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Second kind shifted Chebyshev polynomials and power series method
for solving multi-order non-linear fractional differential equations
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Abstract

In this paper, we use shifted Chebyshev approximations with the second kind [25] and fractional power
series method (FPSM) ([3], [8]) to solve the multi-order non-linear fractional differential equations. The
fractional derivative is described in the Caputo sense. The properties of shifted Chebyshev polynomials with
the second kind are utilized to reduce multi-order NFDEs. The system of non-linear of algebraic equations
which solved by using Newton iteration method. We compared with FPSM. The results are compared with
the traditional methods [23].
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1 Introduction

Fractional differential equations have recently been applied in various area of engineering, science, finance,
applied mathematics, bio-engineering and others ([1], [4]). However, many researchers remain unaware of
this field using numerical different methods ([5], [9], [10], [11]-[14], [18], [20], [24], [26]).

The collocation methods in ([6], [7], [15], [23]) based on the Chebyshev polynomials for solving multi-term
linear and nonlinear fractional differential equations subject to non-homogeneous initial conditions.

The organization of this paper is as follows. In the next section, we give the definitions of fractional
derivatives in fractional calculus. In the section 3, we give the fractional power series method. In the section
4, we give some properties of Chebyshev polynomials of the second kind. In section 5, we procedure of
solution for the multi-order NFDEs. In section 6, numerical simulation and comparison are given to clarify
the method. Also a conclusion is given in section 7. Note that we have computed the numerical results using
Matlab programming.

Now, we describe some necessary definitions and mathematical preliminaries of the fractional calculus
theory required for our subsequent development.

2 Definitions of fractional derivative

Definition 2.1.

The Caputo fractional derivative operator Dα of order α is defined in the following form [19]

Dα f (x) =
1

Γ(m− α)

∫ x

0

f (m)(t)
(x− t)α−m+1 dt, α > 0,
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where m− 1 < α < m, m ∈N, x > 0.
Similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation

Dα (λ f (x) + µ g(x)) = λ Dα f (x) + µ Dα g(x),

where λ and µ are constants.
For the Caputo’s derivative we have [19]

Dα C = 0, C is a constant, (2.1)

Dα xn =

{
0, for n ∈N0 and n < dαe;

Γ(n+1)
Γ(n+1−α)

xn−α, for n ∈N0 and n ≥ dαe. (2.2)

We use the ceiling function dαe to denote the smallest integer greater than or equal to α. Also N0 = {0, 1, 2, ...}.
Recall that for α ∈N, the Caputo differential operator coincides with the usual differential operator of integer
order.
For more details on fractional derivatives definitions and its properties see ([16], [19], [21]).

The main goal in this article is concerned with the application of Chebyshev pseudo-spectral method for
the second kind [25] and Power series method [3] to obtain the numerical solution of multi-order fractional
differential equation of the form

Dαy(x) = F
(

x, y(x), Dβ1 y, ..., Dβn y
)

, (2.3)

with the following initial conditions
y(k)(0) = yk, k = 0, 1, ..., m, (2.4)

where m < α ≤ m + 1, 0 < β1 < β2 < ... < βn < α and Dα denotes Caputo fractional derivative of order α. It
should be noted that F can be nonlinear in general.

The main idea of this work is to apply the Chebyshev collocation method for the second kind to discretize
(2.3) to reduce multi-order NFDEs to a system of nonlinear of algebraic equations, and use Newton iteration
method to solve the resulting system.
Chebyshev polynomials of the second kind are well known family of orthogonal polynomials on the interval
[−1, 1] that have many applications ([2], [17], [22]). They are widely used because of their good properties in
the approximation of functions [17]. However, with our best knowledge, very little work was done to adapt
this polynomials to the solution of fractional differential equations.

3 Fractional power series method

In this section, we use fractional power series method (FPSM) ([3], [8]) to solve multi-order fractional
differential equation. Compared to the above method, the FPSM is more simple and effective.

Definition 3.2. ([3], [8])

A power series representation of the form

∞

∑
n=0

cn(t− t0)
nα = c0 + c1(t− t0)

α + c2(t− t0)
2α + · · · , (3.5)

where 0 ≤ m− 1 < α ≤ m, m ∈ N+ and t ≥ t0 is called a fractional power series (FPS) about t0 where t is a
variable and cn are the coefficients of the series.

