)

≥ ξ((1+2k)x,x,(1+2k)x,x)(t), ∀ x ∈ U, t > 0. (3.16)

Replacing (x, y, z, w) by ((1− 2k)x, x, (1− 2k)x, x) in (3.3), respectively, we have

ν f ((1−3k)x,(1−3k)x)+ f ((1−k)x,(1−k)x)−k2 f (2(1−k)x,2(1−k)x)+k2 f (2kx,2kx)−2(1−k2) f ((1−2k)x,(1−2k)x)(t)

≥ ξ((1−2k)x,x,(1−2k)x,x)(t), ∀ x ∈ U, t > 0. (3.17)

Thus it follows from (3.9), (3.11), (3.12), (3.14) and (3.15) that

ν f (3x,3x)−4 f (2x,2x)+5 f (x,x)(t)

≥ τT

(
τT

(
τT

(
ξ(x,x,x,x)

(
k2αt
232α

)
, ξ((1−k)x,x,(1−k)x,x)

(
k2α|k2 − 1|αt

23

))
,

τT

(
ξ((1+k)x,x,(1+k)x,x)

(
k2α|k2 − 1|αt

23

)
, ξ(x,2x,x,2x)

(
k2α|k2 − 1|αt

23

)))
ξ(2x,x,2x,x)

(
|k2 − 1|αt

2

))
, ∀ x ∈ U, t > 0 and α > 0. (3.18)

Also, from (3.9), (3.10), (3.12), (3.13) (3.16) and (3.17), we have

ν f (4x,4x)−2 f (3x,3x)−2 f (2x,2x)+6 f (x,x)(t)

≥ τT

(
τT

(
τT

(
ξ(x,2x,x,2x)

(
k2αt
232α

)
, , ξ((1−2k)x,x,(1−2k)x,x)

(
k2α|k2 − 1|αt

23

))
,

τT

(
ξ((1+2k)x,x,(1+2k)x,x)

(
k2α|k2 − 1|αt

23

)
, ξ(x,x,x,x)

(
k2α|k2 − 1|αt

23

)))
τT

(
ξ(2x,2x,2x,2x)

(
|k2 − 1|αt

22

)
, ξ(x,3x,x,3x)

(
k2α|k2 − 1|αt

22

))
, (3.19)

for all x ∈ U, t > 0 and α > 0.
Finally, by using (3.18) and (3.19), we obtain

ν f (4x,4x)−10 f (2x,2x)+16 f (x,x)(t) ≥ τ̃T(x)(t) (3.20)
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where,

τ̃T(x)(t)

= τT

(
τT

(
τT

(
τT

(
ξ(x,2x,x,2x)

(
k2αt
242α

)
, ξ((1−2k)x,x,(1−2k)x,x)

(
k2α|k2 − 1|αt

24

))
,

τT

(
ξ((1+2k)x,x,(1+2k)x,x)

(
k2α|k2 − 1|αt

24

)
, ξ(x,x,x,x)

(
k2α|k2 − 1|αt

24

)))
,

τT

(
ξ(2x,2x,2x,2x)

(
|k2 − 1|αt

23

)
, ξ(x,3x,x,3x)

(
k2α|k2 − 1|αt

23

))
,

τT

(
τT

(
τT

(
ξ(x,x,x,x)

(
k2αt

2422α

)
, ξ((1−k)x,x,(1−k)x,x)

(
k2α|k2 − 1|αt

2422α

))
,

τT

(
ξ((1+k)x,x,(1+k)x,x)

(
k2α|k2 − 1|αt

242α

)
, ξ(x,2x,x,2x)

(
k2α|k2 − 1|αt

242α

))
,

ξ(2x,x,2x,x)

(
|k2 − 1|αt

222α

)))
, ∀ x ∈ U, t > 0 and α > 0. (3.21)

Let g : U2 → Y be a function defined by

g(x, x) = f (2x, 2x)− 8 f (2x, 2x) for all x ∈ U. (3.22)

From (3.20), we conclude that

ν g(2x,2x)
2 −g(x,x)

(t) ≥ τ̃T(x)(2
αt) ≥ τ̃T(x)(t), ∀ x ∈ U, t > 0 and α > 0 (3.23)

which implies that

ν g(2`+1x,2`+1x)
2`+1 − g(2`x,2`x)

2`

(t) ≥ τ̃T(2`x)(2
(`+1)αt) (3.24)

for all x ∈ U, t > 0, α > 0 and ` ∈ N. From the inequalities (3.23) and (3.24) we use iterative methods and
induction on n and apply defined sequence in (3.6) and (3.7) to prove our next relation

ν g(2n x,2n x)
2n −g(x,x)

