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Abstract

The purpose of this work is to prove results concerning the duality theory and to give detailed study on
the augmented Lagrangian algorithms and ε-proximal penalty method which are considered, today, as the
most strong algorithms to solve nonlinear differentiable and nondifferentiable problems of optimization. We
give an algorithm of primal-dual type, where we show that sequences

{
λk
}

k
and

{
xk
}

k
generated by this

algorithm converge globally, with at least the Slater condition, to λ and x. Numerical simulations are given.
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1 Introduction

The augmented Lagrangian methods present a large inconvenience of point of view stability. If we have
a sequence

{
λk
}

k
who converges to an optimum λ of the dual function, the successive solutions xk obtained

converge to an optimal solution only if L(x, λ) has an unique minimum at x in a neighborhood of λ (it will be
the case for example if L(x, λ) is strictly convex at x).

So the methods of exterior penalties present the inconvenience that, to obtain a feasible point, we make
tighten the coefficient of penalty towards the infinity, then the penalized function becomes badly conditioned
for which the methods of gradients have a slow convergence

In the case of the equality constraints, Hestenes (1969) and Powell (1969) suggested combining previous
both approaches (penalties and dualities), and suggested solving a sequence of unconstrained problems of
the following shape:

Lr(x, λ) = f (x) +
m

∑
i=1

λigi(x) + r
m

∑
i=1

(gi(x))2 (1.1)

A generalization of Hestenes and Powell function to inequality constraints will be after given.
So, the general principle of these methods consists in determining a saddle point of Lr instead of solving

(P). The first component of the saddle point is, also, an optimal solution of the problem (P) .
The augmented Lagrangian method can be considered as an improvement of the penalty methods, because

it avoids having to use coefficients of penalties too big.
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Besides, the fact of adding the quadratic term r(g(x))2 in the classical Lagrangian will improve the
properties of convergence of Lagrangian algorithms because the augmented Lagrangian is strictly convex at
x. It is the case where we find an unique primal solution in the neighborhood of the dual solution.

We can say that the augmented Lagrangian has a much more fundamental interest. Today, it is widely
recognized that the algorithms of optimization based on the use of the augmented Lagrangian, are a part of
the most effective general methods to solve differentiable and nondifferentiable mathematical programming
problems.

The purpose of this work is to prove results concerning the duality theory and to give detailed study
on the augmented Lagrangian algorithms and ε-proximal penalty methods which are considered, today, as
the most strong algorithms to solve nonlinear differentiable and nondifferentiable problems of optimization.
Numerical experiments are given.

2 Main Results

2.1 Results on the Augmented Lagrangian

Consider the following mathematical programming problem :

(P)
{

α := In f f (x)
subject to x ∈ C

(2.2)

where

• f is a convex function with finite values and non necessarly differentiable.

• C := {x ∈ Rn : gi(x) ≤ 0, i = 1, ..., m} , gi (i = 1, ..., m) are C1-convex functions.

Suppose that
lim

(‖x‖−→+∞)
f (x) = +∞ (i.e., f is inf-compact) (2.3)

and there exists x0 such that
gi(x0) < 0, (i = 1, ..., m) (2.4)

Definition 2.1. The augmented Lagrangian associated to the problem (P) is defined as follows

Lr(x, λ) := f (x) +
1
2r

m

∑
i=1

(ψ+(λi + rgi(x))2 − λ2
i ) for all x ∈ Rn, λ ∈ Rm

+, (2.5)

where ψ+(t) = Max(0, t). Or still

Lr(x, λ) := f (x) +
m

∑
i=1


r
2 g2

i (x) + λigi(x) if gi(x) > − λi
r

− 1
2r λ2

i if gi(x) ≤ − λi
r .

(2.6)

Remark 2.1. Put
Lr(x, λ) = f (x) + ϕ(g(x), λ, r),

where

ϕ(u, λ, r) =
1
2r

m

∑
i=1

(ψ+(λi + rui)
2 − λ2

i ), u ∈ Rm, λ ∈ Rm
+, r > 0.

We notice well that

• if u ≤ 0, then ϕ(u, λ, r) ≤ 0;

• if u = 0, then ϕ(u, λ, r) = 0.

Corollary 2.1. We have lim
(r−→0)

Lr(x, λ) = L(x, λ).
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We have the following lemma :

Lemma 2.1. We have
In f

x∈Rn
Sup

(λ, r)∈T
Lr(x, λ) = α,

where T = Rm
+ ×R+.

Proof. At first, we notice that for all u and c ≥ 0 there is a couple (λ, r) ∈ T such that ϕ(u, λ, r) > c.
Indeed, we distinguish two cases :

• Ca se 1: If u � 0, there exists at least one component ui > 0. We note by

I :=
{

i ∈ {1, ..., m} : ui > −
λi
r

}
.

I 6= ∅. Then

ϕ(u, λ, r) = ∑
i∈I

(
r
2

u2
i + λiui)−∑

i/∈I

λ2
i

2r
.

If I = {1, ..., m} then ϕ(u, λ, r) −→ +∞, as (λ, r) −→ +∞.

Else, we have ϕ(u, 0, r) −→ +∞, as (r −→ +∞).

Then, in both cases there existe (λ, r) ∈ T such that

ϕ(u, λ, r) > c. (2.7)

• Case 2: If ui ≤ 0, for all i ∈ {1, ..., m} , one has

1
2r

(ψ+(λi + rui)
2 − λ2

i ) =


r
2 u2

i + λiui if ui > − λi
r

− 1
2r λ2

i if ui ≤ − λi
r

 ≤ 0

then
Sup

(λ, r)∈T
ϕ(u, λ, r) = 0 (2.8)

By means of formulae (2.6) and (2.7), one has

Sup
(λ, r)∈T

Lr(x, λ) =


f (x) if x ∈ C

+∞ else;

thus
In f

x∈Rn
Sup

(λ, r)∈T
Lr(x, λ) = In f

x∈C
f (x) = α.

By definition, we put
dr(λ) := In f

x∈Rn
Lr(x, λ), for all λ ∈ Rm

+.

