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Abstract

We obtain interval oscillation criteria for the second-order impulsive delay differential equation
n

(r()@a(¥ (1)) + p()Palx(t = 7)) + Y 4i () Dp, (x(t = 7)) = e(t), £ = to, t # Ly,

i=1
X(tk+) = akx(tk), x’(tk+) = bkx'(tk), k= 1,2,3,....

The results obtained in this paper extend some of the existing results. We have given some examples to
illustrate our results.
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1 Introduction

Consider the second-order impulsive delay differential equation with mixed nonlinearities

(DX (1)) + p()Du(x(t — 1) +2qz )0y, (x(t— 1)) = e(t), t > to, t £ by,

(1.1)

x(t;ﬁ) =mx(te), x (tk ) = bkx (t), k=1,2,3,...

where
x(ty) := lim x(¢), x(t}):= lim x(t),
t—t t—t}
1y e pi Xt R) —x(te) oy X+ R) — x ()

x(te) = hli%lf h r X)) = hli%h h

@, (s) := |s|* s, T is a non negative constant, {f;} denotes the impulsive moment sequence with 0 < t; <

<o <t <. limg oty =oc0cand tg g —t > Tfork=1,2,3,....
Let | C R be an interval, we define

PLC(J,R) :={h:] — R | his continuous on each interval (f, t;;1),
h(£5) exists and h(t) = h(t; ) forallk € N}.

For given tp and ¢ € PLC([tp — 7,9}, R), we say x € PLC([tp — T,0),R) is a solution of equation(L.I) with
the initial value ¢ if x(t) satisfies equation(I.1)) for t > to and x(t) = ¢(t) for t € [tg — T, to].
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A nontrivial solution of equation(l.1) is called oscillatory if it has arbitrarily large zeros; otherwise, it is called
nonoscillatory.

The theory of impulsive differential equations is an important branch of differential equations. The first
paper in this theory is related to V. D. Milman and A. D. Mishkis in 1960 [14]. In recent years the oscillation
theory of impulsive differential equations emerging as an important area of research, since such equations
have applications in control theory, physics, biology, population dynamics, economics, etc. For further
applications and questions concerning existence and uniqueness of solutions of impulsive differential
equation, see for example Lakshmigantham et. al [10] and the references cited therein.

During the last decades, several oscillation results were established for different kinds of impulsive delay
differential equations (see Agarwal and Karakoc [2]). Recently, interval oscillation of impulsive delay
differential equations was attracting the interest of many researchers, see Guo et. al[5, 6] and Li and Cheung
[11]. However, only very few interval oscillation results are available in the literature for ” second order
impulsive differential equations with delay ”. For example, Huang and Feng [8] considered the second order
delay differential equations with impulses

)+ pt) f(x(t—T)) =e(t), t > ty, t £y,
X(tk+) = akx(tk), x’(t;ﬁ) = bkx’(tk), k=1,2,..

and established some interval oscillation criteria which developed some known results for the equations
without delay or impulses [4} 12} 18]
In [5], Guo et. al considered the second order mixed nonlinear impulsive differential equations with delay

n

(r(D@a(¥' (1)) + po()Pa(x(1)) + Y pi(1) Py, (x(t = 0)) = e(t), t > to, t # T,
i=1

x(uh) =mx(n), *(u") =bx' (%), k=1,2,..
and obtained some interval oscillation criteria which generalized the results in [13} (15, 17].

In [11], Li and Cheung established some interval oscillation criteria for the second order impulsive delay
differential equations of the form

(PO () + () (x(t = 1)+ Y. (OB, (et = 7)) = e(t), £ = to, £ # 1,

i=1
x(h ) = apx(ty), *(BF) =X (t), k=1,2,...

Motivated mainly by [5} 6] [11], we establish some interval oscillation criteria for equation (1.1). We also
provide two examples to illustrate the effectiveness of our results.

2 Main results

Throughout this paper, assume that the following conditions hold without further mention:
(A1) r(t) € C([to, ), (0,00)) is non-decreasing, p,q;,e € PLC([tg,),R), i =1,2...,n;
(A2) B1 >+ > Bwm>a> Bys1 > -+ > By > 0are constants;
(A3) «isa quotient of odd positive integers, by > a; > 0, k € IN are constants.
let k(s) := max{i: ty < t; < s} and for ¢; < dj, let M; := max{r(t) : t € [¢c;,d;]}, j = 1,2,
Q={we ct [cj,dj] : w(t) #0, w(cj) = w(d;) = 0}, j = 1,2. For two constants ¢,d ¢ {t;} withc < dand a
function ¢ € C([c,d],R), we define an operator ¥ : C([c,d],R) — R by

iy = {o, for k(c) = k(d),

=k
P (t(e)+1)0(0) + Lp Y 1o #(E)e(t), fork(c) < k(d)
where . .
o)1~ T(e)+1 _ b —af
(ai(c)Jrl(tk(c)-&-l - C)“) ’

0(c) =
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where YL = 0ifs > t.
In the discussion of the impulse moments of x(t) and x(t — T), we need to consider the following four
cases for k(c;) < k(d;),

(s1) (e )+T<C]andtk( )+T>d],( 2) tr(c )+T<c]andtk( )+T<d,
(s3) ty k(c )+T>cjandtk( )—|-T>d],( 4) b k(e )+T>c]andtk( )+T<d j=1,2
and the three cases for k(cj) = k(dj),
(S~1) k(c )+T<C]/ (32) tk(d)+T<d], (53) tk( )+T>d j=12.

