

Existence of solutions of q-functional integral equations with deviated argument

A. M. A. El-Sayed ${ }^{a, *}$ Fatma. M. Gaafar ${ }^{b}$ R. O. Abd-El-Rahman ${ }^{b}$ and M. M. El-Haddad ${ }^{b}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt.
${ }^{b}$ Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt.

Abstract

In this paper, we study the existence of solutions for q-functional integral equations in Banach space $C[0, T]$. The existence and uniqueness of solutions for the problems are proved by means of the Banach contraction principle.

Keywords: \quad-functional integral equations; Banach contraction principle; Deviated argument; existence.
2010 MSC: 534A08, 47H07, 47H10.
(C) 2012 MJM. All rights reserved.

1 Introduction

The quantum calculus or q-difference calculus is an old subject that was first developed by Jackson ([12],[13]), while basic definitions and properties can be found in [15]. Studies on q-difference equations appeared already at the beginning of the last century in intensive works especially by F H Jackson [14], R D Carmichael [6], T E Mason [19], C R Adams [1], W J Triitzinsky [21] and other authors [5].
Recently, q-calculus has served as abridge between mathematics and physics. It has a lot of applications in mathematics and physics([7]-[9],[17],[22]).

In this paper, we are concerned with the q-functional integral equations

$$
\begin{equation*}
x(t)=g(t)+\int_{0}^{t} f_{1}(t, s, x(\phi(s))) d_{q} s, \quad t \in[0, T] \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t)=g(t)+f_{2}\left(t, \int_{0}^{t} g(s, x(\phi(s))) d_{q} s\right), \quad t \in[0, T] \tag{1.2}
\end{equation*}
$$

where ϕ is deviated function. The existence of continuous solutions of the q-functional integral equation (1.1) in the Banach space $C[0, T]$ will be proved. The monotonicity of the solution of the equation 1.1) will be studied. The existence of continuous solutions of the q-functional integral equation in Banach space $C[0, T]$ will be proved.

2 preliminaries

Here, we give the definition of q-derivative and q-integral and some of their properties which is referred to ([2], [15]).

[^0]Let $q \in(0,1)$ and define

$$
[n]_{q}=\frac{q^{n}-1}{q-1}=1+q+q^{2}+\cdots+q^{n-1}, \quad n \in \mathbf{R}
$$

which is called The q-analogue of n.
Definition 2.1. The q-derivative of a real valued function f is defined by

$$
D_{q} f(t)=\frac{d_{q} f(t)}{d_{q} t}=\frac{f(q t)-f(t)}{q t-t}, \quad D_{q} f(0)=\lim _{t \rightarrow 0} D_{q} f(t)
$$

Note that $\lim _{q \rightarrow 1} D_{q} f(t)=f^{\prime}(t)$ if $f(t)$ is differentiable.
The higher order q-derivative are defined as

$$
D_{q}^{0} f(t)=f(t), \quad D_{q}^{n} f(t)=D_{q} D_{q}^{n-1} f(t), \quad n \in \mathbf{N}
$$

Definition 2.2. Suppose $0<a<b$. The definite q-integral is defined as

$$
I_{q} f(x)=\int_{0}^{b} f(x) d_{q} x=(1-q) b \sum_{j=0}^{\infty} q^{j} f\left(q^{j} b\right)
$$

and

$$
\int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x
$$

Similarly, we have

$$
I_{q}^{0} f(t)=f(t), \quad I_{q}^{n} f(t)=I_{q} I_{q}^{n-1} f(t), \quad n \in \mathbf{N}
$$