We have the following Lemma:

Lemma 2.2. For all r > 0, we have

dr(λ) := Sup
z≥0

{
d(z)− 1

2r
‖z− λ‖2

}
for all λ ∈ Rm

+. (2.9)
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Proof. We have
dr(λ) := Sup

z≥0

{
d(z)− 1

2r ‖z− λ‖2
}

= Sup
z≥0

{
In f

x∈Rn

{
f (x) +

m
∑

i=1
zigi(x)

}
− 1

2r ‖z− λ‖2

}

= Sup
z≥0

{
In f

x∈Rn

{
f (x) +

m
∑

i=1
zigi(x)− 1

2r ‖z− λ‖2
}}

.

The function

(x, z) −→ δ(x, z) = f (x) +
m

∑
i=1

zigi(x)− 1
2r
‖z− λ‖2

admits a saddle point because it verifies the following conditions :
. δ(x, z) is convex for x an concave for z;
. δ(x, z) tends to +∞ as ‖x‖ −→ +∞ (at a point z = 0);
. δ(x, z) tends to −∞ as ‖z‖ −→ +∞ (at a point x0 : g(x0) < 0).
Then, we can invert SupIn f by In f Sup and we have

dr(λ) = Sup
z≥0

In f
x∈Rn

{
f (x) +

m
∑

i=1
zigi(x)− 1

2r ‖z− λ‖2
}

= In f
x∈Rn

Sup
z≥0

{
f (x) +

m
∑

i=1
zigi(x)− 1

2r ‖z− λ‖2
}

.

The Sup is reached at z where

zi =


rgi(x) + λi if gi(x) > − λi

r

0 if gi(x) ≤ − λi
r

 = ψ+(rgi(x) + λi).

For this notation, then the function dr(λ) spells

dr(λ) := In f
x∈Rn

{
f (x) +

m
∑

i=1
ψ+(rgi(x) + λi)gi(x)− 1

2r

m
∑

i=1
(ψ+(rgi(x) + λi)− λi)

2
}

= In f
x∈Rn

{
f (x) +

m
∑

i=1
(ψ+(rgi(x) + λi)gi(x)− 1

2r (ψ
+(rgi(x) + λi)− λi)

2)

}

= In f
x∈Rn

 f (x) +
m
∑

i=1


λigi(x) + r

2 g2
i (x) if gi(x) > − λi

r

− 1
2r λ2

i if gi(x) ≤ − λi
r


= In f

x∈Rn

{
f (x) + 1

2r

m
∑

i=1
(ψ+(rgi(x) + λi)

2 − λ2
i ))

}
= In f

x∈Rn
Lr(x, λ).

According to ([3], remark 2.1), dr is the regularized function of d. It is, thus, differentiable at λ and we have

∇dr(λ) = −
1
r
(λ− zλ)

where zλ realizes the Sup in the expression (2.8). We note, also, that dr has the same optimal solutions as
d.

Definition 2.2. The dual problem associated to the problem (P) is the following one :

(D) β := Sup
(λ, r)∈T

dr(λ), (2.10)

where T = Rm
+ ×R+.
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Definition 2.3. We call perturbation function of (P) the function p defined by

p(u) := In f
x∈Rn

F(x, u),

where

F(x, u) :=


f (x) if g(x) ≤ u,

+∞ else
(2.11)

Remark 2.2. . If u = 0 then p(0) = α

. If u1 ≥ u2 then p(u2) ≥ p(u1).

The following lemma shows the relation which exists between Lr and F.

Lemma 2.3. We have
Lr(x, λ) = In f

u∈Rm
{F(x, u) + ϕ(u, λ, r)} (2.12)

for all x ∈ Rn and (λ, r) ∈ T.

Proof. Let x ∈ Rn and u ∈ Rm.
. If g(x) ≤ u we have

F(x, u) = f (x) and ϕ(g(x), λ, r) ≤ ϕ(u, λ, r), ∀(λ, r) ∈ T.

. If g(x) � u we have F(x, u) = +∞. Then

Lr(x, λ) = f (x) + ϕ(g(x), λ, r) ≤ F(x, u) + ϕ(u, λ, r), ∀u ∈ Rm,

thus
Lr(x, λ) ≤ In f

u∈Rm
{F(x, u) + ϕ(u, λ, r)} ,

but
Lr(x, λ) = F(x, g(x)) + ϕ(g(x), λ, r) ≥ In f

u∈Rm
{F(x, u) + ϕ(u, λ, r)} .

Then both inequalities give the expression (2.11).

Lemma 2.4. We have
Lr(x, λ) = In f

u∈Rm

{
F(x, u)+ < λ, u > +

r
2
‖u‖2

}
, (2.13)

where F is given by the expression (2.11).

Proof. Indeed, let us put

ϕr(xk, λ) = In f
u∈Rm

{
F(xk, u)+ < λ, u > +

r
2
‖u‖2

}
The In f in the expression of ϕr(xk, λ) exists and unique (the function at u is strongly convex). For every x,

we indicate by Cx the following set :

Cx := {u ∈ Rm : u ≥ g(x)} .

Then, the expression (2.12) becomes

ϕr(xk, λ) = In f
u∈Cx

{
F(x, u)+ < λ, u > + r

2 ‖u‖
2
}
= In f

u∈Cx

{
f (x)+ < λ, u > + r

2 ‖u‖
2
}

= f (x) + In f
u∈Cx

{
< λ, u > + r

2 ‖u‖
2
}

.

To calculate the solution of In f
u∈Cx

{
< λ, u > + r

2 ‖u‖
2
}

we look for a minimization according to every i. Let

us put

w(u) =< λ, u > +
r
2
‖u‖2 ,
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then, ∇w(u) = λ + ru.
For all i, if gi(x) < − λi

r then, ui = − λi
r , else ui = gi(x). Thus

In f
x∈Cx

w(x) =
m

∑
i=1


λigi(x) + 1

2r (gi(x))2 if gi(x) ≥ − λi
r

− 1
2r λ2

i if gi(x) < − λi
r

= ϕ(g(x), λ, r).

