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Abstract

Using ideas from [15], some nonlinear integral inequalities on time scales in two independent variables
are established. Also, some examples are presented to show the feasibility of these results.
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1 Introduction

During the few years, a lot of research related to studies and the extension of some fundamental integral
inequalities used in the theory of differential and integral equations on time scales. For example, we refer
the reader to the papers [1-5, 8-19]. The purpose of this note is to illustrate some time scale Pachpatte-
type inequalities by extending some continuous inequalities given in [15]. Inequalities of this form have in
particular dominated the study of certain classes of integral equations on time scales. Throughout this work
a knowledge and understanding of time scales notation is assumed; for an excellent bibliography to the time
scales, see monographs of M. Bohner [6, 7] for a general review.

2 Preliminaries on time scales

In this section, we begin by giving some necessary materials for our study.
A time scale T is an arbitrary nonempty closed subset of R where R is the set of real numbers. The forward

jump operator σ on T is defined by σ(t) := inf {s ∈ T : s > t} ∈ T for all t ∈ T, Crd denotes the set of rd-
continuous functions and the set Tk which is derived from the time scale T as follows: If T has a left-scattered
maximum m, then Tk = T− {m}. Otherwise, Tk = T.

Throughout this paper, we always assume that T1and T2 are time scales, and consider the time scales
intervals T1 = [a1, ∞) ∩ T1 and T2 = [a2, ∞) ∩ T2, for a1 ∈ T1, and a2 ∈ T2, Ω denote the set T1 × T2.we
write x∆1s(s, t) the partial delta derivative of x(s, t) with respect to the first variable and x∆2t(t, s) for the
second variable.

Lemma 2.1. [13, lemma 2] Assume that a ≥ 0, p ≥ q ≥ 0 and p 6= 0, then

a
q
p ≤ q

p
K

q−p
p a +

p− q
p

K
q
p , (2.1)

for any K > 0.
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Lemma 2.2. [11, Theorem 2.1] Let u (t1, t2) , a (t1, t2) , f (t1, t2) ∈ C
(
T1 ×T2, R+

0
)

with a (t1, t2) nondecreasing in
each of its variables. If

u (t1, t2) ≤ a (t1, t2) +
∫ t1

a1

∫ t2

a2

f (s1, s2) u (s1, s2)∆2s2∆1s1, (2.2)

for (a1, a2), (t1, t2) ∈ T1 ×T2, then

u (t1, t2) ≤ a (t1, t2) e∫ t2
a2

f (t1,s2) ∆2s2
(t1, a1) , (t1, t2) ∈ T1 ×T2 (2.3)

where T1, T2 are time scales and T1 = [a1, ∞) ∩T1, T2 = [a2, ∞) ∩T2

Lemma 2.3. [6, Theorem 1.117] Let a ∈ Tk , b ∈ T and assume f : T× Tk → R is continuous at (t, t), where
t ∈ Tk with t > a. Also assume that f ∆(t, .) is rd-continuous on [a, σ(t)]. Suppose that for each ε > 0 there exists a
neighborhood U of t, independent of τ ∈ [a, σ(t)], such that∣∣∣ f (σ(t), τ)− f (s, τ)− f ∆(t, τ)(σ(t)− s)

∣∣∣ < ε |σ(t)− s| for all s ∈ U,

where f ∆ denotes the derivative of f with respect to the first variable. Then

(i) g(t) :=
t∫
a

f (t, τ)∆τ implies g∆(t) =
t∫
a

f ∆(t, τ)∆τ + f (σ(t), t);

Now we state the main results of this work.

3 Main result

Theorem 3.1. Let u(x, y), f (x, y) be nonnegative functions defined for (x, y) ∈ Ω that are right-dense continuous for
(x, y) ∈ Ω, and L(x, y, s, t) ∈ Crd (Ω×Ω, R+) . c, p, q, r ∈ R+

0 such that p ≥ q > 0, p ≥ r > 0.Let g : R+→R+ is
a differentiable increasing function on ]0,+∞[ with continuous decreasing first derivative on ]0,+∞[. If

up(x, y) ≤ c +
∫ x

x0

∫ y

y0

f (s, t)
[

uq(s, t) +
∫ s

s0

∫ t

t0

L(s, t, τ, η)g(ur(τ, η))∆2η∆1τ

]
∆2t∆1s , (3.4)

hold for all (x, y) ∈ Ω, then

u(x, y) ≤
{

P(x, y)e∫ y
y0

Q(τ,η) ∆2η(x, x0)

