Malaya		-
Journal of Matematik	$\mathcal{M J M}$ an international journal of mathematical sciences with computer applications...	

Reciprocal Graphs

G. Indulal ${ }^{a, *}$ and A.Vijayakumar ${ }^{b}$
${ }^{a}$ Department of Mathematics, St.Aloysius College, Edathua, Alappuzha - 689573, India.
${ }^{b}$ Department of Mathematics, Cochin University of Science and Technology, Cochin-682 022, India.

Abstract

Eigenvalue of a graph is the eigenvalue of its adjacency matrix. A graph G is reciprocal if the reciprocal of each of its eigenvalue is also an eigenvalue of G. The Wiener index $W(G)$ of a graph G is defined by $W(G)=\frac{1}{2} \sum_{d \in D} d$ where D is the distance matrix of G. In this paper some new classes of reciprocal graphs and an upperbound for their energy are discussed. Pairs of equienergetic reciprocal graphs on every $n \equiv$ $0 \bmod (12)$ and $n \equiv 0 \bmod (16)$ are constructed. The Wiener indices of some classes of reciprocal graphs are also obtained.

Keywords: Eigenvalue, Energy, Reciprocal graphs, splitting graph, Wiener index.

1 Introduction

Let G be a graph of order n and size m with the vertex set $V(G)$ labelled as $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The set of eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ of an adjacency matrix A of G is called its spectrum and is denoted by $\operatorname{spec}(G)$. Non-isomorphic graphs with the same spectrum are called cospectral. Studies on graphs with a specific pattern in their spectrum have been of interest. Gutman and Cvetkovic studied the spectral structure of graphs having a maximal eigenvalue not greater than 2 in [5] and Balinska et.al have studied graphs with integral spectra in [2]. In [12] some new constructions of integral graphs are provided. Dias in [6] has identified graphs with complementary pairs of eigenvalues(eigenvalues λ_{1} and λ_{2} with $\lambda_{1}+\lambda_{2}=-1$). A graph G is reciprocal [20] if the reciprocal of each of its eigenvalue is also an eigenvalue of G. The first reference of a reciprocal graph appeared in the work of J.R. Dias in [6, 7] and the chemical molecules of Dendralene and Radialene have been discussed there in. In [20] some classes of reciprocal graphs have been identified. In [3] reciprocal graphs are also referred to as graphs with property R.

The energy of a graph G [1], denoted by $E(G)$ is the sum of the absolute values of its eigenvalues. Non-cospectral graphs with the same energy are called equienergetic. In [8, 9, 15] some bounds on energy are described. In [1] and [22, 23] a pair of equienergetic graphs are constructed for every $n \equiv 0(\bmod 4)$ and $n \equiv 0(\bmod 5)$ and in [10] we have extended it for $n=6,14,18$ and $n \geq 20$. In [17] a pair of equienergetic graphs within the family of iterated line graphs of regular graphs and in [11] a pair of equienergetic graphs obtained from the cross product of graphs are described. In [13] a pair of equienergetic self-complementary graphs on n vertices is constructed for every $n=4 k$ and $n=24 t+1, k \geq 2, t \geq 3$. A plethora of papers have been appeared dealing with this parameter in recent years.

The distance matrix of a connected graph G, denoted by $D(G)$ is defined as $D(G)=\left[d\left(v_{i}, v_{j}\right)\right]$ where $d\left(v_{i}, v_{j}\right)$ is the distance between v_{i} and v_{j}. The Wiener index $W(G)$ is defined by

[^0]$W(G)=\frac{1}{2} \sum_{d \in D} d$. The chemical applications of this index are well established in [16, 18].
In this paper, we construct some new classes of reciprocal graphs and an upperbound for their energy is obtained. Pairs of equienergetic reciprocal graphs on $n \equiv 0 \bmod (12)$ and $n \equiv 0 \bmod (16)$ are constructed. The Wiener indices of some classes of reciprocal graphs are also obtained. These results are not found so far in literature.

2 Some new classes of reciprocal graphs

If A and B are two matrices then $A \otimes B$ denote the tensor product of A and B. We use the following properties of block matrices [4].