Then ϕr(xk, λ) = Lr(x, λ).

We notice that Lr is convex at x and concave at (λ, r), consequently dr is concave.
We have the following weak duality theorem :

Theorem 2.1. (Weak duality) We have
β ≤ α. (2.14)

Proof. We always have
Sup

(λ,r)∈T
In f

x∈Rn
Lr(x, λ) ≤ In f

x∈Rn
Sup

(λ,r)∈T
Lr(x, λ),

thus
β ≤ α.

Another relation exists between dr and p is given by the following lemma :

Lemma 2.5. We have
dr(λ) = In f

u∈Rn
{p(u) + ϕ(u, λ, r)} , ∀ (λ, r) ∈ T. (2.15)

Proof. We have, according to the Lemma 2.4,

dr(λ) = In f
x∈Rn

Lr(x, λ) = In f
x∈Rn

In f
u∈Rn

{F(x, u) + ϕ(u, λ, r)}

= In f
u∈Rn

In f
x∈Rn

{F(x, u) + ϕ(u, λ, r)} = In f
u∈Rn

{p(u) + ϕ(u, λ, r)} .

Lemma 2.6. There is a function Φ such that for all (λ, r) ∈ T, (z, s) ∈ T, r > s, we have

ϕ(u, λ, r)− ϕ(u, z, s) ≥ −Φ(λ, z, s, r)

with
lim

(r−→+∞)
Φ(λ, z, s, r) = 0. (2.16)

Proof. We have

ϕ(u, λ, r)− ϕ(u, z, s) =
1
2r

m

∑
i=1

Ψ+(rui + λi)−
1
2s

m

∑
i=1

Ψ+(sui + zi).

We distinguish two cases :
Case 1:
. If ui ≤ − λi

r , then Ψ+(ui + λi) = 0.
. If ui ≤ − zi

s , then Ψ+(sui + zi) = 0, thus

1
2r

Ψ+(rui + λi)−
1
2s

Ψ+(sui + zi) = 0.

. If ui > − zi
s , then − zi

s < ui ≤ − λi
r , from hence

1
2s

Ψ+(sui + zi) =
s
2

u2
i + ziui ≤

s
2
(−λi

r
)2 + zi(−

λi
r
) ≤ s

2
λ2

i
r2 −

ziλi
r

.
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As r > s, then, we have
1
2s

Ψ+(su + z) ≤
λ2

i
2r
− ziλi

r
.

It holds that
1
2r

Ψ+(rui + λi)−
1
2s

Ψ+(sui + zi) ≥ −(−
λ2

i
2r

+
ziλi

r
) −→ 0, as r −→ +∞.

Case 2:
. If ui > − λi

r , then
1
2r

Ψ+(rui + λi) =
r
2

u2
i + λiui.

. If ui ≤ − zi
s , then

1
2s

Ψ+(sui + zi) = 0,

thus − λi
r < ui ≤ − zi

s , it holds that

1
2s Ψ+(rui + λi)− 1

2s Ψ+(sui + zi) =
r
2 u2

i + λiui ≥ −(− r
2 (−

zi
s )

2 − λi(− zi
s ))

≥ −(− z2
i

2r + λi
zi
r ) −→ 0, as r −→ +∞.

. If ui > − zi
s , then, we have

1
2r Ψ+(rui + λi)− 1

2s Ψ+(sui + zi) =
1
2 u2

i (r− s) + (λi − zi)ui

≥ 1
2 (

zi−λi
r−s )2 + (λi − zi)

(zi−λi)
r−s

≥ 1
2 (

zi−λi
r−s )2 + (zi−λi)

2

r−s −→ 0, as r −→ +∞.

Finally, in every cases there is a function Φ verifying

ϕ(u, λ, r)− ϕ(u, z, s) ≥ −Φ(λ, z, s, r), for all (λ, r) ∈ T, (z, s) ∈ T, r > s

with
lim

(r−→+∞)
Φ(λ, z, s, r) = 0.

It results from this lemma the following result :

Lemma 2.7. For all (λ, r) ∈ T, (r > 0), we have

dr(λ) ≥ Sup
(z,s)∈T, (r>s>0)

(ds(z)−Φ(λ, z, s, r)).

Proof. According to the Lemma 2.8, we have

ϕ(u, λ, r) ≥ ϕ(u, z, s)−Φ(λ, z, s, r).

Hence
p(u) + ϕ(u, λ, r) ≥ p(u) + ϕ(u, z, s)−Φ(λ, z, s, r) ∀ u ∈ Rm,

then
In f

u∈Rm
(p(u) + ϕ(u, λ, r)) ≥ In f

u∈Rm
(p(u) + ϕ(u, z, s)−Φ(λ, z, s, r)).

It holds that
dr(λ) ≥ ds(z)−Φ(λ, z, s, r), ∀(z, s) ∈ T, ∀r > s > 0

=⇒ dr(λ) ≥ Sup
(z,s)∈T, (r>s>0)

(ds(z)−Φ(λ, z, s, r)).
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We have the following theorem :

Theorem 2.2. We have
β = Sup

(z,s)∈T
ds(z) = lim

(r−→+∞)
dr(λ), for all λ ∈ Rm

+. (2.17)

Proof. For all (z, s) ∈ T, ε > 0 and λ ∈ Rm
+, it exists, according to the Lemma 2.8, r enough large, with (r > s)

such that Φ(λ, z, s, r) < ε. Then
dr(λ) ≥ ds(z)− ε, ∀ε > 0,

thus
lim

(r−→+∞)
dr(λ) ≥ ds(z)− ε, ∀ε > 0, ∀(z, s) ∈ T.

And then, for every ε > 0
lim

(r−→+∞)
dr(λ) ≥ Sup

(z,s)∈T
ds(z)− ε,

thus
lim

(r−→+∞)
dr(λ) ≥ Sup

(z,s)∈T
ds(z).

On the other hand,
Sup

(z,s)∈T
ds(z) ≥ dr(λ), ∀λ ∈ Rm

+

Sup
(z,s)∈T

ds(z) ≥ lim
(r−→+∞)

dr(λ),

where holds the result.

