
Malaya Journal of Matematik 2(1)(2013) 43–53

Nonlocal impulsive fractional semilinear differential equations with

almost sectorial operators

M.C. Ranjinia and A. Angurajb,∗

a,bDepartment of Mathematics, P.S.G. College of Arts and Science, Coimbatore-641 014, Tamil Nadu, India.

Abstract

This paper is concerned with the existence and uniqueness of mild solutions for a class of impulsive fractional
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operators. The results are established by the application of the Banach fixed point theorem and Krasnoselskii’s fixed

point theorem.

Keywords: Fractional differential equations, impulses, nonlocal condition, almost sectorial operator, semigroup of growth γ, mild

solution

2010 MSC: 34A37, 34K37, 47A60. c©2012 MJM. All rights reserved.

1 Introduction

Sectorial operators, that is, linear operators A defined in Banach spaces, whose spectrum lies in a sector

Sw =
{
λ ∈ C/{0} | |argλ| ≤ w

}
∪ {0} for some 0 ≤ w ≤ π

2

and whose resolvent satisfies an estimate

||(λ−A)−1|| ≤ C|λ|−1, ∀ λ ∈ C\Sw, (1.1)

have been studied extensively during the last 40 years, both in abstract settings and for their applications
to partial differential equations. Many important elliptic differential operators belong to the class of sectorial
operators, especially when they are considered in the Lebesgue spaces or in spaces of continuous functions (see
[1] and [[2], chapter 3]). However, if we look at spaces of more regular functions such as the spaces of Holder
continuous functions, we find that these elliptic operators do no longer satisfy the estimate (1.1) and therefore
are not sectorial as was pointed out by Von Wahl (see [[3], Ex.3.1.33], see [4]).

Neverthless, for these operators estimates such as

||(λ−A)−1|| ≤ C

|λ|1−γ
, λ ∈

∑
w,v

=
{
λ ∈ C : |arg(λ− w)| < v

}
(1.2)

where γ ∈ (0, 1), w ∈ R and v ∈ (π
2 , π), can be obtained, (see[4]) which allows to define an associated ”analytic

semigroup” by means of the Dunford Integral

T (t) =
1

2πi

∫
Γθ

eλt(λ−A)−1dλ, t > 0 (1.3)

where Γθ =
{
R+eiθ

}
∪

{
R+e−iθ

}
.
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In the literature, a linear operator A : D(A) ⊂ X → X which satisfy the condition (1.2) is called almost
sectorial and the operator family

{
T (t), T (0) = I, t ≥ 0

}
is said the ”semigroup of growth γ” generated by A.

The operator family T (t)t≥0 has properties similar at those of analytic semigroup which allow to study some
classes of partial differential equations via the usual methods of semigroup theory. Concerning almost sectorial
operators, semigroups of growth γ and applications to partial differential equations, we refer the reader to
[4, 5, 6, 7, 8] and the references there in.

Fractional differential equations arise in many engineering and scientific disciplines as the mathematical
modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a com-
plex medium, polymer rheology, etc., involves derivatives of fractional order. Fractional differential equations
also serve as an excellent tool for the description of hereditary properties of various materials and processes.
Though the concepts and the calculus of fractional derivative are few centuries old, it is realized only recently
that these derivatives form an excellent framework for modeling real world problems.

In the consequence, fractional differential equations have been of great interest. For details, see the mono-
graphs of Kilbas et al.[9], Lakshimkantham et al.[10], Miller and Ross [11], Podlubny [12] and the papers in
[13, 14, 15, 16] and the references therein.

On the otherhand, the theory of impulsive differential equations has undergone rapid development over
the years and played a very imortant role in modern applied mathematical models of real processes arising in
phenomena studied in physics, population dynamics, chemical technology, biotechnology and economics. See,
the monographs of Bainov and Simeonov [17], Benchohra et al.[18], Lakshmikantham et al.[19], Samoilenko and
Perestyuk[20], A. Anguraj et al.[21, 22] and the references therein. However impulsive fractional differential
equations have been studied by the authors, see for instance [23, 24, 25].

We have also seen articles dealing with nonlocal conditions. That is a classical initial condition x(0) = x0

is extended to the following nonlocal condition x(0)+ g(x(.)) = x0, where x(.) is a solution and g is a mapping
defined on some function space into X. Such nonlocal conditions were first used by K. Deng, in [26]. In his
paper, Deng indicated that the diffusion phenomenon of a small amount of gas in a transparent tube can give a
better result than using the usual local condition. For the importance of nonlocal conditions in different fields,
we refer the reader to [27, 28, 29, 30] and the references contained therein.