(t) ≥ τT

[
τ̃T(2n−1x)(t), Φn−1

]
∀ x ∈ U, t > 0 and α > 0. (3.25)

So

ν g(2m+n x,2m+n x)
2m+n − g(2m x,2m x)

2m
(t) ≥ τT

[
τ̃T(2(m+n)−1x)(2

mαt), Φ(m+n)−1

]
(3.26)

for all non negative integers m and n and for all x ∈ U, t > 0. By assumptions (3.26) shows that the sequence{
g(2nx,2nx)

2n

}
is a Cauchy sequence in Y for all x ∈ U. Since Y is a α-S̆erstnev MPB, it follows that the sequence{

g(2nx,2nx)
2n

}
converges for all x ∈ U. Therefore, one can define the function A(x, x) : U2 → Y by

A(x, x) = lim
n→∞

g(2nx, 2nx)
2n for all x ∈ U. (3.27)

Now, if we replace (x, y, z, w) by (2nx, 2ny, 2nz, 2nw) in (3.3), respectively, then it follows that

ν∆g(2n x,2ny,2nz,2nw)
2n

(t) = ν∆ f (2n+1x,2n+1y,2n+1z,2n+1w)
2n −8 ∆ f (2n x,2ny,2nz,2nw)

2n
(t)

≥ τT

[
ν∆ f (2n+1x,2n+1y,2n+1z,2n+1w)(2

nα−1t), ν∆ f (2nx,2ny,2nz,2nw)(2
(n−3)α−1t)

]
≥ τT

[
ξ2n+1x,2n+1y,2n+1z,2n+1w(2

nα−1t), ξ2nx,2ny,2nz,2nw(2(n−3)α−1t)
]

(3.28)

for all x, y, z, w ∈ U, t > 0 and α > 0. By letting n → ∞ in (3.28), we have ν∆A(x,y,z,w)(t) = 1 for all t > 0
and so ∆A(x, y, z, w) = 0. Hence A satisfies (1.9) for all x, y, z, w ∈ U. To prove (3.4), if we take the limit as
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n → ∞ in (3.25), then we can get (3.4). Finally, to prove the uniqueness of the additive function A subject to
(3.4), assume that there exists another 2-variable additive mapping A′ which satisfies (3.4) and (1.9), then

νA(x,x)−A′(x,x)(t) = ν A(2n x,2n x)
2n − A′(2n x,2n x)

2n
(t)

= νA(2nx,2nx)−A′(2nx,2nx)(2
nαt)

≥ νA(2nx,2nx)−g(2nx,2nx)+g(2nx,2nx)−A′(2nx,2nx)(2
nαt)

≥ lim
n→∞

τT

[
τT

[
τ̃T(22n−1x)(2

nα−1t), Φn−1

]
, τT

[
τ̃T(22n−1x)(2

nα−1t), Φn−1

]
(3.29)

which tends to 1 as n → ∞ for all x ∈ U. So we can conclude that A = A′. This completes the proof of the
theorem.

Theorem 3.2. Let f : U2 → Y be a mapping for which there exist a function ξ : U4 → D+ with the condition

lim
m→∞

τT

[
ξ(2mx,2my,2mz,2mw)(2

3mαt), ξ(2mx,2my,2mz,2mw)(2
(3m−1)α−1t),

]
(3.30)

such that the functional inequality (3.3) is satisfied for all x, y, z, w ∈ U, t > 0 and α > 0. Then there exists a unique
2-variable cubic mapping c(x, x) : U2 → Y satisfying (1.9) and

ν f (2x,2x)−2 f (x,x)−c(x,x)(t) ≥ Ψ̃ (3.31)

where

c(x, x) = lim
n→∞

f (2(n+1)x, 2(n+1)x)− 2 f (2nx, 2nx)
23n (3.32)

Ψ̃ = limn→∞ Ψn = 1

Ψn = τT

[
τ̃T(2n−1x)(2

2nαt), Ψn−1

] (3.33)

Ψ1 = τ̃T(x)(2
2αt), ∀ x ∈ U, t > 0, α > 0, (3.34)

where τ̃T(x)(t) is defined as in Theorem 3.1.

Proof. By the similar approach as in the proof of Theorem 3.1, we can obtain

ν f (4x,4x)−10 f (2x,2x)+16 f (x,x)(t) ≥ τ̃T(x)(t), ∀ x ∈ U, t > 0.