Lemma 2.1. Let M, N, P and Q be matrices with M invertible. Let $S=\left[\begin{array}{cc}M & N \\ P & Q\end{array}\right]$. Then $|S|=|M|\left|Q-P M^{-1} N\right|$. Moreover if M and P commutes then $|S|=|M Q-P N|$ where the symbol $|$.$| denotes the determinant.$

We consider the following operations on G.
Operation 1. Attach a pendant vertex to each vertex of G. The resultant graph is called the pendant join graph of G.[Also referred to as G corona K_{1} in [3].]

Operation 2. [19] Introduce n isolated vertices $u_{i}, i=1$ to n and join u_{i} to the neighbors of v_{i}. The resultant graph is called the splitting graph of G.

Operation 3. In addition to G introduce two sets of n isolated vertices $U=\left\{u_{i}\right\}$ and $W=\left\{w_{i}\right\}$ corresponding to $V=\left\{v_{i}\right\}, i=1$ to n. Join u_{i} and w_{i} to the neighbors of v_{i} and then w_{i} to the vertices in U corresponding to the neighbors of v_{i} in G for each $i=1$ to n. The resultant graph is called the double splitting graph of G.

Operation 4. In addition to G introduce two more copies of G on $U=\left\{u_{i}\right\}$ and $W=\left\{w_{i}\right\}$ corresponding to $V=\left\{v_{i}\right\}, i=1$ to n. Join u_{i} to the neighbors of v_{i} and then w_{i} to u_{i} for each $i=1$ to n. The resultant graph is called the composition graph of G.

Operation 5. In addition to G introduce two more copies of G on $U=\left\{u_{i}\right\}$ and $W=\left\{w_{i}\right\}$ corresponding to $V=\left\{v_{i}\right\}$, $i=1$ to n. Join w_{i} to the neighbors of v_{i} and vertices in U corresponding to the neighbors of v_{i} in G for each $i=1$ to n.

Lemma 2.2. Let G be a graph on n vertices with $\operatorname{spec}(G)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and H_{i} be the graph obtained from Operation $i, i=1$ to 5 . Then

$$
\begin{aligned}
& \operatorname{spec}\left(H_{1}\right)=\left\{\frac{\lambda_{i} \pm \sqrt{\lambda_{i}^{2}+4}}{2}\right\}_{i=1}^{n} \\
& \operatorname{spec}\left(H_{2}\right)=\left\{\left(\frac{1 \pm \sqrt{5}}{2}\right) \lambda_{i}\right\}_{i=1}^{n} \\
& \operatorname{spec}\left(H_{3}\right)=\left\{-\lambda_{i},(1 \pm \sqrt{2}) \lambda_{i}\right\}_{i=1}^{n} \\
& \operatorname{spec}\left(H_{4}\right)=\left\{\lambda_{i}, \lambda_{i} \pm \sqrt{\lambda_{i}^{2}+1}\right\}_{i=1}^{n} \\
& \operatorname{spec}\left(H_{5}\right)=\left\{\lambda_{i},(1 \pm \sqrt{2}) \lambda_{i}\right\}_{i=1}^{n}
\end{aligned}
$$

Proof. The proof follows from Table 1 which gives the adjacency matrix of $H_{i} s$ for $i=1$ to 5 and its spectrum, obtained using Lemma 2.1 and the spectrum of tensor product of matrices.

Graph	Adjacency matrix	Spectrum
H_{1}	$\left[\begin{array}{cc}A & I \\ I & 0\end{array}\right]$	$\left\{\frac{\lambda_{i} \pm \sqrt{\lambda_{i}^{2}+4}}{2}\right\}_{i=1}^{n}$
H_{2}	$\left[\begin{array}{cc}A & A \\ A & 0\end{array}\right]=A \otimes\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$	$\left\{\left(\frac{1 \pm \sqrt{5}}{2}\right) \lambda_{i}\right\}_{i=1}^{n}$
H_{3}	$\left[\begin{array}{ccc}A & A & A \\ A & 0 & A \\ A & A & 0\end{array}\right]=A \otimes\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$	$\left\{-\lambda_{i},(1 \pm \sqrt{2}) \lambda_{i}\right\}_{i=1}^{n}$
H_{4}	$\left[\begin{array}{ccc}A & A & 0 \\ A & A & I \\ 0 & I & A\end{array}\right]$	$\left\{\lambda_{i}, \lambda_{i} \pm \sqrt{\lambda_{i}^{2}+1}\right\}_{i=1}^{n}$
H_{5}	$\left[\begin{array}{ccc}A & 0 & A \\ 0 & A & A \\ A & A & A\end{array}\right]=A \otimes\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$	$\left\{\lambda_{i},(1 \pm \sqrt{2}) \lambda_{i}\right\}_{i=1}^{n}$

