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Abstract

In this paper, we shall study a nonlinear fractional differential equation with nonlocal integral boundary
conditions. We have used fixed point theorems and Laray-Schauder nonlinear alternative to study the
existence and uniqueness of solutions to the given equation. In the last, we have given examples to illustrate
the applications of the abstract results.

Keywords: Fractional differential equations, Fixed point theorems, Laray-Schauder nonlinear alternative,
Nonlocal boundary conditions.

2010 MSC: 34A08, 34B10, 34G20. c©2012 MJM. All rights reserved.

1 Introduction

Fractional differential equations are the generalization of ordinary differential equations to arbitrary non
integer orders. The fact, that the fractional derivative(integral) is an operator which includes integer order
derivatives(integrals) as special cases, is the reason why in present fractional differential equations becomes
very popular and many applications are available. The fractional differential equations are of great importance
because these are more precise in the modeling of many phenomenon, for instance, the nonlinear oscillations
of earthquake can be described by the fractional differential equations. These differential equations are also
very important to describe the memory and hereditary properties of various materials and phenomenon,
this characteristic of fractional differential equations makes the fractional-order models more realistic and
practical than the classical integer-order models. Recent work on fractional differential equations shows an
overwhelming interest in this direction, for instance see [1–12] and the references cited therein. There have
been many good books and monographs available on this field see [13–17].

On the other hand, the differential equations with a deviating argument are generalization of differential
equations in which we permit the unknown function and its derivative to appear under different values of
the argument. It is very important and significant branch of nonlinear analysis with numerous applications
to physics, mechanics, control theory, biology, ecology, economics, theory of nuclear reactors, engineering,
natural sciences and many other areas of science and technology. For a good introduction see [8, 18–21] and
references cited therein.

The boundary value problem of fractional differential equations have been one of the hottest problems.
Many problems related to blood flow, chemical engineering, thermo-elasticity, underground water flow,
population dynamics, and so on can be reduced to nonlocal integral boundary problems. As a matter of fact,
there are many papers dealing with the investigations on boundary value problems for some kinds of
fractional differential equation with specific configurations covering theoretical as well as application aspects
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of the subject. In this consequence, Bai and Lu [12] studied the existence of positive solutions for the
fractional boundary value problem using Krasnoselskii’s fixed point theorem and the Leggett-William’s fixed
point theorem. They established the criteria on the existence of at least one or three positive solutions for the
boundary value problem. Later on, Kaufmann and Mboumi[4] discussed the existence of positive solutions
for the fractional boundary value problem and provide sufficient conditions for the existence of at least one
and at least three positive solutions to the nonlinear fractional boundary value problem. In [23] Ahmad et. al
investigated a boundary value problem of Riemann-Liouville fractional integro-differential equations with
fractional nonlocal integral boundary conditions using Krasnoselskii’s fixed point theorem. In [7] Yan et. al
studied the boundary value problems for fractional differential equations subject to nonlocal boundary
condition using Banach’s fixed point theorem and Schaefer’s fixed point theorem. In [11] Zhong et. al
investigated nonlocal and multiple-point boundary value problem for fractional differential equations and
establish the conditions for the uniqueness of solutions as well as the existence of at least one solution. In [9]
Murad et. al investigated the existence and uniqueness of solutions to the nonlinear fractional differential
equation of an arbitrary order with integral boundary condition using Schauder fixed point theorem and the
Banach contraction principle. In [1] Ahmad et. al discussed a new class of fractional boundary value
problems and establish the results using Banach and Krasnoselskii’s fixed point theorem. Authors in [1] also
studied Riemann-Liouville fractional nonlocal integral boundary value problems in [2] by means of classical
fixed point theorems. In [10] Ntouyas et. al. studied the boundary value problems for nonlinear fractional
differential equations and inclusions with nonlocal and fractional integral boundary conditions and obtained
some new existence and uniqueness results by using fixed point theorems. In [6] Nyamoradi et. al
investigate the existence of solutions for the multipoint boundary value problem of a fractional order
differential inclusion on an infinite interval using suitable fixed point theorems. In [3] Ahmad et. al
investigate the existence of solutions for higher order fractional differential inclusions with fractional integral
boundary conditions involving nonintersecting finite many strips of arbitrary length using some standard
fixed point theorems for multivalued maps. Akiladevi et.al [5] discuss the existence and uniqueness of
solutions to the nonlinear neutral fractional boundary value problem using fixed point theorems. Recently,
Zhao [25] studied triple positive solutions for two classes of delayed nonlinear fractional differential
equation with nonlinear integral boundary value conditions using Leggett-Williams fixed point theorem and
a generalization of Leggett-Williams fixed point theorem.