Combining (s.) with (s%), we can get 12 cases. Throughout the paper, we study equation(L.I) under the case
of combination of (s1) with (s7) only. The discussions for other cases are similar and so omitted.
Let us see some lemmas which will be useful to prove our main results.

Lemma 2.1. [[1] For any given n-tuple {1, B2, ..., Bn} satisfying By > -+ > Bm > a > Byy1 > -+ > Bu >0,
there corresponds an n-tuple (41,12, . .., ) such that

n n
Y Bini=a, Yomi<l 0<p<l 2.2)
i=1 i=1

Lemma 2.2. [1l] For any given n-tuple {B1, Ba, ..., Bn} satisfying By > -+ > B > a > Bpy1 > - > By >0,
there corresponds an n-tuple (11,12, . . ., 1n) such that

iﬁiﬂi =u, i;ni =1 0<y <L (2.3)
= i=
Lemma 2.3. [[7] Suppose X and Y are non-negative, then
AXYM XA < (A-1)YMA>1 (2.4)
where equality holds if and only if X =Y.
Lemma 2.4. Assume that for any T > to, there exists cj,d; & {ty}, j=1,2suchthat T < c; < dy < ¢y < dpand
p(t),q:(t) >0, t€[c1—1,d1]U[cr—T,da]\{tx},i=1,23,..,n

e()) 0, telo—Td]\t}, 5)
e(t) >0, telen—r1d)\{tr}

If x(t) is a non-oscillatory solution of equation(1.1)), then there exist the following estimations of x(t —t)/x(t);

s 1, Mt ()

t—t

t—T t—t
(b) for te(titi+1), >< ,t+T—t )

t_T T (2.6)
() for £ € [ej, teepyaals - ( E— o) )

t_T E— by,
(d) for te (tk(dj),dj]/ > (bk +T*tk( ))

where i = k(cj), ... k(d;) —1,j=1,2.

Proof. Without loss of generality, we assume that x(t) > 0 and x(t — T) > 0 for t > f;. In this case the selected
interval of t is [c1,d1]. From equation(1.1) and (2.5), we obtain

n

[r()Pa(x' (1)) = e(t) = p(t)Pa(x(t = 7)) = 1 q:()Dp, (x(t — 7)) <O 2.7)

i=1
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Hence r(t)®,(x'(t)) is non-increasing on the interval [c1, d1]\{t}.
Case(a): t; + 7 <t < t;,q.
Then (t — 7,t) C (t;, t;+1] and hence there is no impulsive moment in (t — 7, t). For any s € (t — 7,t), we have

x(s) —x(t7) = x"(G1)(s — ti), 1 € (ti,s).

Because of the facts that x(t;") > 0, ¢a(x) is an increasing function and r(s)®,(x(s)) is non-increasing on
(ti,tir1), we have

Pu(x(5)) > (' (E0)(s — 1) = HE0u ¥ (G061,

and hence

r(s)Pa(x'(s)) A&
> T(S — ;)"

Since r(s) is positive and non-decreasing, the above inequality becomes

Pu(x(5)) = u(x'(s)(s — 1)), &1 € (t,5)-

Dy (x(s))

Thus, we have
x'(s) 1

< .
x(s) ~ (s—th)
Integrating both sides of the above inequality from ¢ — T to ¢, we obtain

x(t—1) S (t—ti—T

x(t) t—t

) , EE (4T, b)) (2.8)

Case(b): t € (t;,t; + T).
Thent—71 € (f; —T,t;).ie, t; — T < t — T < t; < t < t; + T. Then there is an impulsive moment ¢; in (t — T, t).
Then we have,

x(t) —x(t7) = x"(82)(t = t;), &2 € (ti,t).
Using the impulsive condition of equation(L.I) and the monotone properties of r(t), ¢u(t) and r(t)Pa (' (1)),
we get

(D) o (x! (£
dulx(t) —apx(s) < TBELD gy
= Pa(bix (1)) (t — ;)" (2.9)

= s (;C((:l)) —ui> < Pu <bi3;/((:))(t - ti))

In addition, by mean value theorem on [t; — T, t;|, we have

x(t) —x(t; —7) =x'(G3)T, &3 € (H— T, t;)
and hence, ¢, (x(t;)) > ¢u(x'(&3)T)

By using the monotone properties of r(t), ¢, (t) and r(t)¢ps (x'(t)), we have
Pa(x(t)) = gu(x'(t)T)
x'(t) - 1 (2.10)
= X6 ST
From and (2.10), we have,
x(t) _4 ) < bz(t_ tz)
e (S —o) <o ()
N ;C((tt.)) < bi(t _;i + 1) 2.11)

For some s € (t; — 7,t;), we have

x(s) —x(tj = 1) = x'(84) (s — ti + 1), 4 € (£ — T,5)

N 4)“(X(S)) > }’((:4)4)“(36/((:4))

r() (s—t; + 1)~
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Again by using the monotone properties of 7(t), ¢, (t) and r(t)¢a (x'(t)), we have

Pa(x(5)) = Pa(x'(s)(s — ti + 7))
x'(s) < 1
x(s) ~(s—t+T)

Integrating both sides of the above inequality from t — T to t; where t € (t;,t; + T), we have

=

x(t—1) S tE—t
x(t;) (O

Hence, from (2.11) and (2.12), we have

x(t_T) t_tl . f.
() (bi(t—l—r—ti))’ te (titi+1).

te (t,ti+1). (2.12)

Case(c): t € [c1, t(c,)+1)-
Thent — T € [c1 — T, t(,;)41 — 7] and hence there is no impulsive momentin (f — 7, t).
For any s € (t — 7, t) as in Case(a), we have