Very recently, Rong-Nian Wang et al.[31], studied the classical and mild solutions of abstract fractional
cauchy problems using almost sectorial operators and in [32], A.N. Carvalho et al. established the existence
of mild solutions for cauchy problem for non-autonomous evolution equation, in which the operator in the
linear part depends on time t and for each t, it is almost sectorial.To the best of our knowledge, much less
is known about the nonlocal impulsive fractional differential equations with almost sectorial operators. Using
the concepts of the above mentioned papers, we proved the existence and uniqueness of mild solutions of the
nonlocal impulsive fractional differential equations with almost sectorial operators.

Here, we consider the semilinear impulsive fractional differential equations with nonlocal conditions in the
following form. 

cDαx(t) = Ax(t) + f(t, x(t)), t ∈ I = [0, T ], t 6= tk

∆x|t=tk
= Ik(x(t−k )), t = tk, k = 1, 2, ...,m.

x(0) + g(x) = x0

(1.4)

where cDα is the standard Caputo’s fractional derivative of order α, 0 < α < 1 and A : D(A) ⊂ X → X is an
almost sectorial operator on a Banach space X. Here, 0 < t1 < t2 < ... < tm = T , Ik ∈ C(X, X), k = 1, 2, ...,m.
Let ∆x|t=tk

= x(t+k )− x(t−k ), x(t+k ) and x(t−k ) represent the right and left limits of x(t) at t = tk respectively.
The nonlocal condition

g(x) =
n∑

i=1

cix(si)

where ci, i = 1,2,...n, are given constants and 0 < s1 < s2... < sn ≤ T .

2 Preliminaries

In this section, we recall some notations, properties of T (t) and the definition of a mild solution of (1.4) by
investigating the Classical solutions of the system (1.4).
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Proposition 2.1. ([5, 6]). Let A be the almost sectorial operator satisfying the conditions (1.2) and (1.3).
Then the following properties are satisfied.

(i) The operator A is closed, T(t+s) = T(t)T(s) and AT(t)x = T(t)Ax, ∀ t, s ∈ [0,∞) and each x ∈ D(A).

(ii) d
dtT (t) = AT (t).

(iii) There exists a constant C0 > 0 such that ||AnT (t)|| ≤ Cnt−(n+γ) (t > 0).

Now, we state the necessary notions and facts on fractional calculus.

Definition 2.1. ([9]) The Riemann-Liouville fractional integral operator of order q > o with the lower limit
t0 for a function f is defined as

Iqf(t) =
1

Γ(q)

∫ t

t0

(t− s)q−1f(s)ds, t > t0

provided the right-hand side is pointwise defined on [t0,∞), where Γ is the gamma function.

Definition 2.2. ([9]) The Riemann-Liouville (R-L) derivative of order q > 0 with the lower limit t0 for a
function f : [t0,∞) → R can be written as

Dqf(t) =
1

Γ(n− q)
dn

dtn

∫ t

t0

(t− s)(n−q−1)f(s)ds, t > t0, n− 1 < q < n.

Definition 2.3. ([9]). The Caputo fractional derivative of order q > 0 with the lower limit t0 for a function
f : [t0,∞) → R can be written as

cDqf(t) =
1

Γ(n− q)

∫ t

t0

(t− s)(n−q−1)f (n)(s)ds = I(n−q)f (n)(t), t > t0, n− 1 < q < n.

Denote Eα,β the generalized Mittag-Leffler function defined by

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
=

1
2πi

∫
℘

λα−βeλ

λα − z
dλ, α, β > 0, z ∈ C

where ℘ is a contour which starts and ends at −∞.
Throughout this section we let A be an almost sectorial operator with semigroup of growth γ, where

0 < γ < 1. In the sequel, we will define two families of operators based on the generalized Mittag-Leffler-type
functions and the resolvent operators associated with A. They will be two families of linear and bounded op-
erators.

Next, we consider the definition of mild solution of (1.4).