Motivated by the aforementioned techniques and papers, we have come to the conclusion that, although
the fractional boundary value problems have been studied by many authors, but there is few gap in the
literature on the boundary value problems with integral boundary conditions. In order to enhance the
theoretical knowledge of the above, in this paper we intend to investigate the existence and uniqueness of
solutions to the following Caputo-type fractional differential equation with deviated argument and nonlocal
integral boundary conditions:

{
cDγ[z(t)− G(t, z(t))] = F (t, z(t), z[k(t, z(t))]), 1 < γ ≤ 2, t ∈ (0, 1)
z(0) = 0, z(τ) = α

∫ 1
η z(v)dv, 0 < τ < η < 1,

(1.1)

where cDγ is the Caputo fractional derivative of order γ. F , G and k are suitably defined functions satisfying
certain conditions to be stated later and α is a positive real constant. The nonlocal integral boundary condition
z(τ) = α

∫ 1
η z(v)dv shows that the integration over a sub-strip (η, 1) of an unknown function is proportional

to the value of the unknown function at a nonlocal point τ ∈ (0, 1) with τ < η < 1.

In this work, our main aim is to establish some existence and uniqueness results for the system (1.1)
by using fixed point techniques which will provide an effective way to deal with such problems. Most
of the existing articles are only devoted to study of fractional differential equation with nonlocal integral
boundary conditions up until now Caputo-type fractional differential equation with deviated argument and
nonlocal integral boundary conditions, has not been considered in the literature. In this paper, the first
sufficient condition proving existence and uniqueness of the mild solution of (1.1) is derived by utilizing
Banach fixed point theorem under Lipschitz continuity of nonlinear terms. The second sufficient condition
proving existence of the mild solution of (1.1) is obtained via Krasnoselskii’s fixed point theorem. The third
sufficient condition is obtained by using Laray-Schauder nonlinear alternative under non-Lipschitz continuity
of nonlinear terms.
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2 Preliminaries

In this segment we discuss some basic definitions of fractional integration and differentiation and some
lemmas which plays an important role in the further sections.

Definition 2.1. [17] For a function f ∈ L1(R+), the fractional integral of order γ is described by

Iγ
0+ f (t) =

1
Γ(γ)

∫ t

0
(t− v)γ−1 f (v)dv, t > 0, γ > 0.

Definition 2.2. [13] For a function f ∈ Cm−1(R+)∩ L1(R+), the Caputo fractional derivative of order γ is described
by

cDγ
0+ f (t) =

1
Γ(m− γ)

∫ t

0
(t− v)m−γ−1 f m(v)dv,

where m− 1 < γ < m, m = [γ] + 1 and [γ] denotes the integral part of the real number γ.

Lemma 2.1. [14] Let q > 0, then

D−γDγ f (t) = f (t) + C1tγ−1 + C2tγ−2 + . . . + Cntγ−1,

for arbitrary Ci ∈ R, i = 1, 2, . . . , n, n = [γ] + 1.

