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Abstract

In this paper, we study the existence of solutions for q-functional integral equations in Banach space C[0, T].
The existence and uniqueness of solutions for the problems are proved by means of the Banach contraction
principle.
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1 Introduction

The quantum calculus or q-difference calculus is an old subject that was first developed by Jackson ([12],[13]),
while basic definitions and properties can be found in [15]. Studies on q-difference equations appeared already
at the beginning of the last century in intensive works especially by F H Jackson [14], R D Carmichael [6], T E
Mason [19], C R Adams [1], W J Trjitzinsky [21] and other authors [5].
Recently, q-calculus has served as abridge between mathematics and physics. It has a lot of applications in
mathematics and physics([7]-[9],[17],[22]).

In this paper, we are concerned with the q-functional integral equations

x(t) = g(t) +
∫ t

0
f1 (t, s, x(φ(s))) dqs, t ∈ [0, T] (1.1)

and

x(t) = g(t) + f2 (t,
∫ t

0
g(s, x(φ(s))) dqs), t ∈ [0, T] (1.2)

where φ is deviated function. The existence of continuous solutions of the q-functional integral equation (1.1) in
the Banach space C[0, T] will be proved. The monotonicity of the solution of the equation (1.1) will be studied.
The existence of continuous solutions of the q-functional integral equation (1.2) in Banach space C[0, T] will
be proved.

2 preliminaries

Here, we give the definition of q-derivative and q-integral and some of their properties which is referred
to ([2],[15]).
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Let q ∈ (0, 1) and define

[n]q =
qn − 1
q− 1

= 1 + q + q2 + · · ·+ qn−1, n ∈ R

which is called The q- analogue of n.

Definition 2.1. The q-derivative of a real valued function f is defined by

Dq f (t) =
dq f (t)

dqt
=

f (qt) − f (t)
qt − t

, Dq f (0) = lim
t→0

Dq f (t)

Note that lim
q→1

Dq f (t) = f ′(t) if f (t) is differentiable.

The higher order q-derivative are defined as

D0
q f (t) = f (t), Dn

q f (t) = DqDn−1
q f (t), n ∈ N.

Definition 2.2. Suppose 0 < a < b. The definite q-integral is defined as

Iq f (x) =
∫ b

0
f (x) dqx = (1− q)b

∞

∑
j=0

qj f (qjb).

and ∫ b

a
f (x) dqx =

∫ b

0
f (x) dqx −

∫ a

0
f (x) dqx.

Similarly, we have
I0
q f (t) = f (t), In

q f (t) = Iq In−1
q f (t), n ∈ N.

Theorem 2.1 (see [15]). (Fundamental Theorem of q-Calculus)
If F(x) is an antiderivative of f (x), and F(x) is continuous at x = 0, then∫ b

a
f (x)dqx = F(b) − F(a), 0 ≤ a < b ≤ ∞.

Theorem 2.2. (see [4],[15]) For any function f one has

Dq Iq f (x) = f (x). (2.3)

Theorem 2.3. (see [2]) Let f be a function defined on [a, b], 0 ≤ a ≤ b, and c is a fixed point in [a, b]. Assume that
there exists, 0 ≤ γ < 1 such that xγ f (x) is continuous on [a, b]. Let

F(x) =
∫ x

c
f (t) dqt, x ∈ [a, b].

Then F(x) is a continuous function on [a, b].

Lemma 2.1. If

F(t) =
∫ t

0
f (s) dqs, for t ∈ [a, b],

is continuous, then for every ε > 0 ∃ δ > 0, such that t2, t2 ∈ [0, T], | t2 − t1 |< δ, then

|F(t2) − F(t1)| < ε

i.e.,

|
∫ t2

0
f (s) dqs −

∫ t1

0
f (s) dqs| < ε.

Lemma 2.2. (see [18])
(1) If f and g are q-integrable on [a, b], α ∈ R, c ∈ [a, b], then

(i)
∫ b

a [ f (x) + g(x)] dqx =
∫ b

a f (x) dqx +
∫ b

a g(x) dqx,

(ii)
∫ b

a α f (x) dqx = α
∫ b

a f (x) dqx,
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(iii)
∫ b

a f (x) dqx =
∫ c

a f (x) dqx +
∫ b

c f (x) dqx.