This theorem gives a technique of resolution of (D). Indeed; if we penalize the function d, by using the
term of penalty (− 1

2r ‖z− λ‖), then by making the resolution when (r −→ +∞), we are in front of a said
penalty method.

The following algorithm shows the necessary steps for the resolution :
Algorithm 1:
Step 1: (k = 0)
Fixe λ and we choose a factor of penalty r0 > 0 and z0 ∈ Rm

+, (k = 0).
Step 2: (k ≥ 0)
Find zk solution of

drk (λ) = Sup
z≥0

{
d(z)− 1

2rk
‖z− λ‖2

}
.

Step 3:
If zk do not verify the stop test one makes rk+1 > rk, k −→ k + 1 and we return to the step 1.

2.2 Augmented Lagrangian Algorithms

Let (P) be the following constrained mathematical programming problem :

(P) α := In f
x∈C

f (x),

where
. f is a non necessarely differentiable convex function with finite value ;
. C := {x ∈ Rn : gi(x) ≤ 0, i = 1, ..., m} ;
. gi (i = 1, ..., m) are C1-convex functions.
Suppose that lim

(‖x‖−→+∞)
f (x) = +∞ and there exists x0 such that

gi(x0) ≤ 0, i = 1, ..., m.

We give an algorithm with which we can calculate optimal solutions of (P).
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Algorithm 2:
Step 1: (k = 0)
Let us fix r > 0, let us determine one λ in which the function dr reaches its maximum on Rm.
Step 2:
Let us look for any point x which minimizes the convex function Lr(., λ) on Rn.

Remark 2.3. The essential difficulty in the previous method lies in the calculation of (x, λ). This couple is not
calculable with accuracy. But, if λ and x are approximately determined by the previous method, can we be sure that
x is, approximately, an optimal solution of (P)?

Another complication appears because of the non direct clarified of dr at the wished way.
However, we can calculate dr(λ) and ∇dr(λ), for every λ, by determining a point x which minimizes Lr(., λ) on

Rn. This operation is too expensive (from point of view cost) by repeating, every time, the process of iteration.
To by-pass this difficulty, let us suppose that for one λ given, we have one x ∈ Rn minimizing Lr(., λ) on Rn with

a precision ε ≥ 0, that is
Lr(x, λ)− dr(λ) ≤ ε.

We see that

dr(λ
′
) ≤ Lr(x, λ

′
) ≤ Lr(x, λ)+ < λ

′ − λ,∇λLr(x, λ) > ∀x ∈ Rn, λ
′ ∈ Rm

=⇒ dr(λ
′
) ≤ dr(λ)+ < λ

′ − λ,∇λLr(x, λ) > +ε.

It holds that ∇λLr(x, λ) is an ε -subgradient of dr at λ.

Definition 2.4. . A sequence
{

xk
}

k
of Rn is called asymptotically feasible for the problem (P) if

lim
(k−→+∞)

gi(xk) ≤ 0, i = 1, ..., m.

. A sequence which realizes the Sup of the problem (D) is a sequence
{

λk
}

k
of Rm such that

dr(λ
k) −→ Supdr, as (k −→ +∞).

. An asymptotically minimizing sequence of (P) is a sequence
{

xk
}

k
asymptotically feasible and such that

lim
(k−→+∞)

f (xk) = α.

Theorem 2.3. Let
{

λk
}

k
be a bounded sequence wich maximizes (D), let

{
xk
}

k
be a sequence satisfying

Lr(xk, λk)− In f
x∈Rn

Lr(x, λk) = Lr(xk, λk)− dr(λ
k) ≤ εk,

where εk −→ 0 as k −→ +∞.
Then

{
xk
}

k
is an asymptotically minimizing sequence of (P).

For the proof of this theorem, we need to the following three lemmas:

Lemma 2.8. The function dr satisfies, for all λ, λ
′ ∈ Rm

+

dr(λ
′
) ≤ dr(λ)+ < λ

′ − λ,∇dr(λ) >

dr(λ
′
) ≥ dr(λ)+ < λ

′ − λ,∇dr(λ) > − 1
2r

∥∥∥λ
′ − λ

∥∥∥2
(2.18)

Proof. The first inequality is immediate from the concavity of dr(λ).
For the second inequality, we have

dr(λ) = Sup
z∈Rn

+

{
d(z)− 1

2r
‖λ− z‖2

}
.



N.Daili and K.Saadi. / Nondifferentiable Augmented Lagrangian ... 543

It exists an unique zλ such that

dr(λ) = d(zλ)−
1
2r
‖λ− zλ‖2 .

Let us put

q(λ
′
) := d(zλ)−

1
2r

∥∥∥λ
′ − zλ

∥∥∥2
.

Or q(λ
′
) is quadratic, we shall have

q(λ
′
) = q(λ)+ < λ

′ − λ,∇q(λ) > +
1
2
(λ
′ − λ)t∇q(λ)(λ

′ − λ).

Because
q(λ) = dr(λ) and q(λ

′
) ≤ dr(λ

′
), ∀λ

′
,

it holds that
∇q(λ) = ∇dr(λ).

On the other hand,

∇2q(λ) = −1
r

Id (where Id is an identity matrix),

then
q(λ

′
) = dr(λ)+ < λ

′ − λ,∇dr(λ) > −
1
2r

∥∥∥λ
′ − λ

∥∥∥2
.

So
dr(λ)+ < λ

′ − λ,∇dr(λ) > −
1
2r

∥∥∥λ
′ − λ

∥∥∥2
≤ dr(λ

′
).

Lemma 2.9. We have
r
2

∥∥∥∇dr(λ
k)
∥∥∥2
≤ Supdr − dr(λ

k). (2.19)

Proof. According to Lemma 2.12, it holds that

Supdr ≥ Sup
λ
′∈Rm

+

{
dr(λk)+ < λ

′ − λ,∇dr(λk) > − 1
2r

∥∥∥λ
′ − λ

∥∥∥2
}

= dr(λk) + Sup
λ
′∈Rm

+

{
< λ

′ − λ,∇dr(λk) > − 1
2r

∥∥∥λ
′ − λ

∥∥∥2
}

= dr(λk) + r
2

∥∥∥∇dr(λk)
∥∥∥2

what gives
r
2

∥∥∥∇dr(λ
k)
∥∥∥2
≤ Supdr − dr(λ

k).