Pa(x(5)) > Pa(x'(85) (s — ti(cy)))

By the monotone properties of ¢, () and 7(s) D4 (x'(s)), we have

D, (x' «
@un(s)) = QLD e

Since r(s) is positive and non decreasing, the above inequality becomes

¢ (x(5)) > Pu(x'(8) (5 = tr(ey)))s €5 € (be(ey)rS)

x'(s) 1
- x(5) " G —tiey)

Integrating both sides of the above inequality from ¢ — T to t, we obtain

x(t—1) (k) =T
x(t) t_tk(cl)

> ;b€ fer, tr(e )l

Case(d): t € (tk(dl)/dl}'
Thent—71 € (tk(dl) —T,d, — T]. ie, tk(dl) —T<t—1< tk(dl) <t < tk(dl) + 7. Then there is an impulsive
moment 4y in (f — T, t). Making a similar analysis of Case(b), we obtain

x(t—1) t—tiay)
> , te(t ,dq].
x(t) (bk(d1)<t + T — tigay)) (ti(an) ]

When x(t) < 0, we can choose interval [cp,d5] to study equation(.I). The proof is similar and hence
omitted. This completes the proof. O

Theorem 2.1. Assume that for any T > to, there exists ¢, d; & {te},j=1,2,suchthat T < c; < dy < ¢y < dpand
holds. If there exists wj(t) € Q;(c;, d;), j = 1,2 such that, for k(c;) < k(d;),

/tk(f]-)+1 W(t) t— tk(C]) -7\" dt
¢ / E— e

]

. ti+T t— ¢t 14 ti+1 t—t—T Q
+ ) [ Wi(t) <1> dt + Wi (t) (:) ]
i=k(c;j)+1 ‘/ti ! bi(t+7—1t;) /ti+'r / t—t; (2.13)
b E— tay) ' Z w1
+ W;(t : dt — | (r(t) |wl(t dt
» ”)<mm0+r—w@> [ ewleo]

]

d.
> M]‘PC]] {CU?+1],



V. Muthulakshmi et al. / Interval criteria for oscillation of ... 409

and for k(c;) = k(d;),

dj Wit t—cj : ; " a+1 4> 0 )14
/C_ i(t) W —T()’Wj()’ =, (2.14)

]
where, Wi(t) = Q(t)w;?‘“,j =1,2., and

Q(t) = (p(t) 5" lilm”"q?’(t)lff(t)’”) ,

i=1
then equation (1.1)) is oscillatory.
Proof. To arrive at a contradiction, let us suppose that x(f) is a non-oscillatory solution of equation(1.I).

Without loss of generality, we assume that x(t) > 0 and x(t — ) > 0 for t > ;. In this case the interval
of t selected for the following discussion is [c1,d1]. We define

) = r 2L e o] @15)
It follows that for ¢ # f,
1y — ¥(t—1)  Eliqi(t)gp(x(t—=1)) e(t)] (1)
u(t)——<P(t) (D) 4 ==l A +xa(t)> — au(t) "0 (2.16)

forall t # ty, t > to,and u(t) = %u(tk) forall k € IN.

From the assumptions, we can choose c¢1,d; > ty such that p(t) > 0 and g;(t) > 0 for t € [c; — T,d1],
i=12,...,n,and e(t) < Ofort € [c; — T,d1]. By Lemma 2.1, there exist #; > 0,i = 1,...,n, such that
Yiy Bini = wand 1Ly i < 1.

Define 17 := 1 — Y} ; #; and let

_qle(t)x(t—1 _
ug =1, 1 7( )x”‘((t) ) X 1(1’ - 1),
u; = qflqi(t)x(t_T) xﬁi*l(t—’t), i=1,2,...,n.

xX4(t)

Then by the arithmetic-geometric mean inequality (see Beckenbach and Bellman [3])

n n
Y niui > Hu?i, u; >0,and 7; >0
i=0 i=0

we have
u'(t) < — p(t)w - ,70*770 ﬁnimq?i(t)wx(lgil)’?i(t —T)|e(t) |70 x Wxno(t - 1)
@ r(Hga(x' ()" (1)
~ ) () PREIOICC
(2.17)

Since, by using Lemma(2.2), we have

moxli(t—T) x0Tttt — ) x(t— 1)

@y = @y~ e

i=0

and

n
[Tx® Vit —o)x ot — 1) =x*"1(t - 1),
i=1

the inequality (2.17) becomes

W(t) < - p(t)+ﬂo”°llﬁm""q?"(t)e(f)l”‘)] Xx“ii(_t)T)_rl/i‘(t)ul”‘l’c(f),
= o0 (M) e @19)
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where
Q(t) = <P(f) +ipp ™ ﬁm"’ﬂ?"(f)le(t)l”(’) :

First we consider the case k(c1) < k(d7). In this case the impulsive moments in [c1,d;] are
te(ey)+17 tk(ey)+27 - -+ tk(dy)- Choosing a wi(t) € Oq(c1,dr), multiplying both sides of 2.18) by w§T(t), and
then integrating it from c; to d;, we have

k(dq1)

Yo @) [u(t) — u(t)]

i:k(C1)+1

< (/:(C”H [(w +1) |wi (et (8)| [u(t)] - rl/‘;‘(t) Ju(t)| T/ wi‘“(t)} dt

k(dy)—1

tita . e
+ik(§)ﬂ./ti [(“1) | (B)ewr (8] [u(t)] — W( 7l u(t)| () 1“@)} i
+ t:: ) [(“ +1) wi (et (1) |u(t)] — rl/"f(t) Ju(t)| 1)/ wtlk-i-l(t):l it (2.19)