Theorem 3.1. ([3], [8])

Suppose that the FPS ∑∞
n=0 cntnα has radius of convergence R > 0. If f (t) is a function defined by f (t) =

∑∞
n=0 cntnα, 0 ≤ t < R, then for m− 1 < α ≤ m and 0 < t ≤ R, we have

Dα f (t) =
∞

∑
n=1

cn
Γ(nα + 1)

Γ((n− 1)α + 1)
t(n−1)α. (3.6)

4 Some properties of Chebyshev polynomials of the second kind
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4.1 Chebyshev polynomials of the second kind

The Chebyshev polynomials Un(x)of the second kind are orthogonal polynomials of degree n in x defined on
the [−1, 1] ([17], [25])

Un(x) =
sin(n + 1)θ

sin θ

where x = cos θ and θ ∈ [0, π].
The polynomials Un(x) are orthogonal on [−1, 1] with respect to the inner products

(Un(x), Um(x)) =
∫ 1

−1

√
1− x2Un(x)Um(x)dx = {0, n 6=m,

π
2 , n=m, (4.7)

where
√

1− x2 is weight function.
Un(x) may be generated by using the recurrence relations

Un(x) = 2xUn−1(x)−Un−2(x), n = 2, 3, ...

with
U0(x) = 1. U1(x) = 2x.
The analytical form of the Chebyshev polynomials of the second kind Un(x) of degree n is given by:

Un(x) =
d π

2 e

∑
i=0

(−1)i(n−i
i )(2x)n−2i, n > 0

Using the properties of Gamma function the previous equation can be rewritten as:

Un(x) =
d π

2 e

∑
i=0

(−1)i2n−2i Γ(n− i + 1)x
n−2i

Γ(i + 1)Γ(n− 2i + 1)
, n > 0, (4.8)

where dπ
2 e denotes the integral part of n/2.

4.2 Shifted Chebyshev polynomials of the second kind

In order to use these polynomials on the interval x ∈ [0, 1] ([17], [25]). We define the so called shifted
Chebyshev polynomials of the second kind U∗n(x) by introducing the change variable z = 2x− 1. This means
that the shifted Chebyshev polynomials of the second kind defined as:

U∗n(x) = Un(2x− 1),

also there are important relation between the shifted and second kind Chebyshev polynomials as follows:

2xU∗n−1(x2) = U2n−1(x),

these polynomials are orthogonal on the support interval [0, 1] as the following inner product:

(U∗n(x), U∗m(x)) =
∫ 1

0

√
x− x2U∗n(x)U∗m(x)dx = {0, n 6=m,

π
8 , n=m, (4.9)

where
√

x− x2 is weight function.
U∗n(x) may be generated by using the recurrence relations

U∗n(x) = 2(2x− 1)U∗n−1(x)−U∗n−2(x), n = 2, 3, ...

with start values
U∗0 (x) = 1, U∗1 (x) = 4x− 2.
The analytical form of the shifted Chebyshev polynomials of the second kind U∗n(x) of degree n is given

by

U∗n(x) =
n

∑
i=0

(−1)i22n−2i Γ(2n− i + 2)x
n−i

Γ(i + 1)Γ(2n− 2i + 2)
, n > 0, (4.10)
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The function which may be appear in solution of the model problem (nonlinear multi-order fractional
differential equations) can be written as series of U∗(x).

Let g(x) be a square integrable in [0, 1] it can be expressed in terms of the shifted Chebyshev polynomials
of the second kind as follows:

g(x) =
∞

∑
i=0

aiU∗i (x), (4.11)

where the coefficients ai, i = 0, 1, ..., are given by:

ai =
2
π

∫ 1

−1
g(

x + 1
2

)
√

1− x2Ui(x)dx, (4.12)

or

ai =
8
π

∫ 1

0
g(x)

√
x− x2U∗i (x)dx, (4.13)

In practice, only the first (m+ 1) terms of shifted Chebyshev polynomials of the second kind are considered
in the approximate case. Then we have:

gm(x) =
m

∑
i=0

aiU∗i (x), (4.14)

The main approximate formula of the fractional derivative of gm(x) is given in the following theorem.