Let h : U2 → Y be a function defined by

h(x, x) = f (2x, 2x)− 2 f (x, x), for all x ∈ U (3.35)

Thus from (3.20), we have

ν h(2x,2x)
23 −h(x,x)

(t) ≥ τ̃T(x)(2
3αt) ≥ τT(x)(2

2αt), ∀ x ∈ U, t > 0, α > 0 (3.36)

which implies that

ν h(2`+1x,2`+1x)

23(`+1) − h(2`x,2`x)
23`

(t) ≥ τT(2`x)(2
3(`+1)αt) (3.37)

for all x ∈ U, t > 0, α > 0 and ` ∈N. Thus it follows from (3.37) and (N3)

ν h(2n x,2n x)
23n −h(x,x)

(t) ≥ τT

[
τ̃T(2n−1x)(2

2nαt), Φn−1

]
, ∀ x ∈ U; t > 0, α > 0. (3.38)

In order to prove the convergence of the sequence
{

h(2nx,2nx)
23n

}
if we replace x with 2mx in (3.38), then we get

ν h(2n+m x,2n+m x)

23(n+m)
− h(2m x,2m x)

23m
(t) ≥ τT

[
τT(2n+m−1x)(2

(2n+3m)αt), Φn+m

]
(3.39)
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for all non-negative integers m and n and ∀ x ∈ U, t > 0, α > 0.
Since the right hand side of the inequality tends to 1 as m and n tend to infinity, by assumptions, the

sequence
{

h(2nx,2nx)
23n

}
is a Cauchy sequence in Y for all x ∈ U. Since Y is a α-S̆erstnev MPB, one can define the

function c(x, x) : U2 → Y by

c(x, x) = lim
n→∞

h(2nx, 2nx)
23n for all x ∈ U. (3.40)

Now, if we replace (x, y, z, w) by (2nx, 2ny, 2nz, 2nw) in (3.3), respectively, then it follows that

ν∆h(2n x,2ny,2nz,2nw)

23n
(t) = ν∆ f (2n+1x,2n+1y,2n+1z,2n+1w)

23n −2 ∆ f (2n x,2ny,2nz,2nw)

23n
(t)

≥ τT

[
ν∆ f (2n+1x,2n+1y,2n+1z,2n+1w)(2

3nα−1t), ν∆ f (2nx,2ny,2nz,2nw)(2
(3n−2)α−1t)

]
≥ τT

[
ξ(2n+1x,2n+1y,2n+1z,2n+1w)(2

3nα−1t), ξ(2nx,2ny,2nz,2nw)(2
(3n−1)α−1t)

]
(3.41)

for all x, y, z, w ∈ U, t > 0 and α > 0. By letting n → ∞ in (3.41), we find that ν∆c(x,y,z,w)(t) = 1 for all t > 0,
which implies ∆c(x, y, z, w) = 0 and so c satisfies (1.9) for all x, y, z, w ∈ U. To prove (3.31), if we take the
limit as n → ∞ in (3.38), then we get (3.31). The rest of the proof is similar to the proof of Theorem 3.1. This
completes the proof.

Theorem 3.3. Let ξ : U2 → D+ be a function with the conditions given in (3.2) and (3.30) and f : U2 → Y be a
function which satisfies (3.3) for all x, y, z, w ∈ U and t > 0. Then there exists a unique 2-variable additive mapping
A : U2 → Y and a unique 2-variable cubic mapping C : U2 → Y satisfying (1.9) such that

ν f (x,x)−A(x,x)−C(x,x)(t) ≥

lim
n→∞

τT

[
τT

(
τ̃T(2n−1x)(3

α2α−1t), Φn−1

)
, τT

(
τ̃T(2n−1x)(2

(2n+1)α−13αt), Ψn−1

)]
(3.42)

for all x ∈ U, t > 0 and α > 0, where Φn, τ̃T(x)(t) is defined as in Theorem 3.1 and Ψn is defined as in Theorem 3.2.

Proof. By Theorems 3.1 and 3.2, there exist a unique 2-variable additive function A0 : U2 → Y and a unique
2-variable cubic function C0 : U2 → Y such that

ν f (2x,2x)−8 f (x,x)−A0(x,x)(t) ≥ Φ̃ (3.43)

and

ν f (2x,2x)−2 f (x,x)−C0(x,x)(t) ≥ Ψ̃, ∀ x ∈ U, t > 0. (3.44)

Thus it follows from (3.43) and (3.44) that

ν f (x,x)+ 1
6 A0(x,x)− 1

6 C0(x,x)(t)

≥ τT

[
ν f (2x,2x)−8 f (x,x)−A0(x,x)(3

α2α−1t), ν f (2x,2x)−2 f (x,x)−C0(x,x)(3
α2α−1t)

]
(3.45)

for all x ∈ U, t > 0 and α > 0. Thus we obtain (3.42) by letting A(x, x) = − 1
6 A0(x, x) and C(x, x) = 1

6 C0(x, x)
for all x ∈ U. This completes the proof of the stability of the functional equation (1.9) in α-Šerstnev MPN
spaces.
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