Lemma 2.2. For any functions F ∈ C([0, 1], R) and G ∈ C1([0, 1], R), the solution of following linear fractional
boundary value problem

cDγ[z(t)− G(t)] = F (t), 1 < γ ≤ 2, t ∈ (0, 1) (2.2)

z(0) = 0, z(τ) = α
∫ 1

η
z(v)dv, 0 < η < 1, (2.3)

is defined by

z(t) =
1

Γ(γ)

∫ t

0
(t− v)γ−1F (v)dv− G(0) + G(t)

+
t
Λ

{
G(0)(1− α(1− η))− G(τ)− 1

Γ(γ)

∫ τ

0
(τ − v)γ−1F (v)dv

+α
∫ 1

η
G(v)dv +

α

Γ(γ)

∫ 1

η

( ∫ v

0
(v− u)γ−1F (u)du

)
dv
}

, (2.4)

where

Λ = τ − α

2
(1− η2) 6= 0. (2.5)

Proof. Using Lemma(2.1), the solution z of (2.2) given by

z(t) = IγF (t)− G(0) + G(t) + C2t + C1, (2.6)

for some constants C1, C2 ∈ R.
On applying the boundary conditions (2.3), we get C1 = 0 and

C2 =
1

(τ − α
2 (1− η2))

{
G(0)(1− α(1− η))− G(τ)− 1

Γ(γ)

∫ τ

0
(τ − v)γ−1F (v)dv

+α
∫ 1

η
G(v)dv +

α

Γ(γ)

∫ 1

η

( ∫ v

0
(v− u)γ−1F (u)du

)
dv
}

.

Substituting the values of C1 and C2 in (2.6), we get (2.4).
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3 Existence and Uniqueness Results

Let C = C([0, 1], R) be the Banach space of all continuous functions from [0, 1] to R equipped with the norm

‖z‖ = sup
t∈[0,1]

|z(t)|, z ∈ C.

Set,
B = {z ∈ C : |z(t)− z(v)| ≤ L|t− v| ∀ t, v ∈ [0, 1]},

where L is a positive constant.
With the help of Lemma (2.2), we introduce an operator Φ : B→ B as

(Φz)(t) =
1

Γ(γ)

∫ t

0
(t− l)γ−1F (l, z(l), z[k(l, z(l))])dl + [

t
Λ
(1− α(1− η))− 1]G(0, z(0))

+G(t, z(t)) +
t
Λ

{
− G(τ, z(τ))− 1

Γ(γ)

∫ τ

0
(τ − l)γ−1F (l, z(l), z[k(l, z(l))])dl

+α
∫ 1

η
G(l, z(l))dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1F (y, z(y), z[k(y, z(y))])dy

)
dl
}

, (3.7)

where Λ is given by (2.5). Here note that the boundary value problem (1.1) has solutions if and only if the
operator Φ has fixed points.
Now, we introduce some assumptions which are required for the existence and uniqueness of the solution to
boundary value problem (1.1).

(H1) The continuous function k is defined from [0, 1]×R to R with a constant Lk > 0 such that

|k(t, z)− k(t, x)| ≤ Lk|z− x|.

(H2) The continuous function F is defined from [0, 1]×R×R to R with a constant L f > 0 such that

|F (t, z, z[k(t, z(t))])−F (t, x, x[k(t, x(t))])| ≤ L f (2 + LLk)|z− x|.

(H3) The continuously differentiable function G is defined from [0, 1]×R to R with a constant Lg > 0 such
that

|G(t, z)− G(t, x)| ≤ Lg|z− x|.

(H4) There exists M1(t) and M2(t) ∈ C such that

|F (t, z, z[k(t, z(t))])| ≤ M1(t),

and

|G(t, z)| ≤ M2(t).

Theorem 3.1. Suppose (H1)− (H3) hold with δ1 = L f (2 + LLk)µ1 + Lgµ2 < 1, where

µ1 =
1
|Λ|

(
(|Λ|+ τγ)

Γ(γ + 1)
+

α(1− ηγ+1)

Γ(γ + 2)

)
and µ2 =

(
1 +

1
|Λ| (1 + α(1− η))

)
.

Then the boundary value problem (1.1) has a unique solution.