Theorem 4.2.

Let g(x) be approximated by shifted Chebyshev polynomials of the second kind as (4.14) and also suppose
α > 0, then

Dα(gm(x)) =
m

∑
i=dαe

i−dαe

∑
k=0

bi N(α)
i, k xi−k−α, (4.15)

where N(α)
i, k is given by

N(α)
i, k = (−1)k 22i−2k (2n + 1)Γ(2i− k + 1)Γ(i− k + 1)

Γ(k + 1)Γ(2i− 2k + 2)Γ(i− k + 1− α)
. (4.16)

Proof. see([25]).

5 Procedure of solution for the multi-order NFDEs

Consider the multi-order nonlinear fractional differential equation of type given in Eq.(2.3). In order to
use Chebyshev collocation method for the second kind, we first approximate y(x) as

ym(x) =
m

∑
i=0

ci U∗i (x). (5.17)

From Eqs.(2.3), (5.17) and Theorem 2 we have

m

∑
i=dαe

i−dαe

∑
k=0

ci N(α)
i, k xi−k−α =

F

x,
m

∑
i=0

ci U∗i (x),
m

∑
i=dβ1e

i−dβ1e

∑
k=0

ci N(β1)
i, k xi−k−β1 , ...,

m

∑
i=dβne

i−dβne

∑
k=0

ci N(βn)
i, k xi−k−βn

 ,

(5.18)

we now collocate Eq.(5.18) at (m + 1− dαe) points xp as

m

∑
i=dαe

i−dαe

∑
k=0

ci N(α)
i, k xi−k−α

p =

F

xp,
m

∑
i=0

ci U∗i (xp),
m

∑
i=dβ1e

i−dβ1e

∑
k=0

ci N(β1)
i, k xi−k−β1

p , ...,
m

∑
i=dβne

i−dβne

∑
k=0

ci N(βn)
i, k xi−k−βn

p

 .

(5.19)
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For suitable collocation points we use roots of shifted Chebyshev polynomial U∗m+1−dαe(x).
Also, by substituting Eqs.(5.17) in the initial conditions, we can find dαe equations. By substituting Eqs.(5.17)
in the initial conditions (2.4) we obtain

m

∑
i=0

(−1)i ci = 0,
m

∑
i=0

ciU∗(k)(0) = 0, k = 1, 2, ..., m (5.20)

Equation (5.19), together with dαe equations of the initial conditions (5.20), give (m + 1) of nonlinear algebraic
equations which can be solved, for the unknown ci, i = 0, 1, ..., m, using Newton iteration method, as described
in the following section.

6 large Numerical simulation and comparison

In this section, we implement the proposed method to solve the muti-order NFDEs (2.3)-(2.4) with different
two examples.

Example 1

Consider the following nonlinear initial value problem [23]

D3y(x) + D2.5y(x) + y2(x) = x4, (6.21)

with the following initial conditions

y(0) = y′(0) = 0, y′′(0) = 2. (6.22)

6.1 SCP2K

We apply the suggested method with m = 3, and approximate the solution y(x) as follows

y3(x) =
3

∑
i=0

ci U∗i (x). (6.23)

Using Eq.(5.19), α = 2, β1 = 1.5, and for p = 0, we have

m

∑
i=dαe

i−dαe

∑
k=0

ci N(α)
i, k xi−k−α

p +
m

∑
i=dβ1e

i−dβ1e

∑
k=0

ci N(β1)
i, k xi−k−β1

p +

(
m

∑
i=0

ci U∗i (xp)

)2

= x4
p, (6.24)

where xp are roots of the shifted Chebyshev polynomial for the second kind U∗1 (x), i.e., x0 = 0.5.
By using Eqs.(6.24) and (5.20) we obtain the following nonlinear system of algebraic equations

c3(N(α)
3,0 + N(β1)

3,0 x0.5
0 ) + (s0c0 + s1c1 + s2c2 + s3c3)

2 = x4
0, (6.25)

c1 − c1 + c2 − c3 = 0, (6.26)

k0c0 + k1c1 + k2c2 + k3c3 = 0, (6.27)

r0c0 + r1c1 + r2c2 + r3c3 = 2, (6.28)

where
si = U∗i (x0), ki = U∗(1)i (0), ri = U∗(2)i (0).