Consider, the following cauchy problem,{
cDαx(t) = Ax(t) + f(t, x(t)), 0 < α < 1,

x(0) + g(x) = x0 ∈ X
(2.5)

where f is an abstract function defined on [0, ∞) and with values in X, A is almost sectorial operator.
Using Mittag-Leffler function, the Classical solution of the system (2.5) is given by,

x(t) = [x0 − g(x)]Eα,1(Atα) +
∫ t

0

(t− s)α−1Eα,α(A(t− s)α)f(s, x(s))ds. (2.6)

Denote the operators Pα(t) = tα−1Eα,α(Atα) and Sα(t) = Eα,1(Atα). Then x(t) can be expressed as

x(t) = Sα(t)[x0 − g(x)] +
∫ t

0

Pα(t− s)f(s, x(s))ds. (2.7)
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where Sα(t) and Pα(t) can be expressed as

Sα(t) =
1

2πi

∫
Γθ

eλtλα−1(λα −A)−1dλ.

Pα(t) =
1

2πi

∫
Γθ

eλt(λα −A)−1dλ.

where Γθ =
{
R+eiθ

}
∪

{
R+e−iθ

}
, is oriented counter-clockwise.

Lemma 2.1. For each fixed t > 0, Sα(t) and Pα(t) are linear and bounded operators on X. Moreover, there
exist constants Cs = C(α, γ) > 0, Cp = C(α, γ) > 0 such that for all t > 0,

||Sα(t)|| ≤ Cst
−αγ , ||Pα(t)|| = Cpt

α(1−γ)−1, where 0 < γ < 1.

Proof. Since, t > 0, 0 < γ < 1, there exists a constant C > 0 such that

||(λ−A)−1|| ≤ C

|λ|1−γ
, λ ∈

∑
w,v

From [32], observe that 1
2πi

∫
Γθ

eλt(λ−A)−1dλ converge in the uniform operator topology for all t > 0 and by
(1.3), we have that

||Sα(t)|| ≤
∥∥∥ 1

2πi

∫
Γθ

eλtλα−1(λα −A)−1dλ
∥∥∥

≤ 1
2π

∫
Γθ

e−cosθ|λ|t|λ|α−1||(λα −A)−1||d|λ|

≤ 1
2π

∫
Γθ

e−cosθ|λ|t|λ|α−1 C

|λ|α(1−γ)
d|λ|

≤ C t−αγ

2π

∫
Γθ

e−cosθ|µ||µ|αγ−1dµ

≤ Cs t−αγ

Also, we have

||Pα(t)|| ≤
∥∥∥ 1

2πi

∫
Γθ

eλt(λα −A)−1dλ
∥∥∥

≤ 1
2π

∫
Γθ

e−cosθ|λ|t||(λα −A)−1||d|λ|

≤ 1
2π

∫
Γθ

e−cosθ|λ|t C

|λ|α(1−γ)
d|λ|

≤ C tα(1−γ)−1

2π

∫
Γθ

e−cosθ|µ||µ|−α(1−γ)dµ

≤ Cs tα(1−γ)−1

Lemma 2.2. ([31]) For t > 0, Sα(t) and Pα(t) are continuous in the uniform operator topology. Moreover,
for every r > 0, the continuity is uniform on [r,∞).

Theorem 2.1. If f satisfies the uniform Holder condition with exponent β ∈ (0, 1] and A is an almost sectorial
operator, then any solution of the Cauchy problem (1.4) is a fixed point of the operator given below

Γx(t) =



Sα(t)[x0 − g(x)] +
∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
+

∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].
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In fact, from(2.7) it is easy to see that Theorem [2.1] holds, so the proof is omitted.
Now let us consider the set of functions PC(I, X) =

{
x : I → X : x ∈ C((tk, tk+1], X), k = 1, 2, ...,m and

there exist x(t+k ) and x(t−k ), k = 1, 2, ...m with x(t−k ) = x(tk)
}

endowed with the norm ||x||PC = supt∈I ||x(t)||.
From Theorem[2.1], we can define the mild solution of the system (1.4) as follows:

Definition 2.4. A function x : I → X is called a mild solution of a system (1.4), if x ∈ PC(I, X) and satisfies
the following equation,

x(t) =



Sα(t)[x0 − g(x)] +
∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
+

∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].

Remark 2.1. It is easy to verify that a classical solution of (1.4) is a mild solution of the same system.

3 Existence Results

In this section, we give the main results on the existence of mild solutions of the system (1.4).
To establish our results, we introduce the following hypotheses.

(H1) f : I × X → X is continuous and there exists a constant M > 0 such that

||f(t, x)− f(t, y)|| ≤ M ||x− y||, ∀ t ∈ I, x, y ∈ X
||f(t, 0)|| ≤ k1,

where k1 is a constant.

(H2) g : PC(I, X) → X is continuous and there exists a constant b such that

||g(x)− g(y)|| ≤ b||x− y||PC , ∀ t ∈ I, x, y ∈ PC(I, X)

||g(0)|| ≤ k2,

where k2 is a constant.