_ /Cf"“ﬂ“ <x(i<—t)f))aw1(t)dt

() w1 () ]

where Wi () = Q(t)wi .
Letting

afa+1
A=1+ % X = (rlj"(t)) @l (8)] |u(t)] and Y = [ar(£)]*/* ) (1)

14

and then by using Lemma(2.3), we get

(a+ 1) [wd (Dewoh (1) ()] — e [u(B)HO/% (1) < (i) [a (1) (2.20)

T 140

Meanwhile, fort = t;, k=1,2, ...

b 29
u(tf) = (k) u(ty). (.21)
Ak
Then the left hand side of the inequality(2.19) becomes
Y, Wit —u)] = ), e ()ult). (2:22)
i=k(cy)+1 i=k(c1)+1 i
Substituting (2.20) and 2.22) in (2.19), we get
k(di)  pa_ p
A au(t)
i=k(cq)+1 i

(2.23)
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On the other hand, for t € (¢;_1,t;] C [c1,d1], i =k(c1) +2, ..., k(d1), we have
x(t) = x(tio1) = X' (€)(t —tio1), ¢ € (tip, 1)

In view of x(¢;_1) > 0 and the monotone properties of ¢, (), r(t)¢po(x'(t)) and r(t) we obtain

Pu(x(8)) > Pux' ()Pt — ti1) > :g;w’(tm(t i)
09 (®) _ (@)
PG(D) Tt

=

Lett — t;, it follows that

u(t;) = r(tgﬁz(é:)(;i)) < e = kler) 2, k). (2.24)

Making a similar analysis on (c1, t(,)41], we get

7 (ter)+1) Pa (X (Fr(ep)+1)) M

u(t = < . (2.25)
(ke 1) P (X (tey)41)) (tk(ep)+1 —€1)*
Then from (2.24), (2.25) and (A3), we have
k(di)  pa _ g . ) k(d1) )
%wﬁﬁ (t)u(t) < My [ @i (tge)+)0(c) + ) wi ™ (t)e(t)
i=k(cq)+1 i i=k(cq)+2 (2.26)
= Myt et
Hence, from (2.23) and (2.26) and applying Lemma (2.4), we obtain
tre t—t —-\"
[ wan (=T
C1 t_ tk(Cl)
k(dy) -1 t+T t— ¢t « Tig1 t—t—T @
w0 (Y [ (5 T
i:k(czl)ﬂ { b ) bi(t+ 7 —t;) b+t W= ti (2.27)

) E~ ) ' & FPUNT S|
+/ Wi (t dt—/ r(t) | ()| dt
t(dy) 1) (bk(dl)(t+7— () A () | (8)]

< MY [t

This contradicts (2.13).

Next we consider the case k(c¢1) = k(d1). By the condition (s7) we know there is no impulse moments in
[c1,d1]. Multipling both sides of .18) by w¥ ™ (t), with w as prescribed in the hypothesis of the theorem, and
then integrating it from c; to d;, we obtain

/:1 o (Dt < —/:1 rl/i‘w |u(t)(“+1)/“wi‘+1(t)dt—/cf1 (x(i(_t)f))“wl(t)dt. (2.28)

Using integration by parts on the left hand side and noting the condition wj (c1) = wi(d1) = 0, we obtain

/d [(vé+1)wi“wi(t)u(t) . |u<t)|<“+”/“wi‘“<f>}dt‘/:l (X(tT)YWl(”WO‘ )

20 x(t)
It follows that
d1 dl — «
L7 [ 0 et 0] 0] = et 1 o0 [ar = [* (25 winar >0, @30
Letting

a a/a+1 .
7)) eROlu)] and ¥ = (0] o)

1
A:1+04’X:<r1/“
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and applying the Lemma(2.3), we get

[ [roeior - (22) wi] = o @31)

Now to estimate x(xt(_t;) on [c1,dq].

If t € [c1,d1] then t — T € [c; — T,dp — 7] and then there is no impulsive moment in (t — 7,t). For any
t € (t —1,t), we have

x(t) —x(c; — 1) = (&) (t—c1+7T), €€ (c1 — T, 1)

By using the monotone properties of 7(t), ¢, () and (1) D, (x'(t)), we get

pux(t)) > ¢a(x/(§))(f—61+T)=:%%(xl(é))(f—ﬁJrT)“
OEN0)

et = O) (et )

Therefore,
/
x'(t) < 1 .
x(t) " (t—ca+71)

Integrating both sides of the above inequality from ¢ — T to ¢, we obtain

x(t—1) t—acp
=GR (t_cl +T>, t € [cr,dy]. (2.32)
From (2.31) and (2.32) we obtain
g t—ca \* PNLAE!

This again contradicts our assumption.

When x(t) is eventually negative, we can consider the interval [cy,dy] and reach a similar
contradiction.Thus the proof is complete. O

Following Kong [9] and Philos [16], we introduce a class of functions:
Let D = {(t,5) : to < s < t}, Hy, Hy € C}(D,R). A pair of functions (Hj, Hy) is said to belong to a function
class M, if Hy(t,t) = Hy(t,t) = 0, H1(t,s) > 0, Hy(t,s) > 0 for t > s and there exist h11,hy € Ljo.(D,R) such
that
JdH; (i’, S)
ot

() Hy (1 5), % — n(t,s) (L, 5).