By solving Eqs.(6.25)-(6.28) we obtain

c0 =
3
8

, c1 =
4
8

, c2 =
1
8

, c3 = 0.

Therefore

y(x) =
( 3

8 , 4
8 , 1

8 , 0
)

1
2x− 1

8x2 − 8x + 1
32x3 − 48x2 + 18x− 1

 = x2,

which is the exact solution of this problem [23].
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Figure 4.1. Comparison between the exact solution and the numerical solution.

From this Figure 4.1, we can conclude that the numerical results are excellent agreement with the exact
solution. Also, it is evident that the overall errors can be made smaller by adding new terms from the series
(5.17).

6.2 FPSM

To apple FPSM, we suppose that the solution the form

y(x) =
∞

∑
k=0

akxαk = a0 + a1xα + a2x2α + .... (6.29)

y2(x) = (
∞

∑
k=0

akxαk)2 = (a0 + a1xα + a2x2α + ...)2 (6.30)

= a2
0 + 2a0a1xα + (2a0a2 + a2

1)x2α + 2a1a2x3α + a2
2x4α + ...

D3y(x) = α(α− 1)(α− 2)a1xα−3 + 2α(2α− 1)(2α− 2)a2x2α−3 + ... (6.31)

by theorem 1

Dαy(x) =
∞

∑
k=1

ak
Γ(kα + 1)

Γ((k− 1)α + 1)
xα(k−1) (6.32)

the equation (6.21) can be written as

D2.5y(x) = x4 − D3y(x)− y2(x) (6.33)

substituting (6.30), (6.31), (6.32) into (6.33)and comparing the cofficients of xα,we get

∞
∑

k=1
ak

Γ(kα+1)
Γ((k−1)α+1) xα(k−1) =

x4 − (α(α− 1)(α− 2)a1xα−3 + 2α(2α− 1)(2α− 2)a2x2α−3 + ...)

−(a2
0 + 2a0a1xα + (2a0a2 + a2

1)x2α + 2a1a2x3α + a2
2x4α + ...)
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using initial condition y(o) = 0

we have a0 = y(0) = 0

Next, we determine the ak(k = 1, 2, ...).
For example, if a0 = 0 then
a1Γ(α + 1) = x4 − a0

a1 =
x4

Γ(α + 1)
a2 = 0
therefore we obtain the approximate solution of equation

y(x) =
∞

∑
k=0

akxαk = 0 +
x4

Γ(α + 1)
xα + 0 + ...

Example 2

In this example, we consider the following nonlinear differential equation [23]

D4y(x) + D3.5y(x) + y3(x) = x9, (6.34)

subject to the initial conditions
y(k)(0) = 0, k = 0, 1, 2, 3. (6.35)

6.3 SCP2K

To solve the above problem, by applying the proposed technique described in Section 5 with m = 4, we
approximate the solution as

y(x) = c0U∗0 (x) + c1U∗1 (x) + c2U∗2 (x) + c3U∗3 (x) + c4U∗4 (x).

Using Eq.(5.19), α = 4, β1 = 3.5, and for p = 0, we have

m

∑
i=dαe

i−dαe

∑
k=0

ci N(α)
i, k xi−k−α

p +
m

∑
i=dβ1e

i−dβ1e

∑
k=0

ci N(β1)
i, k xi−k−β1

p +

(
m

∑
i=0

ci U∗i (xp)

)3

= x9
p, (6.36)

where xp are roots of the shifted Chebyshev polynomial for the second kind U∗1 (x), i.e., x0 = 0.5.
By using Eqs.(6.36) and (5.20) we obtain the following nonlinear system of algebraic equations

c4

(
N(α)

4,0 + N(β1)
4,0 x0.5

0

)
+ (s0c0 + s1c1 + s2c2 + s3c3 + s4c4)

3 = x9
0, (6.37)

c1 − c1 + c2 − c3 + c4 = 0, (6.38)

k0c0 + k1c1 + k2c2 + k3c3 + k4c4 = 0, (6.39)

r0c0 + r1c1 + r2c2 + r3c3 + r4c4 = 0, (6.40)

z0c0 + z1c1 + z2c2 + z3c3 + z4c4 = 0, (6.41)

where
si = U∗i (x0), ki = U∗(1)i (0), ri = U∗(2)i (0), zi = U∗(3)i (0).