Proof. Let sup
t∈[0,1]

|F (t, 0, 0)| = N1, sup
t∈[0,1]

|G(t, 0)| = N2 and Br = {z ∈ B : ‖z‖ ≤ r}, where r ≥ δ2
1−δ1

with

δ2 = N1µ1 + N2µ2 +
1
|Λ| ((1− α(1− η))− 1)|G(0, z(0))|).
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Now we will show that ΦBr ⊂ Br. For z ∈ Br, 0 ≤ t ≤ 1, we have

‖(Φz)(t)‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])−F (l, 0, 0) +F (l, 0, 0)|dl

+[
t
|Λ| (1− α(1− η))− 1]|G(0, z(0))|+ |G(t, z(t))− G(t, 0) + G(t, 0)|

+
t
|Λ|

{
|G(τ, z(τ))− G(τ, 0) + G(τ, 0)|+ 1

Γ(γ)

∫ τ

0
(τ − l)γ−1|F (l, z(l), z[k(l, z(l))])

−F (l, 0, 0) +F (l, 0, 0)|dl + α
∫ 1

η
|G(l, z(l))− G(l, 0) + G(l, 0)|dl

+
α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])−F (y, 0, 0) +F (y, 0, 0)|dy

)
dl
}

≤ (L f (2 + LLk)r + N1)µ1 + (Lgr + N2)µ2 +
1
|Λ| ((1− α(1− η))− 1)|G(0, z(0))|

≤ (L f (2 + LLk)µ1 + Lgµ2)r +
[

N1µ1 + N2µ2 +
1
|Λ| ((1− α(1− η))− 1)|G(0, z(0))|

]
≤ δ1r + δ2 ≤ r.

Thus ΦBr ⊂ Br. Now for z, x ∈ Br and t ∈ [0, 1], we have

‖Φz−Φx‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])−F (l, x(l), x[k(l, x(l))])|dl

+|G(t, z(t))− G(t, x(t))|+ t
|Λ|

{
|G(τ, z(τ))− G(τ, x(τ))|

+
1

Γ(γ)

∫ τ

0
(τ − l)γ−1|F (l, z(l), z[k(l, z(l))])−F (l, x(l), x[k(l, x(l))])|dl

+α
∫ 1

η
|G(l, z(l))− G(l, x(l))|dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])

−F (y, x(y), x[k(y, x(y))])|dy
)

dl
}

≤ [L f (2 + LLk)µ1 + Lgµ2]|z− x|
≤ δ1|z− x|.

Since δ1 < 1, ‖Φz−Φx‖ < |z− x| i.e. Φ is a contraction mapping. Therefore by Banach contraction principle,
the boundary value problem (1.1) has a unique solution.

Krasnoselskii combined two main result(Schauder’s theorem and the contraction mapping principle) of
fixed-point theory and gave a new theorem called Krasnoselskii’s fixed point theorem. Now we show
existence of solution with the help of Krasnoselskii’s fixed point theorem [24].

Theorem 3.2. (Krasnoselskii fixed point theorem [24] ) Let X be a Banach space and B be a nonempty, closed and
convex subset of X. Let Q1 and Q2 be two operators which maps B into X such that

1. Q1x + Q2y ∈ B, whenever x, y ∈ B,

2. Q1 is completely continuous,

3. Q2 is a contraction mapping.

Then there exists z ∈ B such that z = Q1z + Q2z.

Theorem 3.3. Let (H1)− (H4) hold with

δ =

(
(L f (2 + LLk))

|Λ|

[
τγ

Γ(γ + 1)
+

α(1− ηγ+1)

Γ(γ + 2)

]
+ Lg

[
1 +

1
|Λ| (1 + α(1− η))

])
< 1.

Then there exists at least one solution on [0, 1] of the given boundary value problem (1.1).
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Proof. Let sup
t∈[0,1]

|Mi(t)| = ‖Mi‖ for i = 1, 2, M = max{M1, M2,G(0, z(0))} and Br = {z ∈ B : ‖z‖ ≤ r},

choose r such that

r ≥ ‖M‖
[

µ1 + µ2 +
1
|Λ| (1− α(1− η))− 1

]
.