We assume there exists cj, dj, (S]- ¢ {te}, k=12,...,(j=1,2)whichsatisfy T < ¢; < <dy < cp < < dp
for any T > t;. Noticing whether or not there are impulse moments of x(t) in [c;, 4;] and [0}, d;], we should
consider the following four cases,

Moreover in the discussion of impulse moments of x(t — T), it is necessary to consider the following two cases,

(Sl) tk(&j) +1T>6; (gz) tk(&j) +1t<6;, j=12

In the following theorem, we only consider the case of combination of (S;) with (S1). For the other cases,
similar conclusions can be given and hence their proof is omitted.
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For our convenience, we define

1 fr(ep)+1 bE—tge)—T ‘
I, = —— / H; — | dt
Y Hy (511 ]) { ¢ ( ) ( t— tk(c]-)

i=k(cj)+1 i
} B "

* ::5].) Hi(t,c)) <bk(5j)(tt+ti@)tk(5j))> at

_ (zx+11)+1 /f’ r(E)Hy(t,¢;) | (t,¢) | dt}
(2.34)

and
1 o) +T E— b)) ' ) SO
I Hz(dj,f5]){/5j H(dj, t) (bk( )(t+T—tk(5j))> dt + - Hy(dj, t) <f—tk(5])> dt

" tzd)H @ )<bk(d)(tf1t§d—)tk(d))> i

- (a+11)1x+1 /;]r() ’h2 d t ’Hl dt}
(2.35)

where Hi(t,¢;) = Hi(t,¢;)Q(t), Ha(dj,t) = Hy(dj, t)Q(t), (j = 1,2) and

Q(t) = ( ”OHm Tigl(t |’7°> :

Theorem 2.2. Assume that for any T > tg, there exist Cj, d]-, 5 ¢ {ty}, j=1,2suchthatc; < & <dy < ¢y < <
dy, and R.5) holds. If there exists (Hy, Hp) € H such that
M‘

e [Ha(d), )], j=1,2, (2.36)

O:
o [ ()] + gl ¥
177

HL]' + HZJ > HL
1 (5] /Cj )

then equation(L.1) is oscillatory.

Proof. To arrive at a contradiction, let us suppose that x(f) is a non-oscillatory solution of equation(L.T).

Without loss of generality, we assume that x(f) > 0 and x(t — T) > 0 for t > ty. In this case the interval of ¢

selected for the following discussion is [c1,d1]. Continuing as in Theorem(2.5), we can get (2.18). Multiplying
both sides of (2.18) by Hj (¢, ¢1) and integrating it from ¢; to d1, we have

0 B
1 Hy(t,c)u ()dt < — 1 TS o |u(t)|(1+a¢)/0¢ it
ri/a(t)

(o] ‘1

_ /fl Hi(t,cr) (W)adt -
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Since the impulsive moments ()1, fx(c;)42/ - - -+ t(s,) ate in [c1, 61, using the integration by parts on the
left-hand side of the above inequality, we obtain

5 ti(c t(e g
/1Hl(t,cl)u’(t)dt: </ “““+/“ AR )Hl(t,cl)du(t)

c1 1 tk(c])+1 tk(51)
k(51)
= Y [u(t) —u(t")]Hy(t,c1) +u(61)H(s1,¢1)
i=k(C1)+1
t(e t(e g
B /k( D+ +/k< v w(t)ha (8, c1 ) Hy (1 ¢1)dt (2.38)
c1 te(ep)+1 by
k(G1)  ga pa
= Y L H(t,c)u(ty) + Hi (81, c1)u(dr)
i—k(e)+1 i
t(e ti(e 6
_ /k(1)+1+/k(1)+2 oy 1 u(t)hl(t,cl)Hl(flcl)dt~
1 tr(e)+1 Fr(e1)

Substituting (2.38) into (2.37), we have

. F_ @ k() pa _ qa
/ Hl(t, Cl) (x( T)) dt < L m L Hl(fi, cl)u(ti) — H; (51, cl)u(él)
Jep X(t) i:k(c])+1 ui (2 39)

5 .
+/c Hi(t,c1) [|h1(t,cl)| [u(t)] — rl/“(t) |u(t>|(l+1x)/tx dt.

Letting

a/a+1

a/a+1
T Ju(h)] and Y = [zx(lx + 1)7(“1)”(0} |1 (t,c1)]",

1
A = 1 -, X =
t 3 [r(t)]1/a+1

and then by using Lemma(2.3), the above inequality becomes

o F— & k() pa _ qa
[ mee) (M) as ¥ S eut) - i@ eut)
o x(t) =)+l i (2.40)

1 o
——— HHy(t 1) [y (t,c1) [T dt.
Ay, O e) (e

_|_

To estimate x(xt(;)T ) , we have to divide the interval [c1, 1] into several sub intervals and by using Lemma(2.4),

we get estimation for the left hand side of the above inequality as follows,
n x(t—1) ) ‘
Hq(t, dt
/C1 1 ( Cl) ( X(t)
tk(cl)'*'l ~ t— tk(cl) — T “
> / Hy(t,e1) | ————— | dt
€ E= Tk(ey)

k(é1)-1 H+T t— ¢t « titq t—t —17\*%
e (Vs [ e (ST
+ L 1[/t 1( Cl)(bi(t+r—ti)> . 1(t,¢1) -