(H3) for each k = 1, 2, ...,m, there exists ρk > 0 such that

||Ik(x)− Ik(y)|| ≤ ρk||x− y||, ∀x, y ∈ X
||Ik(0)|| ≤ k3,

where k3 is a constant.

(H4) For each x0 ∈ X, there exists a constant r > 0 such that
r ≥ max

1≤i≤m

{
CsT

−αγ
[
||x0||+ r(ρi + b + 1) + k2 + k3)

]
+ Cp(Mr + k1)T α(1−γ)

α(1−γ)

}
Theorem 3.2. Under the assumptions (H1)− (H3), the system (1.4) has a unique mild solution x ∈ PC(I, X)
if

N = max
1≤i≤m

{
CsT

−αγ
[
b + 1 + ρi

]
+ CpM

Tα(1−γ)

α(1− γ)

}
< 1 (3.8)

Proof. Define Γ : PC(I, X) → PC(I, X) by
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Γx(t) =



Sα(t)[x0 − g(x)] +
∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
+

∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].

Clearly, the fixed points of the operator Γ are the solutions of the problem (1.4). We shall use the Banach
contracton principle to prove that Γ has a fixed point.
We shall show that Γ is a contraction.
Let x, y ∈ PC(I, X). Then for each t ∈ [0, t1] and by the lemma (2.1), we have

||Γx(t)− Γy(t)|| ≤ ||Sα(t)|| ||g(x)− g(y)||+
∫ t

0

||Pα(t− s)|| ||f(s, x(s))− f(s, y(s))||ds

≤ Cst
−αγ b ||x− y||+ Cp

∫ t

0

(t− s)α(1−γ)−1 M ||x(s)− y(s)||ds

≤
[
CsT

−αγ b + M Cp
Tα(1−γ)

α(1− γ)

]
||x− y||PC

For t ∈ (t1, t2],

||Γx(t)− Γy(t)|| ≤ ||Sα(t− t1)||
[
||x(t−1 )− y(t−1 )||+ ||I1(x(t−1 ))− I1(y(t−1 ))||

]
+

∫ t

t1

||Pα(t− s)|| ||f(s, x(s))− f(s, y(s)||ds

≤ Cs(t− t1)−αγ
[
||x(t−1 )− y(t−1 )||+ ρ1||x(t−1 )− y(t−1 )||

]
+Cp

∫ t

t1

(t− s)α(1−γ)−1 M ||x(s)− y(s)||ds

≤
[
Cs T−αγ(ρ1 + 1) + M Cp

Tα(1−γ)

α(1− γ)

]
||x− y||PC

Similarly, for all t ∈ (ti + ti+1],

||Γx(t)− Γy(t)|| ≤
[
Cs T−αγ(ρi + 1) + M Cp

Tα(1−γ)

α(1− γ)

]
||x− y||PC

and for t ∈ (tm, T ],

||Γx(t)− Γy(t)|| ≤
[
Cs T−αγ(ρm + 1) + M Cp

Tα(1−γ)

α(1− γ)

]
||x− y||PC

Thus, for all t ∈ [0, T ],

||Γx(t)− Γy(t)|| ≤ max
1≤i≤m

{
Cs T−αγ(b + ρi + 1) + M Cp

Tα(1−γ)

α(1− γ)

}
||x− y||PC

≤ N ||x− y||PC

Thus, by the equation (3.8), Γ is a contraction mapping. As a consequence of Banach fixed point theorem,
we deduce that Γ has a unique fixed point x0 ∈ PC(I, X) which is a solution of the problem (1.4).

Our next result is based on Krasnoselskii’s fixed point theorem.

Lemma 3.3. (Krasnoselskii’s Fixed point theorem)([14]). Let X be a Banach space, let E be a bounded closed
convex subset of X and let Γ1, Γ2 be maps of E into X such that Γ1x + Γ2y ∈ E for every pair x, y ∈ E. If Γ1

is a contraction and Γ2 is completely continuous, then the equation Γ1x + Γ2x = x has a solution on E.
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Theorem 3.3. Assume that the hypothesis (H1) − (H4) are satisfied, then the system has atleast one mild
solution on I.

Proof. Define operator Γ : PC(I, X) → PC(I, X), as in Theorem [3.2] by

Γx(t) =



Sα(t)[x0 − g(x)] +
∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
+

∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
+

∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].