Now, introduce the decomposition of the map Φ into Φ1 and Φ2 on Br for t ∈ [0, 1] such that

(Φ1z)(t) =
1

Γ(γ)

∫ t

0
(t− l)γ−1F (l, z(l), z[k(l, z(l))])dl,

(Φ2z)(t) = [
t
Λ
(1− α(1− η))− 1]G(0, z(0)) + G(t, z(t))

+
t
Λ

{
− G(τ, z(τ))− 1

Γ(γ)

∫ τ

0
(τ − l)γ−1F (l, z(l), z[k(l, z(l))])dl

+α
∫ 1

η
G(l, z(l))dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1F (y, z(y), z[k(y, z(y))])dy

)
dl
}

.

For y, x ∈ Br, we have

‖Φ1z + Φ2x‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])|dl + [

t
|Λ| (1− α(1− η))− 1]|G(0, x(0))|

+|G(t, x(t))|+ t
|Λ|

[
|G(τ, x(τ))|+ 1

Γ(γ)

∫ τ

0
(τ − l)γ−1|F (l, x(l), x[k(l, x(l))])|dl

+α
∫ 1

η
|G(l, x(l))|dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, x(y), x[k(y, x(y))])|dy

)
dl
]}

≤ ‖M1‖µ1 + ‖M2‖µ2 + [
1
|Λ| (1− α(1− η))− 1]|G(0, z(0))|

≤ ‖M‖
[

µ1 + µ2 +
1
|Λ| (1− α(1− η))− 1

]
≤ r.

Thus Φ1z+Φ2x ∈ Br. Now to show Φ1 is continuous and compact. The continuity ofF implies the continuity
of Φ1. Also

‖(Φ1z)(t)‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])|dl

}
≤ ‖M1‖

Γ(γ + 1)
,

i.e. map Φ1 is uniformly bounded on Br.
Now, we show that {Φ1z(t) : z ∈ Br} is equicontinuous. Clearly {Φ1z(t) : z ∈ Br} are equicontinuous at
t = 0. For t < t + h ≤ 1, h > 0, we have

‖Φ1z(t + h)−Φ1z(t)‖ ≤ 1
Γ(γ)

‖
∫ t+h

0
(t + h− l)γ−1F (l, z(l), z[k(l, z(l))])dl

−
∫ t

0
(t− l)γ−1F (l, z(l), z[k(l, z(l))])dl‖

≤ 1
Γ(γ)

∫ t

0

[
(t + h− l)γ−1 − (t− l)γ−1

]
‖F (l, z(l), z[k(l, z(l))])‖dl

+
1

Γ(γ)

∫ t+h

t
(t + h− l)γ−1‖F (l, z(l), z[k(l, z(l))])‖dl,

which tends to zero as h → 0, thus the set {Φ1z(t) : z ∈ Br} is equicontinuous. Therefore by Arzelà-Ascoli’s
theorem Φ1 is completely continuous.
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Next we prove that Φ2 is a contraction. For this

‖Φ2z−Φ2x‖ ≤ sup
t∈[0,1]

{
|G(t, z(t))− G(t, x(t))|+ t

|Λ|

{
|G(τ, z(τ))− G(τ, x(τ))|+ 1

Γ(γ)

∫ τ

0
(τ − l)γ−1

|F (l, z(l), z[k(l, z(l))])−F (l, x(l), x[k(l, x(l))])|dl + α
∫ 1

η
|G(l, z(l))− G(l, x(l))|dl

+
α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])−F (y, x(y), x[k(y, x(y))])|dy

)
dl
}

≤
(
(L f (2 + LLk))

|Λ|

[
τγ

Γ(γ + 1)
+

α(1− ηγ+1)

Γ(γ + 2)

]
+ Lg

[
1 +

1
|Λ| (1 + α(1− η))

])
|z− x|

≤ δ|z− x|.