Theorem 2.1 (see [15]). (Fundamental Theorem of q-Calculus)
If $F(x)$ is an antiderivative of $f(x)$, and $F(x)$ is continuous at $x=0$, then

$$
\int_{a}^{b} f(x) d_{q} x=F(b)-F(a), \quad 0 \leq a<b \leq \infty
$$

Theorem 2.2. (see [4], (15]) For any function f one has

$$
\begin{equation*}
D_{q} I_{q} f(x)=f(x) \tag{2.3}
\end{equation*}
$$

Theorem 2.3. (see [2]) Let f be a function defined on $[a, b], 0 \leq a \leq b$, and c is a fixed point in $[a, b]$. Assume that there exists, $0 \leq \gamma<1$ such that $x^{\gamma} f(x)$ is continuous on $[a, b]$. Let

$$
F(x)=\int_{c}^{x} f(t) d_{q} t, \quad x \in[a, b]
$$

Then $F(x)$ is a continuous function on $[a, b]$.
Lemma 2.1. If

$$
F(t)=\int_{0}^{t} f(s) d_{q} s, \quad \text { for } t \in[a, b]
$$

is continuous, then for every $\epsilon>0 \exists \delta>0$, such that $t_{2}, t_{2} \in[0, T],\left|t_{2}-t_{1}\right|<\delta$, then

$$
\left|F\left(t_{2}\right)-F\left(t_{1}\right)\right|<\epsilon
$$

i.e.,

$$
\left|\int_{0}^{t_{2}} f(s) d_{q} s-\int_{0}^{t_{1}} f(s) d_{q} s\right|<\epsilon
$$

Lemma 2.2. (see [18])
(1) If f and g are q-integrable on $[a, b], \alpha \in R, c \in[a, b]$, then
(i) $\int_{a}^{b}[f(x)+g(x)] d_{q} x=\int_{a}^{b} f(x) d_{q} x+\int_{a}^{b} g(x) d_{q} x$,
(ii) $\int_{a}^{b} \alpha f(x) d_{q} x=\alpha \int_{a}^{b} f(x) d_{q} x$,
(iii) $\int_{a}^{b} f(x) d_{q} x=\int_{a}^{c} f(x) d_{q} x+\int_{c}^{b} f(x) d_{q} x$.
(2) If $|f|$ is q-integrable on the interval $[0, x]$, then

$$
\left|\int_{0}^{x} f(x) d_{q} x\right| \leq \int_{0}^{x}|f(x)| d_{q} x
$$

(3) If f and g are q-integrable on $[0, x], f(x) \leq g(x)$, for all $x \in[0, x]$, then

$$
\int_{0}^{x} f(x) d_{q} x \leq \int_{0}^{x} g(x) d_{q} x
$$

3 Main results

Let X be the class of all continuous functions, $x \in C[0, T]$ with the norm

$$
\|x\|=\sup _{t \in[0, T]}|x(t)|
$$

First, we study the existence and uniqueness of the solution of the q-functional integral equation 1.1 and then we proved the monotonicity for the solution.

Consider the q-functional integral equation 1.1 under the following assumptions
(i) $g:[0, T] \rightarrow R$ is continuous.
(ii) $f_{1}:[0, T] \times[0, T] \times R \rightarrow R$ is continuous.
(iii) f_{1} satisfies the Lipschitz condition

$$
\left|f_{1}(t, s, x)-f_{1}(t, s, y)\right| \leq k(t, s)|x-y|
$$

(iv)

$$
\sup _{t} \int_{0}^{t} k(t, s) d_{q} s \leq K
$$

Now for the existence of a unique continuous solution of the q-functional integral equation we have the following theorem.
Theorem 3.4. Let the assumptions (i)-(iv) be satisfied. If $K<1$, then the q-functional integral equation 1.1 has a unique solution $x \in C[0, T]$.
Proof. Define the operator F associated with the q-functional integral equation 1.1 by

$$
F x(t)=g(t)+\int_{0}^{t} f_{1}(t, s, x(\phi(s))) d_{q} s
$$

To show that $F: C[0, T] \rightarrow C[0, T]$, let $x \in C[0, T], t_{1}, t_{2} \in[0, T]$, then