Note: $H_{3}=H_{5}$ when G is bipartite.
Theorem 2.1. The pendant join graph of a graph G is reciprocal if and only if G is bipartite.
Proof. Let G be a bipartite graph and H, its pendant join graph. Then, corresponding to a non-zero eigenvalue λ of $G,-\lambda$ is also an eigenvalue of G [4].
By Lemma 2.2. $\operatorname{spec}(H)=\left\{\frac{\lambda \pm \sqrt{\lambda^{2}+4}}{2}, \lambda \in \operatorname{spec}(G)\right\}$. Let $\alpha=\frac{\lambda+\sqrt{\lambda^{2}+4}}{2}$ be an eigenvalue of H. Then

$$
\begin{aligned}
& \frac{1}{\alpha}=\frac{2}{\lambda+\sqrt{\lambda^{2}+4}} \\
& =\frac{2\left(\lambda-\sqrt{\lambda^{2}+4}\right)}{\left(\lambda+\sqrt{\lambda^{2}+4}\right)\left(\lambda-\sqrt{\lambda^{2}+4}\right)} \\
& =\frac{2\left(\lambda-\sqrt{\lambda^{2}+4}\right)}{-4} \\
& =\frac{(-\lambda)+\sqrt{(-\lambda)^{2}+4}}{2}
\end{aligned}
$$

is an eigenvalue of H as $-\lambda$ is an eigenvalue of G. Similarly for $\alpha=\frac{\lambda-\sqrt{\lambda^{2}+4}}{2}$ also. The eigenvalues of H corresponding to the zero eigenvalues of G if any, are 1 and -1 which are self reciprocal. Therefore H is a reciprocal graph.
The converse can be proved by retracing the argument.
Note 1. This theorem enlarges the classes of reciprocal graphs mentioned in [20]. The claim in [20] that the pendant join graph of C_{n} is reciprocal for every n is not correct as C_{n} is not bipartite for odd n.
Definition 2.1. A graph G is partially reciprocal if $\frac{-1}{\lambda} \in \operatorname{spec}(G)$ for every $\lambda \in \operatorname{spec}(G)$.

Examples:-

- Pendant join graph of any graph.
- Splitting graph of any reciprocal graph.

Theorem 2.2. The splitting graph of G is reciprocal if and only if G is partially reciprocal.
Proof. Let G be partially reciprocal and H be its splitting graph. Let $\alpha \in \operatorname{spec}(H)$. Then by Lemma $3, \alpha=$ $\left(\frac{1 \pm \sqrt{5}}{2}\right) \lambda, \lambda \in \operatorname{spec}(G)$. Without loss of generality, take $\alpha=\left(\frac{1+\sqrt{5}}{2}\right) \lambda$. Then $\frac{1}{\alpha}=\left(\frac{1-\sqrt{5}}{2}\right) \frac{-1}{\lambda}$. Thus $\frac{1}{\alpha} \in$ $\operatorname{spec}(H)$ as G is partially reciprocal and hence H is reciprocal.
Conversely assume that H is reciprocal. Then by the structure of $\operatorname{spec}(H)$ as given by Lemma 2.2. G is partially reciprocal.

Theorem 2.3. Let G be a reciprocal graph. Then the double splitting graph and the composition graph of G are reciprocal if and only if G is bipartite.

Proof. Let G be a bipartite reciprocal graph. Then $\lambda \in \operatorname{spec}(G) \Rightarrow-\lambda, \frac{1}{\lambda}, \frac{-1}{\lambda} \in \operatorname{spec}(G)$. Let H and H^{\prime} respectively denote the double splitting graph and composition graph of G. Then using Lemma 2.2 and Table 2 it follows that H and H^{\prime} are reciprocal.

