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Abstract

In this paper, the extended tanh method is used to construct exact solutions of the generalized combined
sinh-cosh-Gordon equations and the generalized double combined sinh-cosh-Gordon equations which arises
in mathematical physics and has a wide range of scientific applications that range from chemical reactions to
water surface gravity waves. The extended tanh method is an efficient method for obtaining exact solutions
of nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as
to integrable ones.
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1 Introduction

Phenomena in physics and other fields are often described by nonlinear evolution equations. When we
want to understand the physical mechanism of phenomena in nature, described by nonlinear evolution equa-
tions, exact solutions for the nonlinear evolution equations have to be explored. For example, the wave phe-
nomena observed in fluid dynamics, plasma and elastic media and optical fibers, etc.
Thus, the methods for deriving exact solutions for the governing equations have to be developed. Recently,
many powerful methods have been established and improved. Among these methods, we cite the tanh and
extended tanh methods [1-9], (G′

G )-expansion method [10-13], the homogeneous balance method [14], the
Jacobi elliptic function method [15, 16], the exp-function method [17], the first-integral method [18-20], the
sine-cosine method [21] and so on.

The pioneer work Malfiet in [2, 3] introduced the powerful tanh method for a reliable treatment of the
nonlinear wave equations. The useful tanh method is widely used by many work and by the references
therein. Later, the extended tanh method, developed by Wazwaz [4, 5], is a direct and effective algebraic
method for handling nonlinear equations. Various extensions of the method were developed as well.
The aim of this paper is to find exact soliton solutions of the generalized combined and the generalized double
combined sinh-cosh-Gordon equations [22], by using the extended tanh method.
The paper is arranged as follows. In Section 2, we describe briefly the extended tanh method. In Section 3
and 4, we apply this method to find exact soliton solutions of the generalized combined and the generalized
double combined sinh-cosh-Gordon equations. In Section 5, some conclusions are given.
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2 The extended tanh method and tanh method

A PDE
F(u, ux, ut, uxx, uxt, uxxx, ....) = 0, (2.1)

can be converted to an ODE

G(u, u′, u′′, u′′′, ....) = 0, (2.2)

upon using a wave variable ξ = x − ct. Eq. (2.2) is then integrated as long as all terms contain derivatives
where integration constants are considered zeros.
Introducing a new independent variable

Y = tanh(µξ), ξ = x− ct, (2.3)

leads to the change of derivatives:
d

dξ
= µ(1−Y2)

d
dY

,

d2

dξ2 = −2µ2Y(1−Y2)
d

dY
+ µ2(1−Y2)2 d2

dY2 . (2.4)

The extended tanh method admits the use of the finite expansion

u(µξ) = S(Y) =
M

∑
k=0

akYk +
M

∑
k=1

bkY−k, (2.5)

where M is a positive integer, in most cases, that will be determined. Expansion (2.5) reduces to the standard
tanh method for bk = 0, (k = 1, ..., M). Substituting (2.5) into the ODE (2.2) results in an algebraic equation in
powers of Y.

To determine the parameter M, we usually balance the linear terms of highest order in the resulting equa-
tion with the highest order nonlinear terms. We then collect all coefficients of powers of Y in the resulting
equation where these coefficients have to vanish. This will give a system of algebraic equations involving
the parameters ak(k = 0, .., M), bk(k = 1, .., M), µ and c. Having determined these parameters we obtain an
analytic solution u(x, t) in a closed form.

3 The generalized combined sinh-cosh-Gordon equation

Let us consider the generalized combined sinh-cosh-Gordon equations

utt − kuxx + α sinh(nu) + β cosh(nu) = 0. (3.6)

Using the variable u(x, t) = u(µξ), ξ = x− ct, carries Eq. (3.6) into the ODE

(c2 − k)u′′ + α sinh(nu) + β cosh(nu) = 0. (3.7)

We use the Painleve property
v = enu, (3.8)

or equivalently

u =
1
n

lnv, (3.9)

from which we find

u′ =
1
n

v′

v
, u′′ =

1
n

vv′′ − (v′)2

v2 . (3.10)

The transformation (3.8) also gives

sinh(nu) =
v− v−1

2
, cosh(nu) =

v + v−1

2
, (3.11)
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that also gives

u =
1
n

arccosh[
v + v−1

2
]. (3.12)

Substituting the transformations introduced above into Eq. (3.7) gives the ODE

(α + β)nv3 − (α− β)nv + 2(c2 − k)vv′′ − 2(c2 − k)(v′)2 = 0. (3.13)

Balancing vv′′ with v3 in Eq. (3.13) gives
2M + 2 = 3M,

then
M = 2.

In this case, the extended tanh method the form (2.5) admits the use of the finite expansion

v(x, t) = S(Y) = a0 + a1Y + a2Y2 +
b1

Y
+

b2

Y2 . (3.14)

Substituting the form (3.14) into Eq. (3.13) and using (2.4), collecting the coefficients of Y we obtain:

Coefficient of Y6: n(α + β)a3
2 + 4(c2 − k)µ2a2

2.