Lemma 2.10. Let us consider following both properties:
(a) Lr(xk, λk)− In f

x∈Rn
Lr(x, λk) = Lr(xk, λk)− dr(λk) ≤ εk,

where εk −→ 0, as k −→ +∞;

(b) r
2

∥∥∥∇λLr(xk, λk)−∇dr(λk)
∥∥∥2
≤ εk.

Then (a) =⇒ (b).

Proof. We use the Lemma 2.12 and the concavity of Lr(xk, .) then, we shall have for every w ∈ Rm

dr(w) ≤ Lr(xk, w) ≤ Lr(xk, λk)+ < w− λk,∇λLr(xk, λk) >

and
dr(w) ≥ dr(λ

k)+ < w− λk,∇dr(λ
k) > − 1

2r

∥∥∥w− λk
∥∥∥2
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what gives

Lr(xk, λk)− dr(λ
k) ≥< w− λk,∇dr(λ

k)−∇λLr(xk, λk) > − 1
2r

∥∥∥w− λk
∥∥∥2

.

That is

Lr(xk, λk)− dr(λk) ≥ Sup
w∈Rm

+

{
< w− λk,∇dr(λk)−∇λLr(xk, λk) > − 1

2r

∥∥∥w− λk
∥∥∥2
}

= r
∥∥∥∇dr(λk)−∇λLr(xk, λk)

∥∥∥2
− r

2

∥∥∥∇dr(λk)−∇λLr(xk, λk)
∥∥∥2

= r
2

∥∥∥∇dr(λk)−∇λLr(xk, λk)
∥∥∥2

.

Where, according to (a), we have

r
2

∥∥∥∇dr(λ
k)−∇λLr(xk, λk)

∥∥∥2
≤ εk.

Proof. (Theorem 2.11) According to the Lemma 2.14 we have

Lr(xk, λ) = In f
{

F(xk, u)+ < x, u > +
r
2
‖u‖2

}
,

where F is given by

F(x, u) =


f (x) if gi(x) ≤ ui, i = 1, ..., m

+∞ else.

For λ = λk, there is an unique point uk such that

Lr(xk, λk) = F(xk, uk)+ < λk, uk > +
r
2

∥∥∥uk
∥∥∥2

.

Let us put

q(λ) = F(xk, uk)+ < λ, uk > +
r
2

∥∥∥uk
∥∥∥2

.

We notice that
q(λ) ≥ Lr(xk, λ) ∀λ, and q(λk) = Lr(xk, λk),

thus
∇q(λk) = ∇λLr(xk, λk).

Then,
uk = ∇λLr(xk, λk).

We have by hypothesis
Lr(xk, λk)− dr(λ

k) ≤ εk

what implies that
lim

k
Lr(xk, λk) = lim

k
dr(λ

k) = Supdr.

According to the Lemma 2.13 and Lemma 2.14, we have

lim
k
∇dr(λk) = 0

lim
k

r
2

∥∥∥∇dr(λk)−∇λLr(xk, λk)
∥∥∥2

= 0

 =⇒ lim
k
∇dr(λ

k) = lim
k
∇λLr(xk, λk) = 0.

Then, lim
k

uk = 0.
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The sequence
{

λk
}

k
being bounded, then

F(xk, uk) = Lr(xk, λk)− < λk, uk > − r
2

∥∥∥uk
∥∥∥2

=⇒ lim
k

F(xk, uk) = lim
k
(Lr(xk, λk)− < λk, uk > − r

2

∥∥∥uk
∥∥∥2
) = Supdr.

We always have dr(λ) ≤ f (x), ∀λ, ∀x, thus

lim
k

F(xk, uk) = Supdr(λ) ≤ α.

On the other hand,

lim
k

F(xk, uk) = lim
k

f (xk) with lim
k

gi(xk) ≤ 0 (i = 1, ..., m).

Then
lim

k
f (xk) = Supdr(λ) ≤ α with lim

k
gi(xk) ≤ 0 (i = 1, ..., m).

It holds lim
k

f (xk) = α. Consequently
{

xk
}

k
is an asymtotically minimizing sequence of (P).

2.3 Study of the Convergence

We are going to give an algorithm of primal-dual type, where we show that sequences
{

λk
}

k
and

{
xk
}

k
generated by this algorithm converge globally, with at least the Slater condition, to λ and x.

The algorithm to be studied depends on the initial choice of r0 > 0, λ0 ∈ Rm and the sequence {εk}k with

εk ≥ 0 and lim
k

εk = 0.

Algorithm 3:
Step 0: (initialization) (k = 0)
Choose a factor of penalty rk > 0, a precision δ > 0, a multiplier λ0 and a sequence {εk}k with εk ≥ 0 and

lim
k

εk = 0

Step 1: (k ≥ 0)
Find xk such that

Lrk (xk, λk)− drk (λ
k) ≤ εk.

Step 2:
Define

λk+1
i = max

{
λk

i + rkgi(xk), 0
}

;

or
λk+1 = λk + rk∇λLrk (xk, λk).

Step 3:
If ∥∥∥∇λLrk (xk, λk)

∥∥∥ ≤ δ (2.20)

Stop and sets xk as solution of (P).
Else, rk+1 ≥ rk (if need be) return to the step 1.

Lemma 2.11. ([2]) Suppose that the sequence
{

λk
}

k
is bounded (bounded by M), then the expression (2.20) implies

f (x) ≥ f (xk)− σk,

where
σk = δ(M + (2εk +

3rk δ

2
)) + εk.
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Proof. Let x be a solution of (P). From the formula (2.17), we have

drk (λ
k+1) ≥ drk (λ

k)+ < λk+1 − λk,∇λdrk (λ
k) > − 1

2rk

∥∥∥λk+1 − λk
∥∥∥2

.