Since δ < 1, ‖Φ2z−Φ2x‖ < |z− x| i.e. Φ2 is a contraction. Therefore by Krasnoselskii fixed point theorem,
there exists at least one solution on [0, 1] of boundary value problem (1.1).

In our next result we show the existence of solution with the help of Laray-Schauder nonlinear alternative
[22].

Theorem 3.4. (Laray-Schauder nonlinear alternative [22]) Let U and U denote respectively the open and closed
subset of a nonempty, closed and convex set B of a Banach space X such that 0 ∈ U. Let T : U → B be a continuous
and compact operator. Then either

(i) T has a fixed point in U, or

(ii) there exists a point u ∈ ∂U such that u = εTu for some ε ∈ (0, 1), where ∂U is the boundary of U.

Theorem 3.5. Let the following assumptions hold.

(H5) There exists continuous nondecreasing functions ψ1, ψ2 : [0, ∞)→ (0, ∞) and θ1, θ2 ∈ L1([0, 1], R+) such that

(i) |F (t, z, x)| ≤ θ1(t)ψ1(‖z‖+ ‖x‖),
(ii) |G(t, z)| ≤ θ2(t)ψ2(‖z‖).

(H6) There exists a constant P > 0 such that P
Θ ≥ 1, where

Θ = ψ(‖P‖)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
.

Then there exists at least one solution on [0, 1] of the given boundary value problem (1.1).

Proof. Clearly the operator Φ : B → B defined by (3.7) is continuous. Firstly we show that the bounded sets
in B are mapped into the bounded sets in B by the mapping Φ. For r > 0, let Br = {z ∈ B : ‖z‖ ≤ r} be a
bounded set in B. Thus for z ∈ Br , we get

‖(Φz)(t)‖ ≤ sup
t∈[0,1]

{
1

Γ(γ)

∫ t

0
(t− l)γ−1|F (l, z(l), z[k(l, z(l))])|dl + [

t
|Λ| (1− α(1− η))− 1]|G(0, z(0))|

+|G(t, z(t))|+ t
|Λ|

{
|G(τ, z(τ))|+ 1

Γ(γ)

∫ τ

0
(τ − l)γ−1|F (l, z(l), z[k(l, z(l))])|dl

+α
∫ 1

η
|G(l, z(l))|dl +

α

Γ(γ)

∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])|dy

)
dl
}

≤ ψ1(2‖r‖)
∫ 1

0

(1− l)γ−1

Γ(γ)
θ1(l)dl +

1
|Λ| ((1− a(1− η))− 1)|G(0, z(0))|+ ψ2(‖r‖)θ2(1)

+
1
|Λ|

{
ψ2(‖r‖)θ2(τ) + ψ1(2‖r‖)

∫ τ

0

(τ − l)γ−1

Γ(γ)
θ1(l)dl

+αψ2(‖r‖)
∫ 1

η
θ2(l)dl + αψ1(2‖r‖)

∫ 1

η

( ∫ l

0

(l − y)γ−1

Γ(γ)
θ1(y)dy

)
dl
}

,
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choose ψ(r) ≤ max{ψ1(2‖r‖),G(0, z(0)), ψ2(‖r‖)}, we obtain

‖(Φz)(t)‖ ≤ ψ(r)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
. (3.8)

Next, we will show that Φ maps bounded sets into equicontinuous sets in Br. For this, let t1, t2 ∈ [0, 1] with
t1 < t2 and z ∈ Br, then

‖(Φz)(t2)− (Φz)(t1)‖ ≤
∫ t2

0

(t2 − l)γ−1

Γ(γ)
|F (l, z(l), z[k(l, z(l))])|dl + |G(t2, z(t2))|

−
∫ t1

0

(t1 − l)γ−1

Γ(γ)
|F (l, z(l), z[k(l, z(l))])|dl − |G(t1, z(t1))|

+
(t2 − t1)

|Λ|

[
(1− α(1− η))G(0, z(0)) + G(τ, z(τ)) + α

∫ 1

η
|G(l, z(l))|dl

+
∫ τ

0
(τ − l)γ−1|F (l, z(l), z[k(l, z(l))])|dl

+α
∫ 1

η

( ∫ l

0
(l − y)γ−1|F (y, z(y), z[k(y, z(y))])|dy

)
dl
]