Define Br as Br =
{

x ∈ PC(I, X) : ||x||PC ≤ r
}

. Then, Br is a closed, bounded and convex subset of
PC(I, X). On Br, we define the operators Γ1 and Γ2 as follows.

Γ1x(t) =



Sα(t)[x0 − g(x)], t ∈ [0, t1];

Sα(t− t1)
(
x(t−1 ) + I1(x(t−1 ))

)
, t ∈ (t1, t2];

.

.

.

Sα(t− tm)
(
x(t−m) + Im(x(t−m))

)
, t ∈ (tm, T ].

and

Γ2x(t) =



∫ t

0
Pα(t− s) f(s, x(s))ds, t ∈ [0, t1];∫ t

t1
Pα(t− s) f(s, x(s))ds, t ∈ (t1, t2];

.

.

.∫ t

tm
Pα(t− s) f(s, x(s))ds, t ∈ (tm, T ].

Now, we show that Γ1 + Γ2 has a fixed point in Br. The proof is divided into three steps.
Step 1: Γ1x + Γ2y ∈ Br, for every pair x, y ∈ Br.
Consider for any x, y ∈ Br and for t ∈ [0, t1], we have

||Γ1x(t) + Γ2y(t)|| ≤ ||Sα(t)||
[
||x0||+ ||g(x)− g(0)||+ ||g(0)||

]
+

∫ t

0

||Pα(t− s)|| [||f(s, y(s))− f(s, 0)||+ ||f(s, 0)||]ds

≤ Cs t−αγ
[
||x0||+ b||x||+ k2

]
+ Cp

∫ t

0

(t− s)α(1−γ)−1 (M ||y||+ k1)ds

≤ Cs T−αγ
[
||x0||+ br + k2

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)

For t ∈ (t1, t2], we have

||Γ1x(t) + Γ2y(t)|| ≤ ||Sα(t− t1)||
[
||x(t−1 )||+ ||I1(x(t−1 ))||

]
+

∫ t

t1

||Pα(t− s)|| ||f(s, y(s))||ds

≤ Cs (t− t1)−αγ
[
r + (ρ1r + k3)

]
+ Cp

∫ t

t1

(t− s)α(1−γ)−1 (Mr + k1)ds

≤ Cs T−αγ
[
r(1 + ρ1) + k3

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)
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Similarly, we have

||Γ1x(t) + Γ2y(t)|| ≤ Cs T−αγ
[
r(1 + ρi) + k3

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)
, ∀ t ∈ (ti, ti+1]

and

||Γ1x(t) + Γ2y(t)|| ≤ Cs T−αγ
[
r(1 + ρm) + k3

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)
, ∀ t ∈ (tm, T ]

Thus, for all t ∈ [0, T ] and by (H4), we have

||Γ1x(t) + Γ2y(t)|| ≤ max
1≤i≤m

{
Cs T−αγ

[
||x0||+ r(1 + ρi + b) + k2 + k3

]
+ Cp (Mr + k1)

Tα(1−γ)

α(1− γ)

}
≤ r

which means that Γ1x + Γ2y ∈ Br for any x, y ∈ Br.

Step 2: Γ1 is contraction on Br.
Let x, y ∈ Br. By (H2) and (H3) , for each t ∈ [0, t1],

||Γ1x(t)− Γ1y(t)|| ≤ ||Sα(t)|| ||g(x)− g(y)||
≤ Cst

−αγ b ||x− y||
≤ b CsT

−αγ ||x− y||

For t ∈ (t1, t2],

||Γ1x(t)− Γ1y(t)|| ≤ ||Sα(t− t1)||
[
||x(t−1 )− y(t−1 )||+ ||I1(x(t−1 ))− I1(y(t−1 ))||

]
≤ CsT

−αγ [1 + ρ1]||x− y||

Similarly, for all t ∈ (ti, ti+1],

||Γ1x(t)− Γ1y(t)|| ≤ Cs T−αγ(ρi + 1) ||x− y||

and therefore for all t ∈ (tm, T ],

||Γ1x(t)− Γ1y(t)|| ≤ Cs T−αγ(ρm + 1) ||x− y||

Thus, for all t ∈ [0, T ],

||Γ1x(t)− Γ1y(t)|| ≤ max
1≤i≤m

{
Cs T−αγ(b + ρi + 1)

}
||x− y||

≤ N ||x− y||

Thus, from equation (3.8), Γ1 is contraction on Br.
Step 3: Now, we show that Γ2 is a completely continuous operator.
For that consider, for any t ∈ [0, t1], we have

||Γ2x(t)|| ≤
∫ t

0

||Pα(t− s)|| ||f(s, x(s))||ds

≤ Cp

∫ t

0

(t− s)α(1−γ)−1 (M ||x||+ k1)ds

≤ Cp(Mr + k1)
Tα(1−γ)

α(1− γ)

Similarly, for all t ∈ (ti, ti+1],

||Γ2x(t)|| ≤ Cp(Mr + k1)
Tα(1−γ)

α(1− γ)
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Thus, from the above inequalities,
{

Γ2x : x ∈ Br

}
is uniformly bounded for every t ∈ [0, T ].