Table 2

$\operatorname{Spec}(H)$	$\frac{1}{\operatorname{spec}(H)}$	$\operatorname{Spec}\left(H^{\prime}\right)$	$\frac{1}{\operatorname{spec}\left(H^{\prime}\right)}$
$\{-\lambda,(1 \pm \sqrt{2}) \lambda\}$	$\left\{-\frac{1}{\lambda},(1 \pm \sqrt{2}) \frac{-1}{\lambda}\right\}$	$\left\{\lambda, \lambda \pm \sqrt{\lambda^{2}+1}\right\}$	$\left\{\frac{1}{\lambda},-\lambda \pm \sqrt{(-\lambda)^{2}+1}\right\}$

Converse also follows.
Illustration: The following graphs are reciprocal when $G=P_{4}$.

H_{1}

3 An upperbound for the energy of reciprocal graphs

The following bounds on the energy of a graph are known.

1. [15] $\sqrt{2 m+n(n-1)|\operatorname{det} A|^{\frac{2}{n}}} E(G) \sqrt{2 m n}$
2. [8] $E(G) \frac{2 m}{n}+\sqrt{(n-1)\left(2 m-4 \frac{m^{2}}{n^{2}}\right)}$
3. [9] $E(G) \frac{4 m}{n}+\sqrt{(n-2)\left(2 m-8 \frac{m^{2}}{n^{2}}\right)}$, if G is bipartite.

In this section we derive a better upperbound for the energy of a reciprocal graph and prove that the bound is best possible. A graph of order n and size m is referred to as an (n, m) graph.
Theorem 3.4. Let G be an (n, m) reciprocal graph. Then $E(G) \leq \sqrt{\frac{n(2 m+n)}{2}}$ and the bound is best possible for $G=t K_{2}$ and $t P_{4}$.

Proof. Let G be an (n, m) reciprocal graph with $\operatorname{spec}(G)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.
Therefore $\sum_{i=1}^{n}\left|\lambda_{i}\right|=\sum_{i=1}^{n} \frac{1}{\left|\lambda_{i}\right|}=E$ and $\sum_{i=1}^{n} \lambda_{i}^{2}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}^{2}}=2 m$.

Now we have [21]the following inequality for real sequences a_{i}, b_{i} and $c_{i}, 1 \leq i \leq n$

$$
\sum_{i=1}^{n} a_{i} c_{i} \sum_{i=1}^{n} b_{i} c_{i} \leq \frac{1}{2}\left\{\sum_{i=1}^{n} a_{i} b_{i}+\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}\right\} \sum_{i=1}^{n} c_{i}^{2}
$$

Taking $a_{i}=\left|\lambda_{i}\right|, b_{i}=\frac{1}{\left|\lambda_{i}\right|}$ and $c_{i}=1 \forall i=1,2, \ldots, n$, we have $[E(G)]^{2} \leq \frac{1}{2}[n+2 m] n$ and hence $E(G) \leq \sqrt{\frac{n(2 m+n)}{2}}$.
When $G=t K_{2}, n=2 t, m=t, E(G)=2 t$ and when $G=t P_{4}, n=4 t, m=3 t$, $E(G)=2 t \sqrt{5}$.

4 Equienergetic reciprocal graphs

In this section we prove the existence of a pair of equienergetic reciprocal graphs on every $n=12 p$ and $n=16 p, p \geq 3$.

