Malaya Journal of Matematik		O:
	$\mathcal{M J M}$ an international journal of mathematical sciences with computer applications...	

On degree of approximation of conjugate series of a Fourier series by product summability

Mahendra Misra ${ }^{a}$, B. P. Padhy ${ }^{b}$, Dattaram Bisoyi ${ }^{c}$, and U. K. Misra ${ }^{d, *}$
${ }^{a}$ P. G. Department of Mathematics, N. C. College(Autonomous), Jajpur, Odisha, India.
${ }^{b}$ Department of Mathematics, Roland Institute of Technology, Golanthara-761008, Odisha, India.
${ }^{c}$ Department of Mathematics, L. N. Mahavidyalaya, Kodala, Ganjam, Odisha, India.
${ }^{d}$ Department of Mathematics, National Institute of Science and Technology, Palur Hills, Golanthara-761008, Odisha, India.

Abstract

In this paper a theorem on degree of approximation of a function $f \in \operatorname{Lip}(\alpha, r)$ by product summability $(E, q)\left(\bar{N}, p_{n}\right)$ of conjugate series of Fourier series associated with f has been proved.

Keywords: Degree of Approximation, Lip (α, r) class of function, (E, q) mean, $\left(\bar{N}, p_{n}\right)$ mean, $(E, q)\left(\bar{N}, p_{n}\right)$ product mean, Fourier series, conjugate of the Fourier series, Lebesgue integral.

2010 MSC: 42B05, 42B08.
(C)2012 MJM. All rights reserved.

1 Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \longrightarrow \infty, \text { as } n \longrightarrow \infty,\left(P_{-i}=p_{-i}=0, i \geq 0\right) \tag{1.1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the $\left(\bar{N}, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficient $\left\{p_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \longrightarrow s, \text { as } n \longrightarrow \infty \tag{1.3}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be $\left(\bar{N}, p_{n}\right)$ summable to s.
The conditions for regularity of $\left(\bar{N}, p_{n}\right)$-summability are easily seen to be [1]

$$
\left\{\begin{array}{l}
(i) P_{n} \rightarrow \infty, \text { as } n \rightarrow \infty \tag{1.4}\\
(i i) \sum_{i=0}^{n} p_{i} \leq C\left|P_{n}\right|, \text { as } n \rightarrow \infty
\end{array}\right.
$$

The sequence-to-sequence transformation, [1]

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} s_{v} \tag{1.5}
\end{equation*}
$$

[^0]defines the sequence $\left\{T_{n}\right\}$ of the (E, q) mean of the sequence $\left\{s_{n}\right\}$. If
\[

$$
\begin{equation*}
T_{n} \rightarrow s, \quad \text { as } \quad n \rightarrow \infty \tag{1.6}
\end{equation*}
$$

\]

then the series Σa_{n} is said to be (E, q) summable to s. Clearly (E, q) method is regular. Further, the (E, q) transformation of the $\left(\bar{N}, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{gather*}
\tau_{n}=\frac{1}{(1+q)^{n}} \Sigma_{k=0}^{n}\binom{n}{k} q^{n-k} T_{k} \\
=\frac{1}{(1+q)^{n}} \Sigma_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \Sigma_{v=0}^{k} p_{v} s_{v}\right\} \tag{1.7}
\end{gather*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s, \text { as } n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

then $\sum a_{n}$ is said to be $(E, q)\left(\bar{N}, p_{n}\right)$-summable to s.
Let $f(t)$ be a periodic function with period 2π and L-integrable over $(-\pi, \pi)$. The Fourier series associated with f at any point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{1.9}
\end{equation*}
$$

and the conjugate series of the Fourier Series (1.9) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} B_{n}(x) \tag{1.10}
\end{equation*}
$$

Let $\bar{s}_{n}(f: x)$ be the n-th partial sum of (1.10). The L_{∞}-norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{1.11}
\end{equation*}
$$

and the L_{v}-norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}}, v \geq 1 \tag{1.12}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|\cdot\|_{\infty}$ is defined by [5]

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|p_{n}(x)-f(x)\right|: x \in R\right\} \tag{1.13}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ a function $f \in L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{1.14}
\end{equation*}
$$

A function f is said to satisfy Lipschitz condition (here after we write $f \in \operatorname{Lip} \alpha$) if

$$
\begin{equation*}
|f(x+1)-f(x)|=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1 \tag{1.15}
\end{equation*}
$$

and $f(x) \epsilon \operatorname{Lip}(\alpha, r)$, for $0 \leq x \leq 2 \pi$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=0\left(|t|^{\alpha}\right), 0<\alpha \leq 1, r \geq 1, t>0 \tag{1.16}
\end{equation*}
$$

For a given positive increasing function $\xi(t)$, the function $f(x) \in \operatorname{Lip}(\xi(t), r)$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=0(\xi(t)), r \geq 1, t>0 \tag{1.17}
\end{equation*}
$$

We use the following notation throughout this paper:

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\} \tag{1.18}
\end{equation*}
$$

and

$$
\bar{K}_{n}(t)=\frac{1}{\pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}
$$

Further, the method $(E, q)\left(\bar{N}, P_{n}\right)$ is assumed to be regular.