Thus
f (x) ≥ drk (λ

k+1)

≥ drk (λ
k)−

∥∥∥λk+1 − λk
∥∥∥ ∥∥∥∇λdrk (λ

k)
∥∥∥− 1

2rk

∥∥∥λk+1 − λk
∥∥∥2

.

According to the step 2 and the step 3 of the Algorithm 3, we have

f (x) ≥ drk (λ
k)− rk

∥∥∥∇λLr(xk, λk)
∥∥∥ ∥∥∥∇λdrk (λ

k)
∥∥∥− rk

2

∥∥∥∇λLr(xk, λk)
∥∥∥2

≥ drk (λ
k)− rkδ

∥∥∥∇λdrk (λ
k)
∥∥∥− rk

2 δ2.

From the Lemma 2.14, we have

rk
2

∥∥∥∇dr(λ
k)
∥∥∥− rk

2

∥∥∥∇λLr(xk, λk)
∥∥∥ ≤ rk

2

∥∥∥∇λLr(xk, λk)−∇dr(λ
k)
∥∥∥2
≤ εk.

What implies that ∥∥∥∇dr(λ
k)
∥∥∥ ≤ 2εk

rk
+ δ =⇒ −

∥∥∥∇λdrk (λ
k)
∥∥∥ ≥ −(2εk

rk
+ δ).

It results that
f (x) ≥ drk (λ

k)− rkδ( 2εk
rk

+ δ)− rk
2 δ2

= drk (λ
k)− δ(2εk +

3rk
2 δ).

On the other hand, according to the step 1 of the same Algorithm, we have

drk (λ
k) ≥ Lrk (xk, λk)− εk.

Then
drk (λ

k) ≥ f (xk) + 1
2rk

m
∑

i=1
(Ψ+(λk

i + rkgi(xk))2 − (λk
i )

2)− εk

≥ f (xk) + 1
2rk

m
∑

i=1
((λk+1

i )2 − (λk
i )

2)− εk

= f (xk) + 1
2rk

m
∑

i=1
(λk+1

i − λk
i )(λ

k+1
i + λk

i )− εk

namely,

drk (λ
k) ≥ f (xk) + 1

2rk

m
∑

i=1
rk

∂L(xk ,λk)
∂λi

(λk+1
i + λk

i )− εk

= f (xk) + 1
2

m
∑

i=1

∂L(xk ,λk)
∂λi

(λk+1
i + λk

i )− εk

= f (xk) + 1
2 < ∇λLr(xk, λk), λk+1 + λk > −εk.

Thus
drk (λ

k) ≥ f (xk)− 1
2

∥∥∥∇λLr(xk, λk)
∥∥∥ ∥∥∥λk+1 + λk

∥∥∥− εk

≥ f (xk)− δ
2

∥∥∥λk+1 + λk
∥∥∥− εk.

Finally, we have
f (x) ≥ drk (λ

k)− δ(2εk +
3rk
2 δ)

≥ f (xk)− δ
2

∥∥∥λk+1 + λk
∥∥∥− εk − δ(2εk +

3rk
2 δ),
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it holds that

f (x) ≥ f (xk)− δ(M + (2εk +
3rk
2

δ))− εk.

The general result is given by the following theorem :

Theorem 2.4. Let us suppose that (P) possesses a K-T vector and that

∑
k≥1

√
εk < +∞ (2.21)

Then, the following properties are satisfied :

(a) the sequence
{

λk
}

k
is bounded, and its cluster values are K-T vectors ;

(b) the sequence
{

xk
}

k
is an asymtotically minimizing of (P).

Proof. (a) According to the Lemma 2.14 and by hypothesis (step 1), we have

rk
2

∥∥∥∇λLrk (xk, λk)−∇drk (xk)
∥∥∥ ≤ εk.

According ([3], remark 2.2), we have

∇drk (λ
k) =

1
rk
(zλk − λk)

where zλk realizes the Sup in the definition of drk . But

λk+1 = λk + rk∇λLrk (xk, λk).

From which it holds

∇λLrk (xk, λk) =
1
rk
(λk+1 − λk).

Then
rk
2

∥∥∥∇λLrk (xk, λk)−∇drk (xk)
∥∥∥2

=
rk
2

∥∥∥∥ 1
rk
(λk+1 − λk)− 1

rk
(zλk − λk)

∥∥∥∥2
≤ εk

Namely
1

2rk

∥∥∥λk+1 − zλk

∥∥∥2
≤ εk.

Taking the limit on k we find
lim

k
(λk+1 − zλk ) = 0 (2.22)

Consider the application Prox defined by

z −→ Prox(z) = h(z) +
1
2
‖z− λ‖2

where h is a convex function. Let us put

Prox(h; λ) = arg min
z

{
h(z) +

1
2
‖z− λ‖2

}
.

We have, according ([5], Theo.31.5, p. 340),

‖Prox(h; u)− Prox(h; λ)‖ ≤ ‖u− λ‖ .

Let us put
h(z) = −rkd(z)
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(h is convex), then

Prox(h; λ) = arg min
z∈Rm

{
h(z) + 1

2 ‖z− λ‖2
}
= arg min

z∈Rm

{
−rkd(z) + 1

2 ‖z− λ‖2
}

= −rkarg min
z∈Rm

{
d(z)− 1

2rk
‖z− λ‖2

}
= −rkzλ.

It holds that
‖Prox(h; u)− Prox(h; λ)‖ = ‖−rkzu + rkzλ‖

=⇒ rk ‖zu − zλ‖ ≤ ‖u− λ‖ =⇒ ‖zu − zλ‖ ≤ 1
rk
‖u− λ‖ .

Let λ be any K-T vector, then

∇drk (λ) = 0 =⇒ rk∇drk (λ) = 0 =⇒ zλ = λ + rk∇drk (λ) = λ.

Thus ∥∥zλk+1 − λ
∥∥ =

∥∥zλk+1 − zλ

∥∥ ≤ 1
rk

∥∥∥λk+1 − λ
∥∥∥ .