(2.41)
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From (2.40) and (2.41), we have
t t—t \"
k(c 1 _~ - -
/ T () [ — K ) gy
‘1 F=th(er)

k(61)—-1 ti+TH ; t—t “dt tiHH ; t
Uﬁ ilter) <b<t+—t>) o “'“)(

i:k(Cl)-l—l

& t— tk((Sl) : 1 o1 a+1
t, at — ——— t)Hq(t, hq(t, dt
+/tk(‘51) l( Cl) <bk(5l)(t+T_tk(5l)) (1+0‘)1+a /Cl 7’( ) 1( Cl) | i C1)|

k(G1)  pa g
< )y - o EHy(t;, c1)u(t;) — Hi(6, c1)u(01).
i:k(C])+1 i

Multiplying both sides of (2.18) by H;(d1, t) and using similar analysis as above, we can obtain

bes ) +T t—t : (o) +1 b=ty — T
/ Kt ) . k(1) di s [ iy, k(1)
k(é1) b E—= k(o)

o (t‘f'T_tk(cSl)) ) t+T

k(d1)—1 t+T p t—t; "‘d tiy1 . p t—t —
H P t / H | ———
. {/t 2 )(bz’(“rf—ti)) T i 2( )< t—t;

1

i=k(6)+1
ody

Jte(dy) bigay) (E+T =t a+1)

k(di)  pa _ g
< Z Z & : HZ(dlz ti)u(ti) + Hz(dl,él)u(le).
i—kon+1 %

Dividing (2.42) and (2.43) by Hy(d1,c1) and Hy(dj, 61) respectively, and adding them, we get

My 41 < — oua
1ty < ————=
Hi(0,01) i (i %

L1 Kdy) e g
HZ(dl/ (51) i=k

G+
On the other hand, similar to (2.26), we have

k() pa _ qa

A 1]
Yy, - 7 Hi(ti, cr)u(t;) < Mﬁ’f} [H1(.,c1)]

and

k(di)  pa _ g

a°
Y. Lt Ha(dy t)u(t) < 1\/11'“1’211 [Ha(d1, )]

i=k(e)+1 %

T Hi(ti, c1)u

ti

ti

(i)

)

—Hy(dq, t;)u(t;).

Substituting (2.45)and (2.46)) in (2.44), we obtain a contradiction to the condition (2.36).

When x(t) is eventually negative, we can consider [c, d>] and reach a similar contradiction.

Hence the proof is complete.

Remark 2.1. When « = 1, our results reduces to Theorem(2.2) and Theorem(2.4) of [11]].

Remark 2.2. When T = 0 and a = 1, Theorem(2.5) reduces to Theorem(2.1) of [13].

o
) 4

~ t—t “ 1 dq "
+ Hp(dy,t) < K " ))> dt — ( a1 /5 r(t)Ha(dy, t) [ha(dy, )| dt
1 e

415

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

Remark 2.3. When ay = by = 1forallk =1,2,3,..., 7 = 0and a = 1, our results reduces to Theorem(1) of [17] for

the case p(t) = 1.
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3 Examples

In this section we give two examples to illustrate our main results.

Example 3.1. Consider the impulsive differential equation

(fba(x’(t)))’ ~+ o sin td, (x(t — %)) +’)/1€_t/2(1>/31 (x(t B %))

+ 72 cos? tq)ﬁz (X(t — %)) =sin2t, t > ty, t # ti, (3.47)
x(b) = ax(te), X' (8) = b (t),
where t; = 2k + %T + (—1)i72 (g) , i=12andk=1,2,..

Here,

r(t) =1, p(t) = yosint, g1 (t) = y1e~/2,q2(t) = ypcos’t and e(t) = sin2t, t > ty > 0,
where g, v1 and v, are positive constants. If we choose 179 = 1/2, 1 = 19/2, f = 5/2 and a = 3, then
by Lemma (2.1), we can easily find #; = 1, = 1/4. For any T > 0, we can choose # large enough such that
T<c=2nw+{5 <dy =2nn+%gandcy =2nm+ 5 <dp =2nm+ 27”, then there are impulsive moments
th1 = 2nm+ % in [Cl, d1] and t,p = 2nm + 5% in [CZ/ dg]
Let

w](t) =sin12t € Qj(C]', d]), ] =1,2.

Then we have,
Q(t) = yosint + (1/2)7V2(1/4) V4 (1/4) "V 41/ 4 (e7/2) 491 4 (cos 1) /2| sin 2t |12,

and
Wi(t) = Q)@ (), j = 1,2.
In view of ):fi‘if();)lﬂ = 0ask(cj) +1 > k(dj) —1,j = 1,2, the left hand side of is the following

/tk(c1)+1 Wi (t) (t — tr(ey) — T> ‘ it
¢ F=tk(ey)

k(dl)fl ti-‘rT t _ t o ti+1 t _ t -7 o
i (Y [ (Y
i=k(c21)+1 |: t l( ) bl‘(t+T*ti) t+T 1( ) t—t;
d t—ti(ay) ' ! a1
[ ! dt—/ (r(#) | ()Y dt
Fi(ay) 2 (bk(do(HT ti(ay) g (1)
_ [ (t— (2(n— 1) +57/8) — 7'(/12)3dt (3.48)
N 2nm+rm/12 t—(2(71—1)7'[+57'[/8))
2n7+7/6 t— (2nm + m/8) )3 y [2rET/6 4
+/ Wi (¢ ar—12t | 12¢) dt
onm47r/8 1) (bn,l(t + /12— 2nt 4 71/8)) mm+m/12 (COS )
/8 t+317/24\° /6 t—m/8 \° L [0,
= Wi(t) | ————~= | dt+ Wi(t) | ———~ | dt—12 / 12t) dt.
n/12 1) (t+117'c/8)> Jn/s 18 (bn,l(t— 7'(/24)) Jr/12 (COS )
~ [0.0146470 +0.087871/44)/ 4] +b,3 [0.0000488970 +0.000281171/441/ 4} 6487,
On the other hand , the right hand side of (2.13)
by —af k(d1) pr — g
d k(c1)+1  “k(e1)+1 w41 i 4
whr et — et 4 Wt t‘)—.
e 1 (ke 1) (e 1 (r(ep)+1 = €1)%) i:k(czl:)JrQ i (af(ti —ti1)")
b,1—a 3
.4 n,1 n,1 (3.49)
= 12(2
sin“12(2n7 + 70/8) (aml (2nmt+ /8 — (2nm + n/lz)))