(2) If | f | is q-integrable on the interval [0, x], then∣∣∣∣ ∫ x

0
f (x) dqx

∣∣∣∣ ≤ ∫ x

0
| f (x)| dqx.

.
(3) If f and g are q-integrable on [0, x], f (x) ≤ g(x), for all x ∈ [0, x], then∫ x

0
f (x) dqx ≤

∫ x

0
g(x) dqx.

3 Main results

Let X be the class of all continuous functions, x ∈ C[0, T] with the norm

‖x‖ = sup
t∈[0,T]

| x(t) | .

First, we study the existence and uniqueness of the solution of the q-functional integral equation (1.1) and
then we proved the monotonicity for the solution.

Consider the q-functional integral equation (1.1) under the following assumptions

(i) g : [0, T] → R is continuous.

(ii) f1 : [0, T]× [0, T]× R→ R is continuous.

(iii) f1 satisfies the Lipschitz condition

| f1(t, s, x)− f1(t, s, y)| ≤ k(t, s) |x− y|.

(iv)

sup
t

∫ t

0
k(t, s) dqs ≤ K

Now for the existence of a unique continuous solution of the q-functional integral equation (1.1) we have the
following theorem.

Theorem 3.4. Let the assumptions (i)-(iv) be satisfied. If K < 1, then the q-functional integral equation (1.1) has a
unique solution x ∈ C[0, T].

Proof. Define the operator F associated with the q-functional integral equation (1.1) by

Fx(t) = g(t) +
∫ t

0
f1(t, s, x(φ(s))) dqs.

To show that F : C[0, T] → C[0, T], let x ∈ C[0, T], t1, t2 ∈ [0, T], then

|Fx(t2)− Fx(t1)| = |g(t2)− g(t1) +
∫ t2

0
f1(t2, s, x(φ(s)))dqs −

∫ t1

0
f1(t1, s, x(φ(s)))dqs|

≤ |g(t2)− g(t1)| + |
∫ t2

0
f1(t2, s, x(φ(s))) dqs −

∫ t1

0
f1(t1, s, x(φ(s))) dqs|

≤ |g(t2)− g(t1)| + |
∫ t2

0
f1(t2, s, x(φ(s))) dqs −

∫ t2

0
f1(t1, s, x(φ(s))) dqs|

+ |
∫ t2

0
f1(t1, s, x(φ(s)))dqs −

∫ t1

0
f1(t1, s, x(φ(s)))dqs|

≤ |g(t2)− g(t1)| +
∫ t2

0
| f1(t2, s, x(φ(s))) − f1(t1, s, x(φ(s))) | dqs

+ |
∫ t2

0
f1(t1, s, x(φ(s)))dqs −

∫ t1

0
f1(t1, s, x(φ(s)))dqs |
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applying Theorem (2.3) and Lemma (2.1), then we deduce that

F : C[0, T] → C[0, T].

Let x, y ∈ C[0, T], we have

|Fx(t)− Fy(t)| = |g(t) +
∫ t

0
f1(t, s, x(φ(s))) dqs − g(t) −

∫ t

0
f1(t, s, y(φ(s))) dqs|

= |
∫ t

0
f1(t, s, x(φ(s))) dqs −

∫ t

0
f1(t, s, y(φ(s))) dqs|

≤
∫ t

0
| f1(t, s, x(φ(s))) − f1(t, s, y(φ(s)))| dqs

≤
∫ t

0
k(t, s) |x(φ(s)) − y(φ(s))| dqs

≤ ‖x− y‖
∫ t

0
k(t, s) dqs

≤ K ‖x − y‖.

This means that F is contraction.
Applying Banach contraction principle ([10],[16]), then we deduce that there exists a unique solution x ∈ C[0, T] of
the q-functional integral equation (1.1).

The following theorem prove the monotonicity for the solution of the q-functional integral equation (1.1).