Coefficient of Y5: 3n(α + β)a1a2
2 + 8(c2 − k)µ2a1a2.

Coefficient of Y4: 3n(α + β)(a0a2
2 + a2

1a2) + 2(c2 − k)µ2(6a0a2 + a2
1).

Coefficient of Y3: n(α + β)(3b1a2
2 + 6a0a1a2 + a3

1) + 4(c2 − k)µ2(a0a1 − a1a2 + 5a2b1).

Coefficient of Y2: 3n(α + β)(a0a2
1 + a2

0a2 + 2a1a2b1 + b2a2
2)− n(α− β)a2

+ 4(c2 − k)µ2(2a1b1 − 4a0a2 + 8a2b2 − a2
2).

Coefficient of Y1: 3n(α + β)(a2
0a1 + a2

1b1 + 2a0a2b1 + 2a1a2b2)− n(α− β)a1
+ 4(c2 − k)µ2(−a0a1 − a1a2 + 4a1b2 − 9a2b1).

Coefficient of Y0: 3n(α + β)(a2
1b2 + a2b2

1 + 2a0a1b1 + 2a0a2b2) + n(α + β)a3
0 − n(α− β)a0

2(c2 − k)µ2(2a0a2 + 2a0b2 − 32a2b2 − a2
1 − 8a1b1 − b2

1).

Coefficient of Y−1: 3n(α + β)(a2
0b1 + a1b2

1 + 2a0a1b1 + 2a2b1b2)− n(α− β)b1
+ 4(c2 − k)µ2(−a0b1 − b1b2 + 4a2b1 − 9a1b2).

Coefficient of Y−2: 3n(α + β)(a0b2
1 + a2

0b2 + 2a1b1b2 + a2b2
2)− n(α− β)b2

+ 4(c2 − k)µ2(2a1b1 − 4a0b2 + 8a2b2 − b2
2).

Coefficient of Y−3: n(α + β)(3a1b2
2 + 6a0b1b2 + b3

1) + 4(c2 − k)µ2(a0b1 − b1b2 + 5a1b2).

Coefficient of Y−4: 3n(α + β)(a0b2
2 + b2

1b2) + 2(c2 − k)µ2(6a0b2 + b2
1).

Coefficient of Y−5: 3n(α + β)b1b2
2 + 8(c2 − k)µ2b1b2.

Coefficient of Y−6: n(α + β)b3
2 + 4(c2 − k)µ2b2

2.

Setting these coefficients equal to zero, and solving the resulting system, by using Maple, we find the fol-
lowing sets of solutions:

a0 = 0, a1 = 0, a2 = −
√

α− β

α + β
, b1 = 0, b2 = 0, µ =

√
n

2

4
√

α2 − β2
√

c2 − k
. (3.15)
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a0 = 0, a1 = 0, a2 = 0, b1 = 0, b2 = −
√

α− β

α + β
, µ =

√
n

2

4
√

α2 − β2
√

c2 − k
. (3.16)

a0 =
1
2

√
α− β

α + β
, a1 = 0, a2 =

1
4

√
α− β

α + β
, b1 = 0, b2 =

1
4

√
α− β

α + β
, (3.17)

µ =

√
n

4

4
√

α2 − β2
√

c2 − k
.

Recall that

u =
1
n

arccosh[
v + v−1

2
].

The sets (3.15)-(3.17) give the solitons solutions for α > β, c2 > k

u1(x, t) =
1
n

arccosh{−(α− β) tanh2[µ(x− ct)]− (α + β) coth2[µ(x− ct)]
2
√

α2 − β2
}, (3.18)

u2(x, t) =
1
n

arccosh{−(α− β) coth2[µ(x− ct)]− (α + β) tanh2[µ(x− ct)]
2
√

α2 − β2
}, (3.19)

where µ =
√

n
2

4
√

α2−β2
√

c2−k
,

u3(x, t) =
1
n

arccosh{ (α− β)(2 + tanh2[µ(x− ct)] + coth2[µ(x− ct)])2 + 16(α + β)

8
√

α2 − β2(2 + tanh2[µ(x− ct)] + coth2[µ(x− ct)])
}, (3.20)

where µ =
√

n
4

4
√

α2−β2
√

c2−k
.

However for c2 < k, we obtain the travelling wave solutions

u4(x, t) =
1
n

arccosh{ (α− β) tan2[µ(x− ct)] + (α + β) cot2[µ(x− ct)]
2
√

α2 − β2
}, (3.21)

u5(x, t) =
1
n

arccosh{ (α− β) cot2[µ(x− ct)] + (α + β) tan2[µ(x− ct)]
2
√

α2 − β2
}, (3.22)

where µ =
√

n
2

4
√

α2−β2
√

c2−k
,

u6(x, t) =
1
n

arccosh{ (α− β)(2 + tan2[µ(x− ct)] + cot2[µ(x− ct)])2 + 16(α + β)

8
√

α2 − β2(2 + tan2[µ(x− ct)] + cot2[µ(x− ct)])
}, (3.23)

where µ =
√

n
4

4
√

α2−β2
√

c2−k
.