$$
\left.\begin{array}{rl}
\left|F x\left(t_{2}\right)-F x\left(t_{1}\right)\right|= & \left|g\left(t_{2}\right)-g\left(t_{1}\right)+\int_{0}^{t_{2}} f_{1}\left(t_{2}, s, x(\phi(s))\right) d_{q} s-\int_{0}^{t_{1}} f_{1}\left(t_{1}, s, x(\phi(s))\right) d_{q} s\right| \\
\leq & \left|g\left(t_{2}\right)-g\left(t_{1}\right)\right|+\left|\int_{0}^{t_{2}} f_{1}\left(t_{2}, s, x(\phi(s))\right) d_{q} s-\int_{0}^{t_{1}} f_{1}\left(t_{1}, s, x(\phi(s))\right) d_{q} s\right| \\
\leq & \left|g\left(t_{2}\right)-g\left(t_{1}\right)\right| \\
+\left|\int_{0}^{t_{2}} f_{1}\left(t_{2}, s, x(\phi(s))\right) d_{q} s-\int_{0}^{t_{2}} f_{1}\left(t_{1}, s, x(\phi(s))\right) d_{q} s\right| \\
& +\left|\int_{0}^{t_{2}} f_{1}\left(t_{1}, s, x(\phi(s))\right) d_{q} s-\int_{0}^{t_{1}} f_{1}\left(t_{1}, s, x(\phi(s))\right) d_{q} s\right| \\
\leq & \left|g\left(t_{2}\right)-g\left(t_{1}\right)\right|
\end{array}+\int_{0}^{t_{2}}\left|f_{1}\left(t_{2}, s, x(\phi(s))\right)-f_{1}\left(t_{1}, s, x(\phi(s))\right)\right| d_{q} s\right)
$$

applying Theorem 2.3 and Lemma 2.1 , then we deduce that

$$
F: C[0, T] \rightarrow C[0, T] .
$$

Let $x, y \in C[0, T]$, we have

$$
\begin{aligned}
|F x(t)-F y(t)| & =\left|g(t)+\int_{0}^{t} f_{1}(t, s, x(\phi(s))) d_{q} s-g(t)-\int_{0}^{t} f_{1}(t, s, y(\phi(s))) d_{q} s\right| \\
& =\left|\int_{0}^{t} f_{1}(t, s, x(\phi(s))) d_{q} s-\int_{0}^{t} f_{1}(t, s, y(\phi(s))) d_{q} s\right| \\
& \leq \int_{0}^{t}\left|f_{1}(t, s, x(\phi(s)))-f_{1}(t, s, y(\phi(s)))\right| d_{q} s \\
& \leq \int_{0}^{t} k(t, s)|x(\phi(s))-y(\phi(s))| d_{q} s \\
& \leq\|x-y\| \int_{0}^{t} k(t, s) d_{q} s \\
& \leq K\|x-y\| .
\end{aligned}
$$

This means that F is contraction.
Applying Banach contraction principle ([10],[16]), then we deduce that there exists a unique solution $x \in C[0, T]$ of the q-functional integral equation 1.1).

The following theorem prove the monotonicity for the solution of the q-functional integral equation (1.1).
Theorem 3.5. Let the assumptions (i)-(iv) of Theorem (3.1) be satisfied. If $f_{1}(t, s, x(\phi(s)))$ and $g(t)$ are monotonic nonincreasing(nondecreasing) in t for each $t \in[0, T]$, then the q-integral equation (1.1) has a unique monotonic nonincreasing(nondecreasing) solution $x \in C[0, T]$.

Proof. Let f, g be monotonic nonincreasing functions in $t \in[0, T]$, then for $t_{2}>t_{1}$

$$
\begin{aligned}
x\left(t_{2}\right) & =g\left(t_{2}\right)+\int_{0}^{t_{2}} f_{1}\left(t_{2}, s, x(\phi(s))\right) d_{q} s \\
& \leq g\left(t_{1}\right)+\int_{0}^{t_{1}} f_{1}\left(t_{1}, s, x(\phi(s))\right) d_{q} s \\
& =x\left(t_{1}\right)
\end{aligned}
$$

Hence,

$$
x\left(t_{2}\right) \leq x\left(t_{1}\right)
$$

Also, If f_{1}, g are monotonic nondecreasing functions in $t \in[0, T]$, then for $t_{2}>t_{1}$

$$
\begin{aligned}
x\left(t_{2}\right) & =g\left(t_{2}\right)+\int_{0}^{t_{2}} f_{1}\left(t_{2}, s, x(\phi(s))\right) d_{q} s \\
& \geq g\left(t_{1}\right)+\int_{0}^{t_{1}} f_{1}\left(t_{1}, s, x(\phi(s))\right) d_{q} s \\
& =x\left(t_{1}\right)
\end{aligned}
$$

