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On The Cohen p-Nuclear Positive Sublinear Operators
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Abstract

In the present paper, we will introduce the concept of Cohen p-nuclear positive sublinear operators. We
give an analogue to “Pietsch’s domination theorem” and we study some properties concerning this notion.
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1 Introduction

For a Banach space X, X� will denote its topological dual and BX will denote its closed unit ball. For a
Banach lattice E, E+ will denote its positive cone. Throughout the paper, X, Y will be Banach spaces and E, F
will be Banach lattices. Let L(X; Y) denote the Banach space of all continuous linear operators from X to Y.
For 1 � p < ∞, let p� be its conjugate, that is, 1/p+ 1/p� = 1.

The notion of Cohen p-nuclear operators (1 � p � ∞) was initiated by Cohen in [9]. A linear operator u
between two Banach spaces X, Y is Cohen p-nuclear for (1 < p < ∞) if there is a positive constant C such that
for all n 2 N; x1, ..., xn 2 X and y1, ..., yn 2 Y we have����� n

∑
i=1



u (xi) , y�i

������ � C sup
x�2BX�

 
n

∑
i=1
jxi (x�)jp dµ1 (x

�)

! 1
p

�

� sup
y2BY

 
n

∑
i=1

��y�i (y)��p� dµ2 (y)

! 1
p�

.

The smallest constant C which is noted by np(u), such that the above inequality holds, is called the Cohen
p-nuclear norm on the spaceNp (X, Y) of all Cohen p-nuclear operators from X into Y which is a Banach space.
We have N1 (X, Y) = Π1 (X, Y) ( the Banach space of all 1-summing operators) and N∞ (X, Y) = D∞ (X, Y) (
the Banach space of all strongly ∞-summing operators).

In [9, Theorem 2.3.2], Cohen proves that, if u verifies a domination theorem then u is p-nuclear and he
asked if the statement of this theorem characterizes p-nuclear operators. In [6], Achour et al. generalized
this notion to the sublinear operators and they gave an analogue to “Pietsch’s domination theorem” for this
category of operators. Motivated by that, we study this notion with the positive sublinear maps and we
propose, among others, an analogue to “Pietsch’s domination theorem” for this category of operators which
is one of the main results of this paper and we also discuss some properties concerning this class. It remains
to prove the Pietsch’s factorization theorem.
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This paper is organized as follows: In the first section, we give some basic definitions and terminology
concerning Banach lattices. We also recall some standard notations. In the second section, we present some
definitions and properties concerning positive sublinear operators. We give the definition of positive p-
summing operators introduced by Blasco [7, 8] and we present the notion of strongly p-summing sublinear
operators initiated in [6]. In Section 3, we generalize the class of Cohen p-nuclear operators to the positive
sublinear operators. This category verifies a domination theorem, which is the principal result. We used
another Technics than the Ky Fan’s lemma. We end in Section 4, by studying a relation between some classes
of positive sublinear operators (p-nuclear and p-summing).

2 Preliminary

We start by recalling the abstract definition of Banach lattices. Let E be a Banach space. If E is a vector lattice
and kxk � kyk whenever jxj � jyj we say that E is a Banach lattice. If the lattice is complete, we say that E
is a complete Banach lattice and for all x in E, kxk = kjxjk . The dual E� of a Banach lattice E is a complete
endowed with the natural order x1, x2 2 E

x�1 � x�2 ()



x�1 , x
�
� hx�2 , xi , 8x 2 E+.

where h., .i denotes the bracket of duality. If we consider E as a Sublattice of E�� we have for

x1 � x2 () hx1, x�i � hx2, x�i , 8x� 2 E�+.

for more details on this, the interested reader can consult the references [11].
Given 1 � p < ∞ we will write `n

p(X) for the space of all sequences (xi)
n
i=1 in X with the norm

(xi)
n
i=1


p =

�
n
∑

i=1
kxikp

� 1
p
,

and `n,w
p (X) for the space of all sequences (xi)

n
i=1 in X with the norm

(xi)
n
i=1


p,w = sup

kφkX��1

 
n

∑
i=1
jφ (xi)jp

! 1
p

,

where X� denotes the topological dual of X. The closed unit ball of X will be denoted by BX . Let `p(X) be the
Banach space of all absolutely p-summable sequences (xi)

∞
i=1 in X with the norm

(xi)
∞
i=1


p =

 
∞

∑
i=1
kxikp

! 1
p

.

We denote by `w
p (X) the Banach space of all weakly p-summable sequences (xi)

∞
i=1 in X with the norm

(xi)
∞
i=1


p,w = sup

kφkX��1

 
∞

∑
i=1
jφ (xi)jp

! 1
p

,

Note that `w
p (X) = `p(X) for some 1 � p < ∞ if, and only if, X is finite dimensional. We continue in

specifying definitions of the convexity and the concavity.