_ % 3 bn,l_an,l 3
S\ a1 '
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Thus for t € [c1,d4], if we choose ¢, 1 and 7, large enough so that

0.014647¢ + 0.087871/491/* + b~ (0 0000488970 + 0000281117441/ 4) — 6487

(24) (bnl_an1>3 (350)
2 —_ - - 7
7T anll

then (2.13) will be satisfied.
Similarly for t € [cy, d2], we can get the following condition

0153651 + 0.0264871/473/* + b, (0 0001004470 — 0.0001431/ 4¢3/ 4) — 32407

N 8 3 bus — ano 3 (3.51)
~ \37 Ao ’

Hence by Theorem (2.1) for suitable 7, 1 and 7, equation(3.47) becomes oscillatory.

Example 3.2. Consider the impulsive differential equation

(@al' (1)) + x0p()Pe (x(t = £3)) + a1 ()0, (x(t~ 12))
a2 (), (x(t— 3)) =elt), t 2 to, t # (352)
x(t5) = mex(ts), X' (4) = bex! ()
where xp, k1, and x; are positive constants, and
th1 =2nmw+ /8, typ =2nmw+31/8, t,3 =2nm+137/8 and t, 4 = 2nm +177/8.
In addition let, g1 () = ¢!/2, ga(t) = ¢!/4,

{ e*t, te[2nm+m/12,2nm+1/2),

p(t) =
sin?t, te [2n7 4 37/2,2nmw + 57/2]

and

{ —sin2t, te€ 2nm+m/12,2nm+ /2],
e(t) =

cos’t, t& [2nmw+3m/2,2nm+571/2).

For any ty > 0, we choose n large enough such that ty < 2nmw + 7w/12 and let [c1,d1] = [2nm + 7/12,2nm +
/2], [ca,da] = 2nm+37/2,2nm +57/2], 81 = 2nm + 1/6, 6 = 2n1w+ 57t/3. Then p(t), q(t) and e(t) satisfy
@2.5) on [c1,dq] and [cp, d3]. Let Hy(t,s) = Hy(t,s) = (t —s)3 then hy(t,8) = —hy(t,s) = 3/(t —s). Now choose
710 = 1/2, ﬁl :5/2, ﬁz = 1/2,&1’1(210( =1.

Then one can easily find 1 = 3/8, 11, = 1/8.

Q(t) = p() + (1/2)7/2(3/8)>/%(1/8) /a1 B(1)gy (1) e(1)['/2.
Also by a simple calculation, we get

1
Hi(2nm+ £, 2nm+ 5)

/8 t—(2(n—1)m+3m/8) — /12
{/mwu Hy (1, 2n7 + 7/12)Q(1) ( s )dt

2nm+7/6 t— (2nm+ 71/8)
+ /WM/S Hy(t,2nm + 71/12)Q(t) (bn,l(t + /12 — (2n7 + n/g))) dt (3.53)

I, =

1 2nm+7m/6 2
_ 7/ Hy(t,2nmwt+ 7/12) |hy (¢, 2nt + 71/12))| dt}
2% Jonm+m/12

~ Ko (0.0169 + 0‘; 042) +117/81,1/8 <0.01o1) + 0‘5 411) —4.2971
n,1 n,1
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and
1
H =
VT Hy(2nm + 2nm + F)
2nm4m/84+7/12 t— (2nm+ 71/8) >
Hy(2nt+ /2, dt
{./2nn+n/6 2 /2:t) <bn,l(t+7r/12— (2nmt+ 7/8))

2n+37/8 < t—@2nm+m1/8) — /12
H>(2 2,t dt
* /2nn+n/8+n/12 2207+ 7/2,1) ( t— (2nm + 7t/8) )

2nH/2 t — (2nm+37/8) )
+ Hy(2nm+ t/2,t dt
2nm+37/8 2( /21 (bn,z(H— /12 — (2nm +37/8))

(3.54)

1 2nm+7/2 2
/ Hy(2n7t + 11/2,t) o (207t + 71/2,1)] dt}.
2

a (2)2 nm+m/6
484 1987 134 .0031
~ Ko (2.0198 404843 0.198 ) + 1,3/8,1/8 (0.1597+ 0.1340 , 0.003 ) — 1.0742.
bn,l bn,Z bn,l bn,2

From (3.53) and (3.54), we get

0.5885  0.1987 0.1751  0.0031
1 + 11y ~ Ko (2.0367 + + ) + 11/ 85, 1/8 (0.1698 + + ) —5.3713.  (3.55)
bn,l bn,Z bn,l bn,2

which gives the left hand side of (2.36).
On the other hand, the right hand side of the inequality (2.36) is

My 5 1
Hy(61,¢1) alHi( e Hi(2nm+m/6,2nm + /12) 1(2n7 + 7/8,2nm + 71/12)
bn,l - al’l,l
- <’1n,1(2n7r+7r/8— (2nmt + 7/12)) (3.56)
~(0.9549) <bn1—”nl) ,
An1
and
M, d 1 \
Hy(dy,61) o (F2(1,.)] (2nmw + 71/2 — 2nm — 7r/6)3( nr+ 7/ nm —3m/8)
bn,Z — a2
. <an,2<2n7'[+37'[/8—2n7-[_ 7/6)) (3.57)
by —
~(0.0805) <nz%2> _
an,2