Hence

$$
x\left(t_{2}\right) \geq x\left(t_{1}\right)
$$

Now, we study the existence and uniqueness of the solution of the q-functional integral equation

$$
x(t)=g(t)+f_{2}\left(t, \int_{0}^{t} g(s, x(\phi(s))) d_{q} s\right), \quad t \in[0, T]
$$

Consider the q-functional integral equation (1.2) under the following assumptions
(i) $g:[0, T] \rightarrow R$ is continuous.
(ii) $f_{2}:[0, T] \times R \rightarrow R$ is continuous.
(iii) f_{2} satisfies the Lipschitz condition

$$
\left|f_{2}(t, x(t))-f_{2}(t, y(t))\right| \leq k|x(t)-y(t)| .
$$

(iv) g satisfies the Lipschitz condition

$$
|g(s, x(t))-g(s, y(t))| \leq l|x(t)-y(t)| .
$$

For the existence of a unique continuous solution of the q-functional integral equation 1.2 , we have the following theorem.

Theorem 3.6. Let the assumptions (i)-(iv) be satisfied. If $k l T<1$, then the q-functional integral equation (1.2) has a unique solution $x \in C[0, T]$.

Proof. Define the operator F associated with the q-functional integral equation (1.2) by

$$
F x(t)=g(t)+f_{2}\left(t, \int_{0}^{t} g(s, x(\phi(s))) d_{q} s\right) .
$$

To show that $F: C[0, T] \rightarrow C[0, T]$, let $x \in C[0, T], t_{1}, t_{2} \in[0, T]$, then

$$
\begin{aligned}
\left|F x\left(t_{2}\right)-F x\left(t_{1}\right)\right|= & \left|\left(g\left(t_{2}\right)-g\left(t_{1}\right)\right)+\left(f_{2}\left(t_{2}, \int_{0}^{t_{2}} g(s, x(\phi(s))) d_{q} s\right)-f_{2}\left(t_{1}, \int_{0}^{t_{1}} g(s, x(\phi(s))) d_{q} s\right)\right)\right| \\
\leq & \left|g\left(t_{2}\right)-g\left(t_{1}\right)\right|+\left|f_{2}\left(t_{2}, \int_{0}^{t_{2}} g(s, x(\phi(s))) d_{q} s\right)-f_{2}\left(t_{1}, \int_{0}^{t_{1}} g(s, x(\phi(s))) d_{q} s\right)\right| \\
\leq & \left|g\left(t_{2}\right)-g\left(t_{1}\right)\right|+\left|f_{2}\left(t_{2}, \int_{0}^{t_{2}} g(s, x(\phi(s))) d_{q} s\right)-f_{2}\left(t_{1}, \int_{0}^{t_{2}} g(s, x(\phi(s))) d_{q} s\right)\right| \\
& +\left|f_{2}\left(t_{1}, \int_{0}^{t_{2}} g(s, x(\phi(s))) d_{q} s\right)-f_{2}\left(t_{1}, \int_{0}^{t_{1}} g(s, x(\phi(s))) d_{q} s\right)\right| \\
\leq\left|g\left(t_{2}\right)-g\left(t_{1}\right)\right| & +\left|f_{2}\left(t_{2}, \int_{0}^{t_{2}} g(s, x(\phi(s))) d_{q} s\right)-f_{2}\left(t_{1}, \int_{0}^{t_{2}} g(s, x(\phi(s))) d_{q} s\right)\right| \\
& +\left|\int_{0}^{t_{2}} g(s, x(\phi(s))) d_{q} s-\int_{0}^{t_{1}} g(s, x(\phi(s))) d_{q} s\right|
\end{aligned}
$$