Definition 2.1. Let 1 � p � ∞.
(i) A sublinear operator T : F �! E is called a p-convex if there exists a constant C such that for every n in N the

operators

Tn : `n
p (F) �! E

�
`n

p

�
(x1, ..., xn) 7�! (T (x1) , ..., T (xn))
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are uniformly bounded by C.
(ii) A sublinear operator T : E �! F is called a p-convex if there exists a constant C such that for every n in N the

operators

Tn : E
�
`n

p

�
�! `n

p (F)

(x1, ..., xn) 7�! (T (x1) , ..., T (xn))

are uniformly bounded by C.

The space E is p-convex (p-concave) if idE is p-convex (p-concave).

3 Positive sublinear operators

We give in this section some elementary definitions and fundamental properties relative to positive sublinear
operators, for example see [6].

Definition 3.1. An operator T from X into F is said to be positive sublinear if we have for all x, y in X and λ in R+.

i) T (λx) = λT (x) ,
ii) T (x+ y) � T (x) + T (y) ,
iii) T (x) � 0.

Let us denote by

SL+ (X, F) = fpositive sublinear operators, T : X �! Fg .

A positive sublinear operator is continuous if, and only if, there is C > 0 such that for all x 2 X, kT(x)k �
C kxk . In this case, we said that T is bounded and we write

kTk = sup
x2BX

kT(x)k

and we put

SB+ (X, F) = fbounded positive sublinear operators, T : X �! Fg .

Remark 3.2. If u : X �! F is a linear operator, then juj is a positive sublinear operator.
Proposition 3.3. Let T be a symmetric sublinear operator between X and F. Then, T is positive.
Proof. For every x in X

0 = T (x� x)

� T (x) + T (�x)

� 2T (x) . �

Lemma 3.4. Let T : E �! F be an increasing sublinear operator, if jTj exist, then

jT (x)j � jTj (jxj)

for all x 2 E.
Proof. As x � jxj and �x � jxj. Then by the monotonicity of T, we have

8x 2 E, T (x) � T (jxj) ,

and

8x 2 E,�T (x) � T (�x) � T (jxj) ,

and also
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jT (x)j � T (jxj) � jTj (jxj)

for all x 2 E. �

Now, we study the continuity of an increasing positive sublinear operator. We adapt the same
demonstration as in the linear case see [1, 12].

Theorem 3.5. Let T : E �! F be an increasing positive sublinear operator. Then, T is continuous.

Proof. We assume that T is not continuous. Then there exists a sequence (xn)n in E with kxnk = 1 such
that kT (xn)k � n3 for all n 2 N. We have jT (xn)j � T (jxnj), one can take xn � 0 for all n. As ∑

n�1

kxnk
n2 < ∞

and E is complete, then the serie ∑
n�1

xn
n2 converges in norm in E. Let x = ∑

n�1

xn
n2 . Then, it is clear that 0 � xn

n2 � x

for all n, and T
�

xn
n2

�
� T (x) for all n, since T is increasing, we write n �

T
�

xn
n2

� � kT (x)k < ∞, for all n
by the monotonicity of the norm of F, contradiction. Then T is continuous. �

Remark 3.6. Without increase, we not know the answer. But we conjucture it’s true.

Definition 3.7. We said that a positive sublinear operator T between X, F is p-regular, 1 � p < ∞, if there exist a
constant C > 0 such that for all (xi)

n
1 � X, we have
 

n

∑
i=1
jT (xi)jp

! 1
p


F

� C


 

n

∑
i=1
jxijp

! 1
p


X

(3.1)

if p < +∞, and if p = +∞, we take the sup.

We note by

ρp (X, F) = fp-regular positive sublinear operators T : X �! Fg

and
ρp (T) = inf fC, verifying the inequality (3.1)g .

The above proposition is not true for positive sublinear operators.
Proposition 3.8 [11, Proposition 1.d.9]. Let T : E �! F be a positive operator. Then, for every 1 � p � ∞, T is

p-regular.

The following counterexample (communicated by Gilles Godefroy, 2002), shows that the positive sublinear
operator T isn’t 2-regular..

We define a function Sr by

Sr : L2 (T) �! L1 (Ω, µ) ; T = R/2πZ

f �! Sr ( f ) = 1
2r
R x+r

x�r j f (y)j
2 dy, 8x 2 R et 0 < r � π.

We put Tr f =
p

Sr f , hence the operator Tr is sublinear, and the operator T defined by

T f = sup fTr f : 0 < r < πg .

