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Abstract

The concept of natural density is generalized. It is proved that the new theory is consistent with the
existing theory in the literature. Many new results were obtained. A theorem analogous to the Riemann’s
theorem on rearrangement of non-absolutely convergent series is proved in the sense of generalized natural
density. Some more possible generalizations are suggested.
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1 Introduction

We know that the set of even natural numbers and the set of natural numbers have same cardinality. In
other words both the sets have equal number of elements and they have the same size. But intuitively we feel
that the set of natural numbers is one half of the set of integers. This intuition is made into a mathematical
concept called natural density [1]. In this paper we generalize this concept and derive some interesting results.
We also suggest some more possible generalizations. Now we give some preliminary concepts which are
available in the literature. As usual we use N to denote the set of natural numbers and |S| to denote the
cardinality of the set S.

Definition 1.1. Let A ⊆ N. Let A(n) = {1, 2, . . . , n} ∩ A for all n ∈ N. The upper density and the lower density
of A are defined as lim sup

n→∞

|A(n)|
n and lim inf

n→∞
|A(n)|

n respectively; they are denoted by d̄(A) and d(A) respectively. The

natural density d(A) of A is defined as lim
n→∞

|A(n)|
n if the limit exists.

A has natural density if and only if d(A) = d(A). We have some classical results:

• For any finite set A, d(A) = 0.

• for any k ∈N, d(kN) = 1
k where nN is the set of all positive multiples of k.

• the infinite set {n2 : n ∈N} has density 0.

Further for any subsets A and B of N, if d(A) and d(B) exist, then

• d(Ac) = 1− d(A).

• for any finite set F, d(A− F) = d(A).

• d(A ∪ B) = d(A) + d(B)− d(A ∩ B).
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• d(kA) = 1
k d(A), for k ∈N.

• d(A + c) = d(A) for all constant c ∈N where

A + c = {a + c/a ∈ A}.

• If
A =

∞
∪

n=0
{22n, 22n + 1, . . . , 22n+1 − 1},

then d(A) = 2
3 and d(A) = 1

3 ; this shows the existence of a set for which natural density does not exist.

In Section 2, we give a generalization of the concept of natural density and in Section 3, we prove a theorem
very similar to the Riemann’s theorem on rearrangement of nonabsolutely convergent series. This very
interesting theorem suggests us the generalization is a natural one and also that many classical theorems
may have similar interpretations.

2 Generalization of Natural Density

We observe that the expression |A(n)|
n is equal to |A∩Xn |

|Xn | where Xn is the set {1, 2, . . . , n} and that the sets
Xn form an increasing sequence of subsets of the natural numbers whose union is the whole set of natural
numbers. This motivates us the following definitions.

Definition 2.2. Let C = {Xn} be any sequence of subsets of N such that X1 ⊆ X2 ⊆ X3 ⊆ . . . and ∪Xn = N. Then
C is called a cover for N.

We simply write ‘cover’ instead of writing ‘cover for N’. We define the natural density in a generalized
form in the following definition.

Definition 2.3. The Upper density dC (A) and the lower density dC (A) of a subset A of N with respect to a cover C

are defined as

dC (A) = lim sup
n→∞

|A ∩ Xn|
|Xn|

and dC (A) = lim inf
n→∞

|A ∩ Xn|
|Xn|

.

The density dC (A) of A with respect to C is defined as

dC (A) = lim
n→∞

|A ∩ Xn|
|Xn|

provided the limit exists.

If Xn = {1, 2, . . . , n}, then we get the theory of natural density which is available in the literature. So the
concept of natural density becomes a particular case of the new concept and the new theory is consistent with
that available in the literature.

If C is any cover for N and if A and B are subsets of N such that dC (A) and dC (B) exist, then the following
results follow from the definition.

• dC (N) = 1.

• dC (Ac) = 1− dC (A) where Ac denote the complement of A in N.

• for any finite set F, dC (F) = 0.

• for any finite set F, dC (A− F) = dC (A).

• dC (A ∪ B) = dC (A) + dC (B)− dC (A ∩ B).

Example 2.1. Let A = 2N. Let Xn = {1, 2, . . . , n} and C be the cover {Xn}. Then dC (A) is the natural density,
which is equal to 1

2 . Let D be the cover {Xn} where

Xn = {1, 2, 3, . . . , 2n + 1, 2n + 3, . . . , 4n− 1}.

Then the sequence
(
|A∩Xn |
|Xn |

)
is, 1

3 , 2
6 , 3

9 , . . . which converge to 1
3 . That is, dD (A) = 1

3 .
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This example shows that the density of a set may vary as the cover varies. In Theorem 3.2, we prove that for
any real number α, 0 ≤ α ≤ 1, if A is an infinite set whose complement is also infinite, there is a cover C so
that dC (A) = α.

Let us consider another example.

Example 2.2. Let A = {1, 3, 5, . . . } and let C be the cover {Xn} where

Xn = {1, 2, 3, . . . , 2n, 2(n + 1), 2(n + 2), . . . , 4n}.

Then dC (A) is 1
3 and dC (2A) = 1

3 .

This example shows that, dC (kA) need not be equal to 1
k dC (A) in contrast with the classical result d(kA) =

1
k d(A). Also it is easy to verify that dC (A + 1) = 2

3 which shows that, dC (A) need not be equal to dC (A + 1)
in contrast with the classical result d(A + c) = d(A) for all constant c ∈N.