Theorem 3.5. Let the assumptions (i)-(iv) of Theorem (3.1) be satisfied. If f1(t, s, x(φ(s))) and g(t) are monotonic
nonincreasing(nondecreasing) in t for each t ∈ [0, T], then the q-integral equation (1.1) has a unique monotonic
nonincreasing(nondecreasing) solution x ∈ C[0, T].

Proof. Let f , g be monotonic nonincreasing functions in t ∈ [0, T], then
for t2 > t1

x(t2) = g(t2) +
∫ t2

0
f1(t2, s, x(φ(s))) dqs

≤ g(t1) +
∫ t1

0
f1(t1, s, x(φ(s))) dqs

= x(t1).

Hence,
x(t2) ≤ x(t1).

Also, If f1, g are monotonic nondecreasing functions in t ∈ [0, T], then
for t2 > t1

x(t2) = g(t2) +
∫ t2

0
f1(t2, s, x(φ(s))) dqs

≥ g(t1) +
∫ t1

0
f1(t1, s, x(φ(s))) dqs

= x(t1).



A. M. A. El-Sayed et al. / Existence of solutions of q-functional... 377

Hence

x(t2) ≥ x(t1).

Now, we study the existence and uniqueness of the solution of the q-functional integral equation

x(t) = g(t) + f2 (t,
∫ t

0
g(s, x(φ(s))) dqs), t ∈ [0, T]

Consider the q-functional integral equation (1.2) under the following assumptions

(i) g : [0, T] → R is continuous.

(ii) f2 : [0, T]× R→ R is continuous.

(iii) f2 satisfies the Lipschitz condition

| f2(t, x(t))− f2(t, y(t))| ≤ k |x(t)− y(t)|.

(iv) g satisfies the Lipschitz condition

|g(s, x(t))− g(s, y(t))| ≤ l |x(t)− y(t)|.

For the existence of a unique continuous solution of the q-functional integral equation (1.2), we have the
following theorem.

Theorem 3.6. Let the assumptions (i)-(iv) be satisfied. If klT < 1, then the q-functional integral equation (1.2) has
a unique solution x ∈ C[0, T].

Proof. Define the operator F associated with the q-functional integral equation (1.2) by

Fx(t) = g(t) + f2(t,
∫ t

0
g(s, x(φ(s))) dqs).

To show that F : C[0, T] → C[0, T], let x ∈ C[0, T], t1, t2 ∈ [0, T], then

|Fx(t2)− Fx(t1)| = |(g(t2)− g(t1)) + ( f2(t2,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t1

0
g(s, x(φ(s)))dqs))|

≤ | g(t2)− g(t1) | + | f2(t2,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t1

0
g(s, x(φ(s)))dqs)|

≤ | g(t2)− g(t1) | + | f2(t2,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t2

0
g(s, x(φ(s)))dqs)|

+ | f2(t1,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t1

0
g(s, x(φ(s)))dqs)|

≤ | g(t2)− g(t1) | + | f2(t2,
∫ t2

0
g(s, x(φ(s)))dqs)− f2(t1,

∫ t2

0
g(s, x(φ(s)))dqs)|

+ |
∫ t2

0
g(s, x(φ(s)))dqs −

∫ t1

0
g(s, x(φ(s)))dqs|

applying Theorem (2.3) and Lemma (2.1), then we deduce that

F : C[0, T] → C[0, T].
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Let x, y ∈ C[0, T], we have

|Fx(t)− Fy(t)| = | g(t) + f2(t,
∫ t

0
g(s, x(φ(s))) dqs) − g(t) − f2(t,

∫ t

0
g(s, y(φ(s))) dqs) |

= | f2(t,
∫ t

0
g(s, x(φ(s))) dqs) − f2(t,

∫ t

0
g(s, y(φ(s))) dqs) |

≤ k |
∫ t

0
g(s, x(φ(s))) dqs −

∫ t

0
g(s, y(φ(s))) dqs |

≤ k
∫ t

0
| g(s, x(φ(s))) − g(s, y(φ(s))) | dqs

≤ kl
∫ t

0
| x(φ(s)) − y(φ(s)) | dqs

≤ klT ‖x − y‖.

This means that F ([10]) is contraction .
Then F has a fixed point x ∈ C[0, T] which proves that there exists a unique solution of the q-functional
integral equation (1.2).
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