4 The generalized double combined sinh-cosh-Gordon equation

In this section we study the generalized double combined sinh-cosh-Gordon equation

utt − kuxx + α sinh(nu) + α cosh(nu) + β sinh(2nu) + β cosh(2nu) = 0. (4.24)

We take the transformation
u(x, t) = u(µξ), ξ = x− ct.

The substitution of the transformation into (4.24) yields the ODE

(c2 − k)u′′ + α sinh(nu) + α cosh(nu) + β sinh(2nu) + β cosh(2nu) = 0. (4.25)

We use the Painleve property
v = enu, (4.26)
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or equivalently

u =
1
n

lnv, (4.27)

from which we find

u′ =
1
n

v′

v
, u′′ =

1
n

vv′′ − (v′)2

v2 . (4.28)

The transformation (4.26) also gives

sinh(nu) =
v− v−1

2
, cosh(nu) =

v + v−1

2
, sinh(2nu) =

v2 − v−2

2
, (4.29)

cosh(2nu) =
v2 + v−2

2
,

that also gives

u =
1
n

arccosh[
v + v−1

2
]. (4.30)

Substituting the transformations introduced above into Eq. (4.25) gives the ODE

2βnv4 + 2αnv3 + 2(c2 − k)vv′′ − 2(c2 − k)(v′)2 = 0. (4.31)

Balancing vv′′ with v4 in Eq. (4.31) gives
2M + 2 = 4M,

then
M = 1.

In this case, the extended tanh method the form (2.5) admits the use of the finite expansion

v(x, t) = S(Y) = a0 + a1Y +
b1

Y
. (4.32)

Substituting the form (4.32) into Eq. (4.31) and using (2.4), collecting the coefficients of Y we obtain:

Coefficient of Y4: 2nβa4
1 + 2(c2 − k)µ2a2

1.

Coefficient of Y3: 2na3
1(4βa0 + α) + 4(c2 − k)µ2a0a1.

Coefficient of Y2: 8nβa3
1b1 + 6na0a2

1(2βa0 + α) + 8(c2 − k)µ2a1b1.

Coefficient of Y1: 6na2
1b1(4βa0 + α) + 2na2

0a1(4βa0 + 3α)− 4(c2 − k)µ2a0a1.

Coefficient of Y0: 2na3
0(βa0 + α)− 2(c2 − k)µ2(a2

1 + b2
1 + 8a1b1) + 12nβa1b1(2a2

0 + a1b1 + αna0).

Coefficient of Y−1: 6na1b2
1(4βa0 + α) + 2na2

0b1(4βa0 + 3α)− 4(c2 − k)µ2a0b1.

Coefficient of Y−2: 8nβb3
1a1 + 6na0b2

1(2βa0 + α) + 8(c2 − k)µ2a1b1.

Coefficient of Y−3: 2nb3
1(4βa0 + α) + 4(c2 − k)µ2a0b1.

Coefficient of Y−4: 2nβb4
1 + 2(c2 − k)µ2b2

1.

Setting these coefficients equal to zero, and solving the resulting system, by using Maple, we find the fol-
lowing sets of solutions:

a0 = − α

2β
, a1 = 0, b1 = ± α

2β
, µ = ±α

2

√
n

β(k− c2)
. (4.33)

a0 = − α

2β
, a1 = ± α

2β
, b1 = 0, µ = ±α

2

√
n

β(k− c2)
. (4.34)
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a0 = − α

2β
, a1 = ± α

4β
, b1 = ± α

4β
, µ = ±α

4

√
n

β(k− c2)
. (4.35)

Recall that

u =
1
n

arccosh[
v + v−1

2
].

The sets (4.33)-(4.35) give the soliton solutions

u1(x, t) =
1
n

arccosh{−α2(1± coth[µ(x− ct)])2 − 4β2

4αβ(1± coth[µ(x− ct)])
}, (4.36)

u2(x, t) =
1
n

arccosh{−α2(1± tanh[µ(x− ct)])2 − 4β2

4αβ(1± tanh[µ(x− ct)])
}, (4.37)

where µ = ± α
2

√
n

β(k−c2)
, k > c2.

u3(x, t) =
1
n

arccosh{−α2(2± tanh[µ(x− ct)]± coth[µ(x− ct)])2 − 16β2

8αβ(2± tanh[µ(x− ct)]± coth[µ(x− ct)])
}, (4.38)

where µ = ± α
4

√
n

β(k−c2)
.

However, for k < c2, complex solutions can be obtained that are not needed in this work.

5 Conclusion

In this paper, the extended tanh method has been successfully applied to find the exact solutions for the
generalized combined and the generalized double combined sinh-cosh-Gordon equations. The results indi-
cate the efficiency and reliability of the method. Thus, we can say that the proposed method can be extended
to solve the problems of nonlinear partial differential equations which arising in the theory of solitons and
other areas.
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