applying Theorem (2.3) and Lemma (2.1), then we deduce that

$$
F: C[0, T] \rightarrow C[0, T] .
$$

Let $x, y \in C[0, T]$, we have

$$
\begin{aligned}
|F x(t)-F y(t)| & =\left|g(t)+f_{2}\left(t, \int_{0}^{t} g(s, x(\phi(s))) d_{q} s\right)-g(t)-f_{2}\left(t, \int_{0}^{t} g(s, y(\phi(s))) d_{q} s\right)\right| \\
& =\left|f_{2}\left(t, \int_{0}^{t} g(s, x(\phi(s))) d_{q} s\right)-f_{2}\left(t, \int_{0}^{t} g(s, y(\phi(s))) d_{q} s\right)\right| \\
& \leq k\left|\int_{0}^{t} g(s, x(\phi(s))) d_{q} s-\int_{0}^{t} g(s, y(\phi(s))) d_{q} s\right| \\
& \leq k \int_{0}^{t}|g(s, x(\phi(s)))-g(s, y(\phi(s)))| d_{q} s \\
& \leq k l \int_{0}^{t}|x(\phi(s))-y(\phi(s))| d_{q} s \\
& \leq k l T\|x-y\| .
\end{aligned}
$$

This means that $F([\overline{10]})$ is contraction .
Then F has a fixed point $x \in C[0, T]$ which proves that there exists a unique solution of the q-functional integral equation (1.2).

References

[1] C. R. Adams, On the linear ordinary q-difference equation, Am. Math. Ser. II, 30, (1929) PP. 195-205.
[2] M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations. Springer, Heidelberg, 2012.
[3] T. M. Apostol, Mathematical Analysis, $2^{\text {nd }}$ Edition, Addison-Weasley Publishing Company Inc., (1974).
[4] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, 2013.
[5] G. Bangerezako, An Introduction to q-Difference Equations. Preprint, Bujumbura, 2007.
[6] R. D. Carmichael, The general theory of linear q-difference equations, Am. J. Math. 34, (1912)PP. 147-168.
[7] V. V. Eremin, A.A. Meldianov, The q-deformed harmonic oscillator, coherent states, and the uncertainty relation. Theor. Math. Phys. 147(2), 709715 (2006). Translation from Teor. Mat. Fiz. 147(2)(2006) PP.315-322
[8] T. Ernst, A Comprehensive Treatment of q-Calculus, Springer Basel, 2012.
[9] H. Exton, q-Hypergeometric Functions and Applications (Ellis-Horwood), Chichester, (1983).
[10] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, (1990) 243 pages.
[11] G. M. Guerekata , A Cauchy Problem for some Fractional Abstract Differential Equation with Nonlocal Conditions, Nonlinear Analysis, No. 70, (2009), PP. 1873-1876.
[12] F. H. Jackson, On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, (1908)PP.253-281.
[13] F. H. Jackson, On q-definite integrals. Q. J. Pure Appl. Math. 41,(1910)PP.193-203 .
[14] F. H. Jackson, q-Difference equations, Am. J. Math. 32,(1910)PP.305-314 .
[15] V. Kac and P. Cheung, Quantum Calculus. Springer, New York (2002).
[16] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Prentice Hallinc, (1970).
[17] A. Lavagno, PN, Swamy, q-Deformed structures and nonextensive statistics: a comparative study. Physica A 305(1-2), 310-315 (2002) Non extensive thermodynamics and physical applications (Villasimius, 2001)
[18] X. Li, Z. Han, S. Sun and H. lu, Boundary value problems for fractional q-difference equations with nonlocal conditions.Adv. Differ. Equ. 2014, Article ID 57 (2013).
[19] T. E. Mason, On properties of the solution of linear q-difference equations with entire fucntion coefficients, Am. J. Math. 37,(1915) PP. 439-444 .
[20] O. Nica, IVP for First-Order Differential Systems with General Nonlocal Condition, Electronic Journal of differential equations, Vol. 2012, No. 74, (2012), PP. 1-15.
[21] W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Mathematica,61(1),(1933)PP.1-38 .
[22] D. Youm, q-deformed conformal quantum mechanics. Phys. Rev. D 62, 095009 (2000).

Received: November 24, 2015; Accepted: January 15, 2016

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: * Corresponding author.

 E-mail address: amasayed@gmail.com (A. M. A. El-Sayed), fatmagaafar2@yahoo.com(Fatma. M. Gaafar), ragab_537@yahoo.com (R. O. Abd-El-Rahman), m.elhadad88@yahoo.com(M. M. El-Haddad).