Theorem 4.5. Let G be K_{p} and F_{1} be the graph obtained by applying Operations 3, 1 and 2 on G and F_{2}, the graph obtained by applying Operations 5, 1 and 2 on G successively. Then F_{1} and F_{2} are reciprocal and equienergetic on $12 p$ vertices.
Proof. Let $G=K_{p}$. We have $\operatorname{spec}\left(K_{p}\right)=\left(\begin{array}{cc}p-1 & -1 \\ 1 & p-1\end{array}\right)$.
Let G_{3} be the graph obtained by applying Operation 3 on G. Then by Lemma 2.2 ,
$\operatorname{spec}\left(G_{3}\right)=\left(\begin{array}{cccc}-(p-1) & 1 & (1 \pm \sqrt{2})(p-1) & -(1 \pm \sqrt{2}) \\ 1 & p-1 & \text { each once } & \text { each } p-1 \text { times }\end{array}\right)$.
Now, let G_{31} be the graph obtained by applying Operation 1 on G_{3}. Then by Lemma $2.2 \operatorname{spec}\left(G_{31}\right)$

$$
=\left(\begin{array}{ccc}
\frac{p-1 \pm \sqrt{(p-1)^{2}+4}}{2} & \frac{-1 \pm \sqrt{5}}{2} & \frac{(1+\sqrt{2})(p-1) \pm \sqrt{\{(1+\sqrt{2})(p-1)\}^{2}+4}}{2} \\
\text { each once } & \text { each } p-1 \text { times } & \text { each once } \\
\frac{(1-\sqrt{2})(p-1) \pm \sqrt{\{(1-\sqrt{2})(p-1)\}^{2}+4}}{2} & \frac{(1+\sqrt{2}) \pm \sqrt{\{(1+\sqrt{2})\}^{2}+4}}{2} & \frac{(1-\sqrt{2}) \pm \sqrt{\{(1-\sqrt{2})\}^{2}+4}}{2} \\
\text { each once } & \text { each } p-1 \text { times } & \text { each } p-1 \text { times }
\end{array}\right)
$$

Then

$$
\begin{aligned}
E\left(G_{31}\right) & =\sqrt{(p-1)^{2}+4}+\sqrt{5}(p-1)+\sqrt{\{(1+\sqrt{2})(p-1)\}^{2}+4} \\
& +\sqrt{\{(1-\sqrt{2})(p-1)\}^{2}+4}+(p-1)\left[\sqrt{(1+\sqrt{2})^{2}+4}+\sqrt{(1-\sqrt{2})^{2}+4}\right] \\
& =\sqrt{(p-1)^{2}+4}+\sqrt{5}(p-1)+(p-1) \sqrt{14+2 \sqrt{41}} \\
& +\sqrt{6(p-1)^{2}+8+2 \sqrt{(p-1)^{4}+24(p-1)^{2}+16}}
\end{aligned}
$$

Now, let F_{1} be the graph obtained by applying Operation 2 on G_{31}. Then by Lemma 2.2,
$E\left(F_{1}\right)=\sqrt{5} E\left(G_{31}\right)$. Let G_{51} be the graph obtained by applying Operations 5 and 1 on G successively and F_{2} be that obtained by applying Operation 2 on G_{51}. Then we have $E\left(F_{2}\right)=\sqrt{5} E\left(G_{51}\right)=\sqrt{5} E\left(G_{31}\right)=E\left(F_{1}\right)$. Also by Theorem 2, F_{1} and F_{2} are reciprocal. Thus the theorem follows.

Lemma 4.3. Let G be a non-bipartite graph on p vertices with $\operatorname{spec}(G)=\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ and an adjacency matrix A. Then the spectra of graphs whose adjacency matrices are
$F^{\prime}=\left[\begin{array}{cccc}A & A & A & A \\ A & A & 0 & A \\ A & 0 & A & A \\ A & A & A & 0\end{array}\right]$ and $H^{\prime}=\left[\begin{array}{cccc}0 & A & A & A \\ A & 0 & A & A \\ A & A & A & A \\ A & A & A & 0\end{array}\right]$ are
$\left\{\lambda_{i},-\lambda_{i},\left(\frac{3 \pm \sqrt{13}}{2}\right) \lambda_{i}\right\}_{i=1}^{p}$ and $\left\{-\lambda_{i},-\lambda_{i},\left(\frac{3 \pm \sqrt{13}}{2}\right) \lambda_{i}\right\}_{i=1}^{p}$ respectively.
Theorem 4.6. Let G be K_{p}. Let T_{1} and T_{2} be the graphs obtained by applying Operations 1 and 2 successively on graphs associated with F^{\prime} and H^{\prime} respectively. Then T_{1} and T_{2} are reciprocal and equienergetic on 16 p vertices.