Theorem 2.1. Let A be a subset of N. Let m1 < m2 < m3 < . . . be an increasing sequence of natural numbers. Let
Xn = {1, 2, . . . , mn} and C = {Xn}. Then C is a cover of N and dC (A) = d(A) provided d(A) exists.

Proof. Let d(A) exist. Let an = |A∩{1,2,...,n}|
n and bn = |A∩{1,2,...,mn}|

mn
. Then d(A) = lim

n→∞
an which exists by our

assumption. As (bn) is a subsequence of (an), dC (A) = lim
n→∞

bn exists and is equal to d(A).

3 The Major Theorem

In this section, we prove a theorem which resembles the Riemann’s theorem on rearrangements of series.
First we recall Riemann’s theorem on rearrangement of Series: If Σan is a nonabsolutely convergent series
(Σan is convergent and Σ|an| is not convergent) of real numbers and −∞ ≤ α ≤ β ≤ ∞, then there exists a
rearrangement Σbn of Σan with partial sum sequence (tn) such that lim inf

n→∞
tn = α and lim sup

n→∞
tn = β.

We now state our main theorem.

Theorem 3.2. If A is an infinite subset of N whose complement is also an infinite set and α, β ∈ [0, 1] with α ≤ β,
then there exists a cover C such that dC (A) = α and dC (A) = β.

Proof. There exists a sequence of rational numbers in [0, 1] whose limit infimum is α limit supremum is β.
Indeed if, p1, p2, . . . and q1, q2, . . . are sequences of rational numbers in [0, 1] converging to α and β

respectively, then the sequence p1, q1, p2, q2, . . . has the required property.
Let a and b be two rational numbers in [0, 1]. Let a representation m

n for a be given. Then we claim that
there exists a representation m′

n′ for b such that m ≤ m′ and n < n′. If b = p
q is any representation of b, and if

m′ = pmn and n′ = qmn, then b = m′
n′ is a required representation of b, if at least one of m and n is different

from 1. If m = n = 1, then 2p
2q will be a representation of b with the required property.

We claim that there exists a sequence
m1

n1
,

m2

n2
,

m3

n3
, . . .

of rational numbers such that

m1 ≤ m2 ≤ m3 ≤ . . . , n1 < n2 < n3 < . . . ,

and mi ≤ ni for all i, so that

lim inf
k→∞

mk
nk

= α and lim sup
k→∞

mk
nk

= β.

To prove this claim let α1, α2, α3, . . . be a sequence of rational numbers in [0, 1] such that lim inf
n→∞

αn = α and

lim sup
n→∞

αn = β. Taking α1 and α2 as a and b with the representation α1 = m1
n1

in our first claim, we get a

representation α2 = m2
n2

such that m1 ≤ m2 and n1 < n2. Taking α2 and α3 as a and b with the representation
α2 = m2

n2
in the same claim we get a representation α3 = m3

n3
such that m2 ≤ m3 and n2 < n3. Continuing in

this way, we get a sequence with the required properties.
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Let B = N− A. Since A and B are infinite subset of N, we can write the elements of the sets as infinite
sequences:

A : a1 < a2 < a3 < . . . , and B : b1 < b2 < b3 < . . . .

Let
Xk = {a1, a2, a3, . . . , amk , b1, b2, . . . , bnk−mk}

for k = 1, 2, 3, . . . . Then C = {Xk} is a cover with dC (A) = α and dC (A) = β.

Corollary 3.1. If A an infinite subset of N whose complement is also an infinite set and if α ∈ [0, 1], then there exists
a cover C such that dC (A) = α.

Conclusion

The theory developed here can be viewed as way to find the density of a set after assigning some weights to
the natural numbers. If for some k and ` in N, there is an n such that k ∈ Xn and ` /∈ Xn, we may consider the
weight of k is larger (or equal) than the weight of `.

Moreover, in the existing literature our intuition that the set of positive even integers is half of the set
of positive integers, is given a mathematical meaning. In the new theory the intuition by which the theory
started fails. This is not an odd one in mathematics.

We started topology generalizing the concept of metric spaces. In the metric space R, with usual topology
the sequence

1,
1
2

,
1
3

, . . .

converges to 0 and only to 0. But the same sequence on R with the topology τ = {R, ∅, {0}} converges to
all real numbers other than 0 and it does not converge to 0, breaking our intuition that the sequence tends
to 0. Likewise our theory also breaks some intuitions. Through this happens, the theory developed in this
work has many similarities with the theory available in the literature of other branches of mathematics like
Riemann’s theorem on rearrangement of non-absolutely converging series. Some other types of densities and
many open problems were discussed in [2, 3] and some of them can be studied in this new context.

We have discussed a generalization of the concept of natural density by replacing |A∩{1,2,3,...,n}|
n by |A∩Xn |

|Xn |

where {Xn} is a sequence of subsets of N satisfying certain properties. Replacing |A∩{1,2,3,...,n}|
n by µ(A∩Xn)

µ(Xn)

where A and Xn are subsets of a measure space (X, µ), we can further generalize the concept of natural
density to a very large setup. For example one may take X = R, the Lebesgue measure on R as µ, and {Xn}
as an increasing sequence of sets with finite measure whose union is R, and obtain new results like the set of
positive real numbers is one half of the set of all real numbers and so on.
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