For more details, see [4].
Proposition 3.9. Let 1 � p < ∞. Then i)() ii). Such that:
i) F is p-concave.
ii) Every p-regular positive sublinear operators T : X �! F, is p-concave.
Proof.
ii) =) i) We put X = F and T = IdX .
i) =) ii) We suppose that F is p-concave, i.e.,
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8 f1, ..., fn 2 F,

 
n

∑
i=1
k fikp

! 1
p

� K


 

n

∑
i=1
j fijp

! 1
p
 .

For all x1, ..., xn in X,

 
n

∑
i=1
kT (xi)kp

! 1
p

� K


 

n

∑
i=1
jT (xi)jp

! 1
p


� K
0


 

n

∑
i=1
jxijp

! 1
p
 , K

0
= K kTk .

Then T is concave. �

Corollary 3.10. Every p-regular positive sublinear operators T : X �! Lp, 1 � p < ∞, is bounded.

Proof. It is easy.

Proposition 3.11. Let 1 < p < ∞. Then i)() ii). Such that:
i) E is p-convex.
ii) Every p-regular positive sublinear operators T : E �! Y, is p-convex.

Proof.
i) =) ii) We have, for all x1, ..., xn in E

 
n

∑
i=1
jT (xi)jp

! 1
p


Y

� kTk


 

n

∑
i=1
jxijp

! 1
p


E

, p-regular

� C kTk
 

n

∑
i=1
kxik

p
E

! 1
p

.

Then T is p-convex. The converse is obvious. �

4 Cohen p-nuclear positive sublinear operators

To conclude this section, we recall the definition of positive p-summing sublinear operators, which was first
stated in the linear case by Blasco in [7].

Definition 4.1. Let T : X �! F be a positive sublinear operator. We will say that T is “p-summing” (1 � p <
+∞) (we write T 2 SΠ+

p (X, F)), if there exists a positive constant C such that for all n 2 N and all fx1, ..., xng � X,
we have

k(T (xi))k`n
p(F) � C k(xi)k`nw

p (X) . (4.2)

We put π+p (T) = inffC verifying the inequality (4.2)g.

We introduce the following extension of the class of Cohen p-nuclear operators. We give the domination
theorem for such a category.

Definition 4.2. Let 1 < p < ∞. A positive sublinear operator T between X and F is p-nuclear if there is C > 0
such that for all n 2 N and x1, ..., xn in X, y�1 , ..., y�n in F�+ we have:
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����� n

∑
i=1



T (xi) , y�i

������ � C sup
x�2B+X�

 
n

∑
i=1
(jxij (x�))p dµ1 (x

�)

! 1
p

�

� sup
y��2B+F��

 
n

∑
i=1

�
y�i (y

��)
�p� dµ2 (y

��)

! 1
p�

(I)

We denote by n+p (T) the smallest constant C which verified the inequality (I), called p-nuclear norm on
SN+

p (X, F), the Banach space of all p-nuclear positive sublinear operators. If p = 1, we obtain the Banach
space of all 1-summing positive sublinear operators.

Theorem 4.3. (Composition theorem). Let X be a Banach space, E and F two Banach lattices. Let T be in
SB+ (X, E), u a positive operator in L (E, F) and v in L (Y, X) .

i) If T is Cohen p-nuclear, then u � T is p-nuclear positive sublinear operator and n+p (u � T) � kuk n+p (T) .
ii) If T is Cohen p-nuclear, then T � v is p-nuclear positive sublinear operator and n+p (T � v) � kvk n+p (T) .

Theorem 4.4. A positive sublinear operator between X, F is p-summing (1 � p < +∞), if, and only if, there exists
a positive constant C > 0 and a Borel probability µ on B+X� such that

kT (x)k � π+p (T)

0B@ Z
B+E�

(jxj (x�))p dµ (x�)

1CA
1
p

(4.3)

for every x 2 X. Moreover, in this case π+p (T) = inffC > 0: for all C verifying the inequality (4.3)g.
Proof. It is similar to the linear case (see [7]).

The main result of this section is the next theorem.

Theorem 4.5. Let T be a bounded positive sublinear operator from X into F. Then the two following properties are
equivalent.

1) The operator T is in SN+
p (X, F) .

2) There are some Banach space Z, a positive p-summing sublinear operator u : X �! Z and a positive strongly
p-summing operator v : Z �! F such that T = vu.

Proof. 1) =) 2) We consider the operator u0 : x 2 X �! hjxj , .i 2 Lp
�

B+X� , µ
�

, we notice that kTxk �
C ku0 (x)k, for all x 2 X, let Z be a closed subspace of Lp (µ) such that Z = u0 (X), and let u : X �! Z the
induite operator. Notice that u is a positive p-summing sublinear operator from X into Z with π+p (u) � 1.
We write T = vu, for some v 2 L (Z, F) . If y� 2 F�+, then

kv� (y�)k = sup fjhu (x) , v� (y�)ijg : ku (x)kp � 1

= sup jhT (x) , y�ij :
Z

B+X�

jhx�, jxjijp dµ (x�) � 1

� C

0B@ Z
B+F��

jhy��, y�ijp
�

dλ (y��)

1CA
1

P�

.

by Pietsch’s domination theorem for positive p-summing operators, v� 2 Π+
p� (F

�, Z�) and π+p� (v
�) � C. This

implies that v is a positive strongly p-summing operator, see [2, Theorem 4.6].