2 Known Theorems

Dealing with the degree of approximation by the product Misra et. al. [2] proved the following theorem using $(E, q)\left(\bar{N}, p_{n}\right)$-mean of Conjugate Series of Fourier series:

Theorem 2.1. If f is 2π-periodic function of class Lipa, then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability mean of the conjugate series (1.10) of the Fourier Series (1.9) is given by $\| \tau_{n}-\left.f\right|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right)$, $0<\alpha<1$, where τ_{n} is as defined in (1.7).

Very recently Paikray et. al [3] established a theorem on degree of approximation by the product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of the Conjugate Series of fourier Series of a function of class $\operatorname{Lip}(\alpha, r)$. They proved:

Theorem 2.2. If f is a 2π-Periodic function of class Lip (α, r), then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means on on he Conjugate Series (1.10) of the Fourier series (1.9) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha+\frac{1}{r}}}\right), 0<\alpha<1, r \geq 1$, where τ_{n} is as defined in (1.7).

3 Main Theorem

In this paper, we have proved a theorem on degree of approximation by the product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of the conjugate series of the Fourier series of a function of class $\operatorname{Lip}(\xi(t), r)$. We prove:
Theorem 3.3. Let $\xi(t)$ be a positive increasing function and f a 2π - periodic function of the class $\operatorname{Lip}(\xi(t), r), r \geq$ $1, t>0$. Then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means on the Conjugate Series (1.10) of the Fourier series (1.9) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \geq 1$, where τ_{n} is as defined in (1.7).

4 Required Lemmas

We require the following Lemmas to prove the theorem.

Lemma 4.1.

$$
\left|\bar{K}_{n}(t)\right|=O(n), 0 \leq t \leq \frac{1}{n+1} .
$$

Proof. For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$ then

$$
\begin{aligned}
\left|\bar{K}_{n}(t)\right| & =\frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos v t \cdot \cos \frac{t}{2}+\sin v t \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\left(\frac{\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)}{\sin \frac{t}{2}}+\sin v t\right)\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\left(O\left(2 \sin v \frac{t}{2} \sin v \frac{t}{2}\right)+v \sin t\right)\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}(O(v)+O(v))\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k} \frac{O(k)}{P_{k}} \sum_{v=0}^{k} p_{v}\right| \\
& =O(n) .
\end{aligned}
$$

This proves the lemma.

Lemma 4.2.

$$
\left|\bar{K}_{n}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi
$$

Proof. For $\frac{1}{n+1} \leq t \leq \pi$, by Jordan's lemma, we have $\sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}$. Then

$$
\begin{aligned}
\left|\bar{K}_{n}(t)\right| & =\frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos v \frac{t}{2} \cdot \cos \frac{t}{2}+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{n} \frac{\pi}{2 t} p_{v}\left(\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}\right)\right\}\right| \\
& \leq \frac{\pi}{2 \pi(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\right\}\right|=\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\right\}\right| \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =O\left(\frac{1}{t}\right) .
\end{aligned}
$$

This proves the lemma.

5 Proof of Theorem 3.1

Using Riemann-Lebesgue theorem, we have for the n-th partial sum $\bar{s}_{n}(f: x)$ of the conjugate Fourier series (1.10) of $f(x)$, following Titchmarch [4]

$$
\bar{s}_{n}(f: x)-f(x)=\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \bar{K}_{n} d t
$$

the $\left(N, p_{n}\right)$ transform of $\bar{s}_{n}(f: x)$ using (1.2) is given by

$$
t_{n}-f(x)=\frac{2}{\pi P_{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} p_{k} \frac{\cos \frac{t}{2}-\sin \left(n+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} d t
$$

denoting the $(E, q)\left(N, p_{n}\right)$ transform of $\bar{s}_{n}(f: x)$ by τ_{n}, we have

$$
\begin{align*}
\left\|\tau_{n}-f\right\| & =\frac{1}{\pi(1+q)^{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\sin \left(v+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)}\right\} d t \\
& =\int_{0}^{\pi} \psi(t) \bar{K}_{n}(t) d t \\
& =\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \psi(t) \bar{K}_{n}(t) d t \\
& =I_{1}+I_{2}, \quad \text { say. } \tag{5.1}
\end{align*}
$$