≤ ψ1(2‖r‖)
[ ∫ t1

0

(t2 − l)γ−1 − (t1 − l)γ−1

Γ(γ)
θ1(l)dl +

∫ t2

t1

(t2 − l)γ−1

Γ(γ)
θ1(l)dl

+
|t2 − t1|
|Λ|

( ∫ τ

0

(τ − l)γ−1

Γ(γ)
θ1(l)dl + α

∫ 1

η

( ∫ l

0

(l − y)γ−1

Γ(γ)
θ1(y)dy

)
dl
)]

+(θ2(t2)− θ1(t1))ψ2(‖r‖) +
|t2 − t1|
|Λ|

(
1− α(1− η))|G(0, z(0))|

+|G(τ, z(τ))|+ αψ2(‖r‖)
∫ 1

η
θ2(l)dl

)
.

Clearly, the right hand side does not depend on z ∈ Br and tends to zero as t2 → t1. Thus by Arzelà-Ascoli
theorem, Φ is compact and continuous.
Now, suppose z be the solution of the given problem. Then for ε ∈ (0, 1) and using (3.8), we get

‖z(t)‖ = ‖ε(Φz)(t)‖ ≤ ψ(‖z‖)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
,

which implies

‖z‖ ≤ ψ(‖z‖)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
.

Using assumption (H6), we get P such that ‖z‖ 6= P. Set V = {z ∈ C : ‖z‖ < P}.
Here the operator Φ : V → C is continuous and completely continuous. For any V, there is no z ∈ ∂V such
that z = εΦz for some ε ∈ (0, 1). Using Laray-Schauder nonlinear alternative, we conclude that there exists a
fixed point z ∈ V of operator Φ and this z is a solution of boundary value problem (1.1).

4 Examples

In this section, we present some examples, which indicate how our abstract result can be applied to the
problem.
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Example(1): Consider the following fractional boundary value problem
cD3/2

[
z(t)− e−t

1+16e−t
|z(t)|+1
2+|z(t)|

]
= 1

(t+7)2

(
|z(t)|+ |t(|z(t)|+ 1)|+ 2

)
,

z(0) = 0, z(1/4) =
∫ 1

1/2 z(l)dl.
(4.9)

Here γ = 3/2, τ = 1/4, α = 2, η = 1/2, G(t, z(t)) = e−t

1+16e−t
(|z(t)|+1)
(2+|z(t)|) , k(t, z(t)) = t

(t+7)2 (|z(t)| + 1) and

F (t, z(t), z[k(t, z(t))]) = 1
(t+7)2

(
|z(t)|+ |t(|z(t)|+ 1)|+ 2

)
. Here Λ = τ − α

2 (1− η2) = −1/2 6= 0.

Observe that

|k(t, z(t))− k(t, x(t))| ≤ 1
49
|z− x|,

|F (t, z, z[k(t, z(t))])−F (t, x, x[k(t, x(t))])| ≤ 1
(t + 7)2

[
|z| − |x|+ |t|(|z| − |x|)

]
≤ 2

49
|z− x|,

|G(t, z(t))− G(t, x(t))| ≤
∣∣∣∣ e−t

1 + 16e−t

∣∣∣∣∣∣∣∣ |z(t)|+ 1
2 + |z(t)| −

|x(t)|+ 1
2 + |x(t)|

∣∣∣∣
≤ 1

17
|z− x|.