Proof. Let the graph associated with F^{\prime} be also denoted by F^{\prime} and F_{1}^{\prime}, the graph obtained by applying Operation 1 on F^{\prime}. Then by a similar computation as in Theorem 5,

$$
\begin{aligned}
E\left(F_{1}^{\prime}\right) & =2 \sqrt{(p-1)^{2}+4}+2 \sqrt{5}(p-1)+\sqrt{\left(\frac{11+3 \sqrt{13}}{2}\right)(p-1)^{2}+4} \\
& +\sqrt{\left(\frac{11-3 \sqrt{13}}{2}\right)(p-1)^{2}+4}+(p-1)\left[\sqrt{\left(\frac{11+3 \sqrt{13}}{2}\right)+4}+\sqrt{\left(\frac{11-3 \sqrt{13}}{2}\right)+4}\right]
\end{aligned}
$$

and $E\left(T_{1}\right)=\sqrt{5} E\left(F_{1}^{\prime}\right)=\sqrt{5} E\left(H_{1}^{\prime}\right)=E\left(T_{2}\right)$, by Lemma 2.2 Also by Theorem $2, T_{1}$ and T_{2} are reciprocal. Hence the theorem.

5 Wiener index of some reciprocal graphs

In this section we derive the Wiener indices of some classes of reciprocal graphs described in the earlier section. We shall denote by $D(G)=D$, the distance matrix of G and d_{i}, the sum of entries in the $i^{\text {th }}$ row of D. The following theorem generalizes the results in [14].

Theorem 5.7. Let G be a graph with Wiener index $W(G)$. Let H be the pendant join graph of G. Then $W(H)=$ $4 W(G)+n(2 n-1)$.

Proof. We have, $W(G)=\frac{1}{2} \sum_{i=1}^{n} d_{i}$.
Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the corresponding vertices used in the pendant join of G. Then the distance matrix of H is as follows.

$$
\left[\begin{array}{cccc|cccc}
0 & d\left(v_{1}, v_{2}\right) & \ldots & d\left(v_{1}, v_{n}\right) & 1 & 1+d\left(v_{1}, v_{2}\right) & \ldots & 1+d\left(v_{1}, v_{n}\right) \\
\ldots & \ldots \\
d\left(v_{n}, v_{1}\right) & \ldots & \ldots & 0 & 1+d\left(v_{n}, v_{1}\right) & \ldots & \ldots & 1 \\
\hline 1 & 1+d\left(v_{1}, v_{2}\right) & \ldots & 1+d\left(v_{1}, v_{n}\right) & 0 & 2+d\left(v_{1}, v_{2}\right) & \ldots & 2+d\left(v_{1}, v_{n}\right) \\
\ldots & \ldots \\
1+d\left(v_{n}, v_{1}\right) & \ldots & \ldots & \ldots & 2+d\left(v_{n}, v_{1}\right) & \ldots & \ldots & 0
\end{array}\right]
$$

since $d\left(v_{i}, u_{j}\right)=1$; if $i=j$

$$
\begin{aligned}
& =1+d\left(v_{i}, v_{j}\right) ; i \neq j \text { and } \\
d\left(u_{i}, u_{j}\right) & =d\left(u_{i}, v_{i}\right)+d\left(v_{i}, v_{j}\right)+d\left(v_{j}, u_{j}\right) \\
& =2+d\left(v_{i}, v_{j}\right)
\end{aligned}
$$

The row sum matrix of H is $\left[\begin{array}{c}2 d_{1}+n \\ \vdots \\ 2 d_{n}+n \\ 2 d_{1}+3 n-2 \\ \vdots \\ 2 d_{n}+3 n-2\end{array}\right]$.

$$
\text { Then } \begin{aligned}
W(H) & =\frac{1}{2}\left[\sum_{i=1}^{n}\left(2 d_{i}+n\right)+\sum_{i=1}^{n}\left(2 d_{i}+3 n-2\right)\right] \\
& =4 W(G)+n(2 n-1) . \text { Hence the theorem. }
\end{aligned}
$$

The proof techniques of the following theorems are on similar lines.
Theorem 5.8. Let G be a triangle free (n, m) graph and H, its splitting graph. Then $W(H)=4 W(G)+2(m+n)$.