Next, we will prove that
{

Γ2x : x ∈ Br

}
is equicontinuous.

Let, s1, s2 ∈ [0, t1], with s1 < s2, then ∀s1, s2, we have

||(Γ2x)(s2)− (Γ2x)(s1)|| ≤
∫ s2

0

||Pα(s2 − s)|| ||f(s, x(s))||ds−
∫ s1

0

||Pα(s1 − s)|| ||f(s, x(s))||ds

≤ Cp

[ ∫ s1

0

[
(s2 − s)α(1−γ)−1 − (s1 − s)α(1−γ)−1

]
||f(s, x(s))||ds

+
∫ s2

s1

(s2 − s)α(1−γ)−1 ||f(s, x(s))||ds
]

≤ Cp (Mr + k1)
α(1− γ)

[
s

α(1−γ)
2 − s

α(1−γ)
1

]
Similarly, ∀s1, s2 ∈ (ti, ti+1], with s1 < s2, i = 1, 2, ...,m, we have

||(Γ2x)(s2)− (Γ2x)(s1)|| ≤ Cp (Mr + k1)
α(1− γ)

[
(s2 − ti)α(1−γ) − (s1 − ti)α(1−γ)

]
Thus, from the above inequalities, we have lims2→s1 ||(Γ2x)(s2)− (Γ2x)(s1)|| = 0. So, Γ2 is equicontinuous.

Moreover, it is clear that from the lemma (2.2), Γ2 is continuous. So, Γ2 is a completely continuous operator.
Therefore, Krasnoselskii’s fixed point theorem shows that Γ = Γ1 + Γ2 has a fixed point on Br and hence

the system (1.4) has a solution on I.

4 Example

Let Â = (−i∆ + σ)
1
2 , D(Â) = W 1,3(R2) (a sobolev space)

be as in example 6.3([31]), in which the authors demonstrate that Â is an almost sectorial operator for some
0 < w < π

2 and γ = 1
6 . We denote the semigroup associated with Â by T(t) and ||T (t)|| ≤ C0t

− 1
6 , where C0 is

a constant.
Let X = L3(R2), we consider the following problem.


cD

1
2 x(t) = Âx(t) + cos t

(t+6)2
|x(t)|

1+|x(t)| , t ∈ I = [0, 1], t 6= 1
2

∆x( 1
2 ) = |x( 1

2
−)|

15+|x( 1
2
−)|

, t = 1
2

x(0) + 1
2x( 1

5 ) = x(1)

where

f(t, x(t)) =
cos t

(t + 6)2
|x(t)|

1 + |x(t)|
,

I1(x) =
|x|

15 + |x|
,

g(x) =
1
2
x(

1
5
).

By direct computations, we see that

‖f(t, x(t))− f(t, y(t))‖ =
∣∣∣∣ cos t

(t + 6)2

∣∣∣∣ ∥∥∥∥ |x(t)|
1 + |x(t)|

− |y(t)|
1 + |y(t)|

∥∥∥∥ ≤ 1
36
‖x(t)− y(t)‖

‖I1(x)− I1(y)‖ ≤ 1
15
‖x− y‖

‖g(x)− g(y)‖ ≤ 1
2
‖x− y‖

So,it is clear that the functions f, g and Ik satisfy the assumptions (H1), (H2) and (H3) with M = 1
36 b =

1
2 , and ρ1 = 1

15 . Then, choosing for instance α = 1
2 and T = 1, we have from the equation (3.8),

N = Cs

[7
4

+
1
15

]
+ Cp

1
36

12
5

< 1
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for the suitable values of the constants Cs and Cp. Moreover the assumption (H4) is also satisfied. Thus, all
the assumptions of Theorem [3.2] and Theorem [3.3] are satisfied and hence by the conclusion of the Theorems
[3.2] and [3.3], the nonlocal impulsive fractional problem (1.4) has a unique solution on [0,1].
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