By solving Eqs.(6.37)-(6.41) we obtain

c0 =
10
32

, c1 =
15
32

, c2 =
6

32
, c3 =

1
32

, c4 = 0.

Therefore

y(x) =
( 10

32 , 15
32 , 6

32 , 1
32 , 0

)


1
2x− 1

8x2 − 8x + 1
32x3 − 48x2 + 18x− 1

128x4 − 256x3 + 160x2 − 32x + 1

 = x3,

which is the exact solution of this problem [23].
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Figure 4.2. Comparison between the exact solution and the numerical solution.

From this Figure 4.2, we can conclude that the numerical results are excellent agreement with the exact
solution. Also, it is evident that the overall errors can be made smaller by adding new terms from the series
(5.17).

6.4 FPSM

To apple FPSM,we suppose that the solution the form

y(x) =
∞

∑
k=0

akxαk = a0 + a1xα + a2x2α + ..., (6.42)

y3(x) = (
∞

∑
k=0

akxαk)3 = (a0 + a1xα + a2x2α + ...)3, (6.43)

= a3
0 + 3a2

0a1xα + (3a2
0a2 + 3a0a2

1)x2α + (6a0a1a2 + a3
1)x3α

+(3a2
1a2 + 3a0a2

2)x4α + 3a1a2
2x5α + a3

2x6α + ...

D4y(x) = α(α− 1)(α− 2)(α− 3)a1xα−4 + 2α(2α− 1)(2α− 2)(2α− 3)a2x2α−4 + ..., (6.44)

by theorem

Dαy(x) =
∞

∑
k=0

ak
Γ(kα + 1)

Γ((k− 1)α + 1)
xα(k−1), (6.45)

the equation(6.34)can be written as

D3.5y(x) = x9 − D4y(x)− y3(x), (6.46)

substituting (6.43),(6.44),(6.45) into (6.46)and comparing the cofficients of xα,we get

∞
∑

k=1
ak

Γ(kα+1)
Γ((k−1)α+1) xα(k−1) =
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x9 − [α(α− 1)(α− 2)(α− 3)a1xα−4 + 2α(2α− 1)(2α− 2)(2α− 3)a2x2α−4 + ...]
−[a3

0 + 3a2
0a1xα + (3a2

0a2 + 3a0a2
1)x2α + (6a0a1a2 + a3

1)x3α +

+(3a2
1a2 + 3a0a2

2)x4α + 3a1a2
2x5α + a3

2x6α + ...]

using initial condition yk(o) = 0

we have a0 = y(0) = 0

Next, we determine the ak(k = 1, 2, ...).
For example, if a0 = 0 then
a1Γ(α + 1) = x9 − a3

0

a1 =
x9

Γ(α + 1)

therefore we obtain the approximate solution of equation

y(x) =
∞

∑
k=0

akxαk = 0 +
x9

Γ(α + 1)
xα + ....

7 Conclusion

In this paper, we use shifted Chebyshev approximations with the second kind [25] and fractional power
series method (FPSM) ([3], [8]) to solve the multi-order nonlinear fractional differential equations. The
properties of the shifted Chebyshev polynomials for the second kind are used to reduce the nonlinear
multi-order fractional differential equations to the solution of non-linear system of algebraic equations. The
resulting system is solved by using Newton iteration method. The fractional derivative is considered in the
Caputo sense. From the solutions obtained using the suggested method, we can conclude that these
solutions are in excellent agreement with the already existing ones and show that this approach can be solve
the problem effectively. Comparisons are made between approximate solutions and exact solutions and
other methods to illustrate the validity and the great potential of the technique. All numerical results are
obtained using Matlab 12b.
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