Thus assumptions (H1)-(H3) holds with L f (2 + LLk) = 2/49 and Lg = 1/17 and we get δ1 = .2210 < 1.
Using Theorem (3.1) we get (4.9) has a unique solution.
Example(2): Consider the fractional boundary value problem given by

cD3/2
[

z(t)− 1
(t+7)2 sin z

]
= 1

π2
√

(1+t)

(
sin z + sin(t sin z)

)
,

z(0) = 0, z(1/4) =
∫ 1

1/2 z(l)dl.
(4.10)

Here γ = 3/2, τ = 1/4, α = 1, η = 1/2, G(t, z(t)) = 1
(t+7)2 sin z, k(t, z(t)) = 1

π2
√

(1+t)
t sin z and

F (t, z(t), z[k(t, z(t))]) = 1
π2
√

(1+t)

(
sin z + sin(t sin z)

)
. Here Λ = τ − α

2 (1− η2) = −1/8 6= 0.

Observe that

|k(t, z(t))− k(t, x(t))| ≤ 1
π2 |z− x|,

|F (t, z, z[k(t, z(t))])−F (t, x, x[k(t, x(t))])| ≤ 2
π2 |z− x|,

|G(t, z(t))− G(t, x(t))| ≤ 1
49
|z− x|,

|F (t, z, z[k(t, z(t))])| ≤ 2
π2
√
(1 + t)

= M1(t),

|G(t, z(t))| ≤ 1
(t + 7)2 = M2(t).

Thus conditions (H1)-(H4) holds with L f (2 + LLk) = 2/π2 and Lg = 1/49 and we get δ = .8186 < 1. Clearly
the assumptions (H1)-(H4) of Theorem (3.3) are satisfied. Therefore (4.10) has at least one solution on [0, 1].
Example(3): Consider the following fractional boundary value problem

cD3/2
[

z(t)− 1
(t+11)2 (|z|+ 1)

]
= 1

(t+7)2

[
|z|+ | sin(|z|+ 1)|+ 2

]
,

z(0) = 0, z(1/2) =
∫ 1

3/4 z(l)dl.
(4.11)

Here γ = 3/2, τ = 1/4, α = 1, η = 3/4, G(t, z(t)) = 1
(t+11)2 (|z| + 1), k(t, z(t)) = 1

(t+7)2 sin(|z| + 1) and

F (t, z(t), z[k(t, z(t))]) = 1
(t+7)2

[
|z|+ | sin(|z|+ 1)|+ 2

]
. Here Λ = τ − a

2 (1− η2) = 9/32 6= 0.
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Observe that

|F (t, z, z[k(t, z(t))])| ≤ 1
49

(2|z|+ 3),

|G(t, z(t))| ≤ 1
121

(|z|+ 1).

From (H5) we get θ1(t) = 1, ψ1(‖z‖+ ‖x‖) = 1
49 (2|z|+ 3), θ2(t) = 1 and ψ2(‖z‖) = 1

121 (|z|+ 1). Also

Θ = ψ(‖M‖)
[

θ2(1) + Iγ

(
θ2(1) +

1
|Λ| (θ1(τ) + α

∫ 1

η
θ1(l)dl)

)
+

1
|Λ|

(
((1− α(1− η))− 1) + θ2(τ)

)
+ α

∫ 1

η
θ2(l)dl

]
= ψ(‖M‖)(8.0012).

Using condition P
Θ ≥ 1, we found that there exists a constant P such that P ≥ .7274 > 0, therefore

assumptions (H5) and (H6) of Theorem (3.5) are fulfilled. Therefore (4.11) has at least one solution on [0, 1].

5 Conclusion

This paper has investigated the existence and uniqueness of solution to the Caputo-type fractional differential
equation with deviated argument and nonlocal integral boundary conditions. The first sufficient condition
proving existence and uniqueness of the mild solution of (1.1) is derived by utilizing Banach fixed point
theorem under Lipschitz continuity of nonlinear terms. The second sufficient condition proving existence of
the mild solution of (1.1) is obtained via Krasnoselskii’s fixed point theorem. The third sufficient condition is
obtained by using Laray-Schauder nonlinear alternative under non-Lipschitz continuity of nonlinear terms.
At last, examples are provided to illustrate the applications of the abstract results.
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