Using the previous expressions, we shall have∥∥∥λk+1 − λ
∥∥∥ =

∥∥∥λk+1 − zλk + zλk − λ
∥∥∥ ≤ ∥∥∥λk+1 − zλk

∥∥∥+ ∥∥zλk − λ
∥∥

≤
√

2rkεk +
1
rk

∥∥∥λk − λ
∥∥∥ .

In particular ∥∥∥λk+1 − λ
∥∥∥ ≤ Φ(rk, εk) < +∞.

Hence,
{

λk
}

k
is a bounded sequence.

Let {λs}s be a convergent subsequence to λ, according to the expression (2.21), we have

lim
s
(λs+1 − zλs) = 0.

We know that

zλs = λs + rk∇drk (λ
s)

=⇒ lim
s
(λs+1 − λs − rk∇drk (λ

s)) = 0 =⇒ lim
s
∇drk (λ

s) = ∇drk (λ) = 0.

As drk is concave, then λ maximizes drk , namely, λ is a K-T vector.
(b) According to the Theorem 2.11, {xs}s is an asymtotically minimizing sequence of (P).

2.4 Numerical Experiments

In this paragraph, we propose some numerical experiments illustrating the methods of nondifferentiable
convex programming problems that we had studied above and in ([3]). We established a comparative study
with the results of ([3]).

Let us call back that the previous methods consist in solving a sequence of unconstrained problems. Every
problem of which must be solved by the Algorithm 4 of ([3]) by making the linear search given by the
expression (20) in ([3]).

Example 2.1. Consider the following mathematical programming problem :

(P)

 α := In f
{

f (x) =
3

max
i=1

(xt Aix + bt
i x + ci)

}
subject to x2

1 + 3x2 + 2x1 ≤ 0,
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where

A1 =

(
2 −1
1 4

)
, b1 =

(
2
−1

)
, c1 = 4;

A2 =

(
2 1
1 4

)
, b2 =

(
0
−2

)
, c2 = −5;

A3 =

(
2.5 2
0.5 2

)
, b3 =

(
4
−3

)
, c3 = 3;

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

(2, 0) 4 196 (−0.391, 0.210) 3.49 104 10−4 10−86.0 10−72.0 0.17
(4, 3) 6 268 (−0.460, 0.236) 3.49 106 10−6 10−8 10−22.0 0.22
(−2, 1) 5 379 (−0.404, 0.215) 3.48 105 10−5 10−92.0 10−87.0 0.28

Table 1
”-Proximal Penalty method : (δ = 10−6)

Figure 1: The objective function value at each step

λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
5 14 79 (−0.402, 0.214) 3.49 14 10−14 10−55.0 0.11
0.5 7 31 (−0.402, 0.214) 3.49 7 10−7 10−57.0 0.06
12 15 90 (−0.402, 0.214) 3.49 15 10−15 10−56.0 0.11
−1 8 36 (−0.402, 0.214) 3.49 8 10−8 10−55.0 0.05
−8 2 13 (−0.402, 0.214) 3.49 2 10−2 0.0 0.06

Table 2
augmented Lagrangian method : (δ = 10−4)

-

Example 2.2. Consider the following mathematical programming problem :

(P)
{

α := In f f (x) = max(2x + 2, (x + 1)2, x2 + 1)
subject to 2x + 3 ≤ 0.
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Figure 2: The objective function value at each step

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk) sk = ‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

5 4 15 −1.5 3.25 104 10−4 10−55.6 10−125.5 0.06
62 7 26 −1.5 3.25 107 10−7 10−85.6 10−125.5 0.06
−412 4 15 −1.5 3.25 104 10−4 10−55.6 10−125.5 0.05

Table 3
ε-Proximal Penalty method : (δ = 10−11)

Figure 3: The objective function value at each step
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λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
2 16 47 −1.5 3.25 16 10−16 10−77.1 0.06
20 21 68 −1.5 3.25 21 10−21 10−79.1 0.05
35 22 72 −1.5 3.25 22 10−22 10−77.9 0.05
−1 19 65 −1.5 3.25 19 10−19 10−75 0.06
−5 19 67 −1.5 3.25 19 10−19 10−75.3 0.05

Table 4
augmented Lagrangian method : (δ = 10−6)

Figure 4: The objective function value at each step

Example 2.3. Consider the following mathematical programming problem :

(P)


α := In f { f (x) = max( f1(x), f2(x))}

subject to
{

x1 + 2x2 ≤ 0
x2 + 1 ≤ 0

,

where
f1(x) = x2

1 + x2
2 − x2 − x1 − 1,

f2(x) = 3x2
1 + 2x2

2 + 2x1x2 − 16x1 − 14x2 + 22

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

(2, 0) 6 20 (2,−1) 14 106 10−6 10−69.0 10−95.0 0.05
(−4, 3) 6 24 (2,−1) 14 106 10−6 10−69.0 10−93.0 0.05
(6,−7) 6 24 (2,−1) 14 106 10−6 10−69.0 10−93.0 0.06

Table 5
ε- Proximal Penalty method : (δ = 10−8)
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Figure 5: The objective function value at each step

λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
(2, 6) 22 280 (2,−1) 14 22 10−22 10−56.0 0.16
(3, 0) 20 220 (2,−1) 14 20 10−22 10−57.0 0.11
(5, 3) 18 185 (2,−1) 14 18 1018 10−57.0 0.11
(−5,−1) 18 192 (2,−1) 14 18 1018 10−56.0 0.11
(−1, 0) 17 170 (2,−1) 14 17 10−17 10−58.0 0.11

Table 6
augmented Lagrangian method : (δ = 10−4)

Figure 6: The objective function value at each step

Example 2.4. Consider the following mathematical programming problem :

(P)


α := In f { f (x) = max( f1(x), f2(x), f3(x))}

subject to
{

x1 − x2 + 1 ≤ 0
2x2 − 1 ≤ 0

,
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where
f1(x) = x2

1 + x2
2,

f2(x) = (x1 + x2)
2

f3(x) = (2x1 + 3x2)
2

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

(3, 2) 6 35 (−0.5, 0.5) 0.5 106 10−6 10−76.7 10−75.7 0.06
(5, 4) 6 33 (−0.5, 0.5) 0.5 106 10−6 10−79.1 10−79.8 0.05
(−2,−4) 6 27 (−0.5, 05) 0.5 106 10−6 10−6 10−61.2 0.05