From (3.56) and (3.57), we have the right hand side of (2.36) as

M, 5 M, d
—— Y H{(,c1)] + ———Y ' [Hy(dy,.
Hl(éllcl) Cl[ 1( 1)] HZ(d]/é‘]) 51[ 2( 1 )] (358)
b,1— b,» — ’
~ (0.9549) (’““’”) + (0.0805) (”2””2) .
an,1 An2
Thus (2.36) is satisfied for j = 1 if
. 1987 1751 . 1
Ko (2.0367 4 05885 | 0.198 ) + 11/ 85, 1/8 (0.1698 4 01751 0003>

by by by by (3.59)

by1— b, —
> 5.3713 + (0.9549) (’1'1aa”'1> + (0.0805) (11,201%2) )
i’l,l 71,2

Similarly for [cp, d5], we have

0501 0.004 4302 0.1122
I1; 5 + I =k (0.0887+ 00501 0006> + 171/ 81,178 <2.6583 4 04802, 0 ) —25782.  (3.60)
bn,3 bn,4 bn,3 bn,4
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and
M, 5 M, d
—=—Y2[Hi(.,, )] + ———<Y?[Hy(d>,.
Hy (62, ¢2) alHi( ) Hy(d>, 62) 5 (H2(d2,.) (3.61)
~ (1.0742) <b”~°’_””~°’) + (0.0632) (b”‘*_“”‘*) .
an3 AnA
Thus (2.36) is satisfied for j = 2 if
" (0‘088” 0.0501 0.0046) POEVIRV: (2.6583+ 04302 , 0.1122)
bus bna bus bua (3.62)

b,3— b4 —
> 2.5782 + (1.0742) (”3“””3> + (0.0632) <n4a”n4) ‘
n,3 n4

Hence, by Theorem (2.2), equation(3.52) is oscillatory if (3.59) and (3.62) hold.

4 Conclusion

In this paper, we have established interval oscillation results for equation (1.1) using Riccati transformation,
some classical inequalities and Kong’s technique. These results extend some well-known results in [11},[13} [17].

5 Acknowledgments

The authors thank the anonymous referee for his/her helpful suggestions. This work was supported by
UGC-Special Assistance Programme(No.FE510/7/DRS-1/2016(SAP-1)) and R. Manjuram was supported by
University Grants Commission, New Delhi 110 002, India (Grant No. F1-17.1/2013-14/RGNF-2013-14-5C-
TAM-38915/(SA-II1/ Website)).

References

[1] R. P. Agarwal, D. R. Anderson and A.Zafer, Interval oscillation criteria for second-order forced delay
dynamic equations with mixed nonlinearities, Comput. Math. Appl. 59 (2010), 997-993.

[2] R.P. Agarwal and F. Karakoc, A survey on oscillation of impulsive delay differential equations, Comput.
Math. Appl. 60 (2010), 1648-1685.

[3] E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin (1961).

[4] M. A. El- Sayed, An oscillation criterion for a forced second order linear differential equation, proc. Amer.
Math. Soc. 118 (1993), 813-817.

[5] Z. Guo, X. Zhou and W-S Wang, Interval oscillation criteria for second-order mixed nonlinear impulsive
differential equations with delay, Abstr. Appl. Anal. 2012 (2012), Article ID 351709, 23 pages.

[6] Z. Guo , X. Zhou and W-S Wang, Interval oscillation criteria for super-half-linear impulsive differential
equations with delay, J. Appl. Math. 2012 (2012), Article ID 285051, 22 pages.

[7] G. H. Hardy, J. E. Littlewood and G.Polya, Inequalities, Cambridge University Press, Cambridge (1964).

[8] M. Huang and W. Feng, Forced oscillations for second order delay differential equations with impulses,
Comput. Math. Appl. 59 (2010), 18-30.

[9] Q. Kong, Interval criteria for oscillation of second order linear ordinary differential equations, |. Math.
Anal. Appl. 229 (1999), 258-270.

[10] V. Lakshmikantham, D. D. Bainov and P. S. Simieonov, Theory of Impulsive Differential Equations, World
Scientific Publishers, Singapore/New Jersey/ London (1989).



420 V. Muthulakshmi et al. / Interval criteria for oscillation of ...

[11] Q. Li and W-S. Cheung, Interval oscillation criteria for second-order forced delay differential equations
under impulse effects, Electron. ]. Differential Equations. 2013 (2013), No. 43, 1-11.

[12] X. Liu and Z. Xu, Oscillation of a forced super-linear second order differential equation with impulses,
Comput. Math. Appl. 53 (2007), 1740-1749.

[13] X. Liu and Z. Xu, Oscillation criteria for a forced mixed type Emdon-Fowler equation with impulses,
Appl. Math. Comput. 215 (2009), 283-291.

[14] V. D. Milman and A. D. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. |. 1
(1960), 233-237.

[15] A.Ozbekler and A. Zafer, Oscillation of solutions of second order mixed nonlinear differential equations
under impulsive perturbations, Comput. Math. Appl. 61 (2011), 933-940.

[16] Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. 53 (1989),
482-492.

[17] Y. G. Sun and ]J. S.W. Wong, Oscillation criteria for second order forced ordinary differential equations
with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007), 549-560.

[18] J. S. W. Wong, Oscillation criteria for a forced second order linear differential equation, |. Math. Anal.
Appl. 231 (1999), 235-240.

Received: November 24, 2015; Accepted: May 15, 2016

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/



	Introduction
	Main results
	Examples
	Conclusion
	Acknowledgments