Corollory 5.1. Let G be a triangle free (n, m) graph and F, the splitting graph of the pendant join graph of G. Then $W(F)=2\left[8 W(G)+4 n^{2}+(m+n)\right]$.

Theorem 5.9. Let G be a triangle free (n, m) graph and H, its double splitting graph. Then $W(H)=9 W(G)+4 m+$ $6 n$.

Theorem 5.10. Let G be a triangle free (n, m) graph and H, its composition graph. Then $W(H)=9 W(G)+2 n^{2}+4 n$.

References

[1] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl., 387 (2004), 287-295.
[2] K. Balińska, D.M. Cvetković, Z. Radosavljević, S. Simić, D. Stevanović, A Survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 13 (2002), 42-65.
[3] S. Barik, S. Pati, B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., 21(2007), 47-56.
[4] D.M. Cvetkovi?, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, (1980).
[5] D.M. Cvetković, I. Gutman, On spectral structure of graphs having the maximal eigenvalue not greater than two, Publ. Inst. Math., 18(1975), 39-45.
[6] J.R. Dias, Properties and relationships of right-hand mirror-plane fragments and their eigenvectors : the concept of complementarity of molecular graphs, Mol. Phys., 88 (1996), 407-417.
[7] J.R. Dias, Properties and Relationships of Conjugated Polyenes Having a Reciprocal Eigenvalue Spectrum Dendralene and Radialene Hydrocarbons, Cro. Chem.Acta, 77 (2004), 325-330.
[8] J. Koolen, V. Moulton, Maximal energy graphs, Adv.Appl.Math., 26(2001), 47-52.
[9] J. Koolen, V. Moulton, Maximal energy bipartite graphs, Graphs and Combin., 19(2003), 131-135.
[10] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem., 55(2006), 83-90.
[11] G. Indulal, A. Vijayakumar, Energies of some non-regular graphs, J. Math. Chem. 42 (2007), 377-386.
[12] G. Indulal, A. Vijayakumar, Some new integral graphs, Applicable Analysis and Discrete Mathematics,1 (2007), 420-426.
[13] G. Indulal, A. Vijayakumar, Equienergetic self-complementary graphs, Czechoslovak Math J. 58 (2008), 911919.
[14] B. Mandal, M. Banerjee, A.K. Mukherjee, Wiener and Hosoya indices of reciprocal graphs, Mol. Phys., 103(2005), 2665-2674.
[15] B.J. McClelland, Properties of the latent roots of a matrix:the estimation of π - electron energy, J. Chem. Phys., 54(2)(1971), 640-643.
[16] S. Nikolić, N. Trinajstić, M. Randić, Wiener index revisited, Chem. Phys. Lett., 33(2001), 319-321.
[17] H.S. Ramane, H.B. Walikar, S.B. Rao, B.D. Acharya, I. Gutman, P.R. Hampiholi, S.R. Jog, Equienergetic graphs, Krajugevac. J. Math., 26(2004), 5-13.
[18] M. Randić, X. Guo, T. Oxley, H.K. Krishnapriyan, Wiener Matrix:Source of novel graph invarients, J. Chem. Inf. Comp. Sci., 33(5)(1993), 709-716.
[19] E. Sampathkumar, H.B. Walikar, On the splitting graph of a graph, Karnatak Univ. J. Sci., 35/36 (1980-1981), 13-16.
[20] J. Sarkar, A.K. Mukherjee, Graphs with reciprocal pairs of eigenvalues, Mol. Phys., 90(1997), 903-907.
[21] J.M. Steele, The Cauchy-Schwarz Master Class, Cambridge University Press (2004).
[22] D. Stevanović, When is NEPS of graphs connected?, Linear Algebra Appl., 301(1999), 137-144.
[23] D. Stevanović,Energy and NEPS of graphs, Linear Multilinear Algebra, 53(2005), 67-74.

Received: November 12, 2015; Accepted: March 25, 2016

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail address: indulalgopal@gmail.com (G. Indulal) and vambat@gmail.com (A.Vijayakumar).