Table 7
ε-Proximal Penalty method : (δ = 10−5)

λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
(3, 1) 11 119 (−0.5, 0.5) 0.5 11 10−11 10−57 0.11
(4, 3) 10 100 (−0.5, 0.5) 0.5 10 10−10 10−53 0.11
(2, 5) 10 134 (−0.5, 0.5) 0.5 10 10−10 10−58 0.11
(−1, 0) 11 126 (−0.5, 0.5) 0.5 11 10−11 10−53 0.11
(−2,−4) 12 140 (−0.5, 0.5) 0.5 12 10−12 10−52 0.11

Table 8
augmented Lagrangian method : (δ = 10−4)

Example 2.5. Consider the following mathematical programming problem :

(P)


α := In f

{
f (x) =

3
max
i=1

(xt Aix + bt
i x + ci)

}
subject to

{
x1 + x3 ≤ 0
2x1 + 1 ≤ 0

,

where

A1 =

 1 0 1
1 1 0
0 0 1

 , b1 =

 1
−1
0

 , c1 = 0;

A2 =

 1 0 0
−1 1 0
0 0 1

 , b1 =

 0
1
0

 , c2 = −2;

A3 =

 1 −1 0
0 1 0
0 0 1

 , b1 =

 0
0
0

 , c3 = 2;

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

(1, 2, 4) 8 36 (0,−0.5, 0) 2.25 109 10−9 10−116.3 10−103.4 0.11
(2, 8, 0) 3 19 (0,−0.5, 0) 2.25 104 10−4 10−66.3 10−101.4 0.06
(−2,−1, 5) 9 37 (0,−0.5, 0) 2.25 1010 10−10 10−101.4 10−136.9 0.11

Table 9
ε-Proximal Penalty method : (δ = 10−9)
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λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
(3, 2) 9 57 (0,−0.5, 0) 2.25 9 10−9 10−63.4 0.06
(19, 2.58) 9 139 (0,−0.5, 0) 2.25 9 10−9 10−61.8 0.22
(4, 6) 9 69 (0,−0.5, 0) 2.25 9 10−9 10−66.9 0.11
(−1,−4) 9 59 (0,−0.5, 0) 2.25 9 10−9 10−64.1 0.11

Table 10
augmented Lagrangian method : (δ = 10−5)

Example 2.6. Consider the following mathematical programming problem :

(P)


α := In f

 f (x) =


−x + |x|+ e|x| if x ≤ 0

x2 + |x|+ e|x| else


subject to x + 1 ≤ 0.

x0

initial
k

k
total

xk f (xk) rk εk rkh(xk)
sk =

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ time
s

1 11 33 −1 4.718 1011 10−11 10−115.6 10−124.3 0.05
−2 5 14 −1 4.718 105 10−5 10−55.6 10−124.3 0.06
−1.5 5 14 −1 4.718 105 10−5 10−55.6 10−124.3 0.05

Table 11
ε-Proximal Penalty method : (δ = 10−11)

λ0
initial

k
k

total
xk f (xk) rk εk s =

∥∥∇Lrk (xk, λk)
∥∥ time

s
3 21 63 −1 4.718 21 10−21 10−76.5 0.06
5 19 57 −1 4.718 19 10−19 10−76.9 0.06
9 23 83 −1 4.718 23 10−23 10−75.3 0.06
1.5 22 77 −1 4.718 22 10−22 10−76.3 0.05
0.6 22 80 −1 4.718 22 10−22 10−78.3 0.06

Table 12
augmented Lagrangian method : (δ = 10−6)

2.5 Comments and Conclusions

Basing itself on the results obtained in the previous numerical experiments, we can make the following
remarks :

1) for the ε-proximal penalty methods, we used the classical penalty functions :

h(x) =
m

∑
i=1

(gi(x))2

and the sequence (rk)k such that rk+1 = 10rk ;
2) for the augmented Lagrangian method, we use the sequence (rk)k such that

rk+1 = rk + 1.

and for the sequence (εk)k, we make it decrease in the following way :

εk+1 =
εk
10

.
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Generally, the obtained solutions are enough precise.
The number of iterations depends, on one hand of the algorithm used to solve the unconstrained

subproblems, on the other hand on initial points.
The two previous approaches possess the property of the global convergence.
From a theoretical point of view, both approaches use the proximal regularization. The first one makes the

regularity for the subproblems, the other one for the dual function associated with the ordinary Lagrangian.
So the idea to return the resolution of primal problem to a sequence of auxiliary problems.

The algorithm that we had used requiet the knowledge at least of a subgradient in every step, and the
value of the function to be minimized, then a difficulty concerning the determination of a subgradient which
is, generally, difficult in practice.

From point of comparative view, we notice according to the previous numerical experiments that number
of necessary iterations to obtain a minimum in the augmented Lagrangian method is higher than counts it of
iterations in the ε-proximal penalty method. As well as the run time.

We also notice that the penalty factor is too much large in the ε-proximal penalty method, and enough
small in the augmented Lagrangian method.

The stop test in the augmented Lagrangian method is more successful than the stop test in the ε-proximal
penalty method.

2.6 General Conclusions

The ε-proximal penalty method is a method of nondifferentiable optimization. It is a member of algorithms
whose the generated sequences are asymptotically minimizing. Thus, it is the technique which puts in
connection the classical optimization and the asymptotic analysis.

It has advantages for the perturbed problems and in fluid mechanics.
From theoretical point of view, we think that this technique will be widened in problems of positive

semidefinite optimization. Thing still is not made and raises open problems in this direction.
The augmented Lagrangien method is a well known technique by its efficiency in the theoretical and

practical cases. It applies to differentiable and nondifferentiable optimization problems.
This technique will be widened in positive semidefinite optimization problems with large-sized matrices,

thing still is not made and raises open problems still.
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