		-:
Malaya Journal of Matematik	$\mathcal{M J J M}$ an international journal of mathematical sciences with computer applications...	Matry

Erratum: Certain properties of a subclass of harmonic convex functions of complex order defined by Multiplier transformations-Malaya J. Mat. 4(3)2016, 362-372

K. Thilagavathi ${ }^{a}$, K. Vijaya ${ }^{a, *}$ and N. Magesh ${ }^{b}$
${ }^{\text {a,** Corresponding author Department of Mathematics,School of advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India. }}$
${ }^{b}$ P.G. and Research Department of Mathematics, Govt Arts College (Men), Krishnagiri- 635 001, Tamil Nadu, India.

In the paper entitled Certain properties of a subclass of harmonic convex functions of complex order defined by Multiplier transformations- Malaya J. Mat. 4(3)2016, 362-372, the presentation of definition of modified Multiplier transformation of harmonic function $f=h+\bar{g}$ as given below.

$$
\begin{gather*}
I_{\gamma}^{0} f(z)=D^{0} f(z)=h(z)+\overline{g(z)} \tag{1}\\
I_{\gamma}^{1} f(z)=\frac{\gamma D^{0} f(z)+D^{1} f(z)}{\gamma+1} \tag{2}\\
I_{\gamma}^{n} f(z)=I_{\gamma}^{1}\left(I_{\gamma}^{n-1} f(z)\right),\left(n \in N_{0}\right) \tag{3}\\
I_{\gamma}^{n} f(z)=z+\sum_{k=2}^{\infty}\left(\frac{k+\gamma}{1+\gamma}\right)^{n} a_{k} z^{k}+(-1)^{n} \sum_{k=1}^{\infty}\left(\frac{k-\gamma}{1+\gamma}\right)^{n} \overline{b_{k} z^{k}} . \tag{4}
\end{gather*}
$$

Also if f is given by (1) then,

$$
\begin{equation*}
I_{\gamma}^{n} f(z)=f \widetilde{*} \underbrace{\left(\phi_{1}(z)+\overline{\phi_{2}(z)}\right) \widetilde{\ldots} \ldots \widetilde{*}\left(\phi_{1}(z)+\overline{\phi_{2}(z)}\right)}_{n \text {-times }}=h * \underbrace{\left(\phi _ { 1 } (z) * \ldots \left(\phi_{1}(z)\right.\right.}_{n \text {-times }}+\bar{g}+\underbrace{\left(\phi_{2}(z) * \ldots\left(\phi_{2}(z)\right)\right)}_{n-\text { times }}, \tag{5}
\end{equation*}
$$

where $*$ denotes the usual Hadamard product or convolution of power series and

$$
\begin{equation*}
\phi_{1}(z)=\frac{(1+\gamma) z-\gamma z^{2}}{(1+\gamma)(1-z)^{2}}, \phi_{2}(z)=\frac{(\gamma-1) z-\gamma z^{2}}{(1+\gamma)(1-z)^{2}} \tag{6}
\end{equation*}
$$

is taken from the article by Yasar and S. Yalçin [1].

References

[1] E. Yasar and S. Yalçin, Certain properties of a subclass of harmonic functions, Appl. Math. Inf. Sci., 7(5)(2013), 1749-1753.

Received: July 10, 2016; Accepted: July 17, 2016

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]
[^0]: * Corresponding author.

 E-mail address: kvijaya@vit.ac.in (K. Vijaya), kthilagavathi@vit.ac.in (K.Thilagavathi) and nmagi2000@yahoo.co.in (N. Magesh).