Now

$$
\begin{align*}
\left|I_{1}\right| & =\frac{2}{\pi(1+q)^{n}}\left|\int_{0}^{\frac{1}{n+1}} \psi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}\right\} d t\right| \\
& =\left|\int_{0}^{\frac{1}{n+1}} \psi(t) \bar{K}_{n}(t) d t\right| \\
& =\left(\int_{0}^{\frac{1}{n+1}}\left(\frac{\psi(t)}{\xi(t)}\right)^{r} d t\right)^{\frac{1}{r}}\left(\int_{0}^{\frac{1}{n+1}}\left(\xi(t) \bar{K}_{n}(t)\right)^{s} d t\right)^{\frac{1}{s}}, \quad \text { using Holder's inequality } \\
& =O(1)\left(\int_{0}^{\frac{1}{n+1}} \xi(t) n^{s} d t\right)^{\frac{1}{s}} \\
& =O\left(\xi\left(\frac{1}{n+1}\right)\right)\left(\frac{n^{s}}{n+1}\right)^{\frac{1}{s}} \\
& =O\left(\xi\left(\frac{1}{n+1}\right) \frac{1}{(n+1)^{\frac{1}{s}-1}}\right) \\
& =O\left(\xi\left(\frac{1}{n+1}\right) \frac{1}{(n+1)^{-\frac{1}{r}}}\right) \\
& =O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right) . \tag{5.2}
\end{align*}
$$

Next

$$
\begin{align*}
\left|I_{2}\right| & \leq\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\phi(t)}{\xi(t)}\right)^{r} d t\right)^{\frac{1}{r}}\left(\int_{\frac{1}{n+1}}^{\pi}\left(\xi(t) \bar{K}_{n}(t)\right)^{s} d t\right)^{\frac{1}{s}}, \text { using Holder's inequality } \\
& =O(1)\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\xi(t)}{t}\right)^{s} d t\right)^{\frac{n}{s}}, \text { using Lemma 4.1 } \\
& =O(1)\left(\int_{\frac{1}{\pi}}^{n+1}\left(\frac{\xi\left(\frac{1}{y}\right)}{\frac{1}{y}}\right)^{s} \frac{d y}{y^{2}}\right)^{\frac{1}{s}} . \tag{5.3}
\end{align*}
$$

Since $\xi(t)$ is a positive increasing function, so is $\xi(1 / y) /(1 / y)$. Using second mean value theorem we get

$$
\begin{gathered}
=O\left((n+1) \xi\left(\frac{1}{n+1}\right)\right)\left(\int_{\delta}^{n+1} \frac{d y}{y^{2}}\right)^{\frac{1}{s}}, \text { for some } \frac{1}{\pi} \leq \delta \leq n+1 \\
=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right.
\end{gathered}
$$

Then from (5.2) and (5.3), we have

$$
\begin{aligned}
\left|\tau_{n}-f(x)\right| & =O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), \text { for } r \geq 1 \\
& \left\|\tau_{n}-f(x)\right\|_{\infty}=\sup _{-\pi<x<\pi}\left|\tau_{n}-f(x)\right|=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \geq 1 .
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] G.H. Hardy, Divergent Series, First Edition, Oxford University Press, 70,(19).
[2] U.K. Misra, , M. Misra, B.P. Padhy, and S.K. Buxi, On Degree of Approximation by Product Means of Conjugate Series of Fourier Series, International Journal of Math. Science and Engineering Applications, 6(1)(2012), 363-370.
[3] S.K. Paikray, U.K. Misra, R.K. Jati, and N.C. Sahoo, On degree of Approximation of Fourier Series by Product Means, Bull. of Society for Mathematical Services and Standards, 1(4)(2012), 12-20.
[4] Titchmarch, E.C., The Theory of Functions, Oxford University Press, 1939, 402-403.
[5] Zygmund, A. , Trigonometric Series, Second Edition, Cambridge University Press, Cambridge, 1959.

Received: November 11, 2012; Accepted: March 20, 2013

UNIVERSIITY $\mathbb{P R E S S}$

[^0]: * Corresponding author.

 E-mail addresses:mahendramisra@2007.gmail.com (Mahendra Misra), iraady@gmail.com (B. P. Padhy), dbisoyi2@gmail.com (Dattaram Bisoyi) and umakanta_misra@yahoo.com (U. K. Misra).