2) =) 1) It’s clear. �
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5 Applications

The main result of this section is the next extension of the Pietsch’s domination theorem to this class of
operators. For proof, we will use Theorem 4.5. In [6], Achour et al. used Ky Fan’s lemma to prove the
domination theorem.

Theorem 5.1. The following two conditions are equivalent.
1) T : X �! F is Cohen p-nuclear positive sublinear operator and n+p (T) � C.
2) There exists a constant C � 0 and two positives Radon measures µ1 on B+X� and µ2 on B+F�� , such that for all

x 2 E and y� 2 F�+, we have

jhT (x) , y�ij �

C

0B@ Z
B+X�

(jxj (x�))p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

(y� (y��))p� dµ2 (y
��)

1CA
1

p�

(J)

in this case

np (T) = inf fC > 0, for all C, verifying the inequality (J)g .

Proof. 2) =) 1) Letting x1, ..., xn 2 X and y�1 , ..., y�n 2 F�+ according to (J), we have

��
T (xi) , y�i
��� � C

0B@ Z
B+X�

(jxij (x�))p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

�
y�i (y

��)
�p� dµ2 (y

��)

1CA
1

p�

.

We deduce, ����� n

∑
i=1



T (xi) , y�i

������ �
� C

n

∑
i=1

0B@ Z
B+X�

(jxij (x�))p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

�
y�i (y

��)
�p� dµ2 (y

��)

1CA
1

p�

� C

0B@ n

∑
i=1

Z
B+X�

(jxij (x�))p dµ1 (x
�)

1CA
1
p
0B@ n

∑
i=1

Z
B+F��

�
y�i (y

��)
�p� dµ2 (y

��)

1CA
1

p�

� C sup
x�2B+X�

 
n

∑
i=1
(jxij (x�))p dµ1 (x

�)

! 1
p

sup
y��2B+F��

 
n

∑
i=1

�
y�i (y

��)
�p� dµ2 (y

��)

! 1
p�

This implies that T is a p-nuclear positive sublinear operator.
1) =) 2) If T 2 SN+

p (E, F) , thus, according to the above T = vu where u 2 SΠ+
p (E, Z) and v 2

D+p (Z, F)
h
v� 2 π+p� (F

�, Z�)
i

. by [6, Thm 2.4] and [2, Theorem 4.13] there exist a constant C > 0, two positive

Radon measures µ1 on B+E� and µ2 on B+F�� , endowed with their weak� topologies, such that for all x 2 E and
y� 2 F�+,

jhT (x) , y�ij = jhvu (x) , y�ij
= jhu (x) , v�(y�)ij
� ku (x)k kv� (y�)k

� C

0B@ Z
B+E�

(hjxj , x�i)p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

hy�, y��ip� dµ2 (y
��)

1CA
1

p�

.
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This was proven. �

Now we are ready to use the Grothendieck–Maurey theorem in the positive sublinear case.
Theorem 5.2. Let E, F and G be three Banach lattices where G is 2-concave space. Let T : C (K) �! E be 2-regular

positive sublinear operator, w : E �! F a positive 2-concave operator and a positive strongly p-summing operator
v : F �! G. Then vwT is Cohen 2-nuclear positive sublinear operator and n+2 (vwT) � d+2 (v)C+2 (w) ρ2 (T).

Proof. The operator wT is positive 2-summing sublinear [5, Theorem 3.6] and by Theorem 4.5, the operator
vwT is Cohen 2-nuclear positive sublinear. �

Proposition 5.3. We have

SN+
p (E, F) � SΠ+

p (E, F) and π+p (T) � n+p (T) .

Proof. Let T be an operator in SN+
p (E, F). For all x 2 E, we have

kT (x)k = sup
y�2B+F�

jhT (x) , y�ij

� sup
y�2B+F�

n+p (T)

0B@ Z
B+E�

(jxj (x�))p dµ1 (x
�)

1CA
1
p
0B@ Z

B+F��

(y� (y��))p� dµ2 (y
��)

1CA
1

p�

� n+p (T)

0B@ Z
B+E�

(jxj (x�))p dµ1 (x
�)

1CA
1
p

sup
y�2B+F�

ky�k

� n+p (T)

0B@ Z
B+E�

(jxj (x�))p dµ1 (x
�)

1CA
1
p

.

Then, T is a positive p-summing sublinear operator and π+p (T) � n+p (T) . �
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