} 1
p

, (3.5)

where

P (x, y) = c +
∫ x

x0

∫ y

y0

f (s, t)
[

p− q
p

K
q
p
+ g(

p− r
p

K
r
p
)
∫ s

s0

∫ t

t0

L(s, t, τ, η)∆2η∆1τ

]
∆2t∆1s, (3.6)

Q(s, t) = f (s, t)

[
q
p

K
q−p

p
+

r
p

g′(
p− r

p
K

r
p
)K

r−p
p
∫ s

s0

∫ t

t0

L(s, t, τ, η)∆2η∆1τ

]
, (3.7)

and K > 0.

Proof. Define a function z(x, y) as follows

z(x, y) = c +
∫ x

x0

∫ y

y0

f (s, t)
[

uq(s, t) +
∫ s

s0

∫ t

t0

L(s, t, τ, η)g(ur(τ, η))∆2η∆1τ

]
∆2t∆1s (3.8)

then
z(x0, y) = z(x, y0) = c (3.9)

and
up(x, y) ≤ z(x, y) (3.10)
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then (3.10) implies

u(x, y) ≤ z
1
p (x, y) ≤ 1

p
K

1−p
p

z(s, t) +
p− 1

p
K

1
p

, (3.11)

using (3.11) in (3.8), we get

z(x, y) ≤ c +
∫ x

x0

∫ y

y0

f (s, t)
[

z
q
p (s, t) +

∫ s

s0

∫ t

t0

L(s, t, τ, η)g(z
r
p (τ, η))∆2η∆1τ

]
∆2t∆1s. (3.12)

By Lemma 2.1, the inequality (3.12) become

z(x, y) ≤ c +
∫ x

x0

∫ y

y0

f (s, t)

[
q
p

K
q−p

p
z(s, t) +

p− q
p

K
q
p

+
∫ s

s0

∫ t

t0

L(s, t, τ, η)g

(
r
p

K
r−p

p
z(τ, η) +

p− r
p

K
r
p

)
∆2η∆1τ

]
∆2t∆1s,

(3.13)

Applying the mean value theorem for the function g, then for every x1 ≥ y1 > 0, there exists c ∈]y1, x1[

such that

g(x1)− g(y1) = ǵ(c)(x1 − y1) ≤ ǵ(y1)(x1 − y1),

the inequality (3.13) can be rewrite as follows

z(x, y) ≤ c +
∫ x

x0

∫ y

y0

f (s, t)
[

p− q
p

K
q
p
+ g(

p− r
p

K
r
p
)
∫ s

s0

∫ t

t0

L(s, t, τ, η)∆2η∆1τ

]
∆2t∆1s (3.14)

+
∫ x

x0

∫ y

y0

f (s, t)z(s, t)

[
q
p

K
q−p

p
+

r
p

K
r−p

p
g′(

p− r
p

K
r
p
)
∫ s

s0

∫ t

t0

L(s, t, τ, η)∆2η∆1τ

]
∆2t∆1s,

replace (3.6) and (3.7) in (3.14), we obtain

z(x, y) ≤ P(x, y) +
∫ x

x0

∫ y

y0

Q(s, t)z(s, t)∆2t∆1s, (3.15)

using Lemma 2.2 for (3.15), we get

z(x, y) ≤ P(x, y)e∫ y
y0

Q(s,t)∆2t (x, x0) . (3.16)

The required inequality (3.5) follows from (3.11) and (3.16) .

Remark 3.1. If we take g(x) = x, Theorem 3.1 will be reduced to Theorem 3.1 in [15].

Theorem 3.2. Assume that u(x, y), f (x, y) are nonnegative functions defined for (x, y) ∈ Ω, that are right-dense
continuous for (x, y) ∈ Ω, and L(x, y, s, t) ∈ Crd (Ω×Ω, R+) .Let g1 and g2 : R+→R+ are a differentiable increasing
functions on ]0,+∞[ with continuous decreasing first derivative on ]0,+∞[. If

up(x, y) ≤ c +
∫ x

x0

∫ y

y0

f (s, t)
[

g1(u(s, t)) +
∫ s

s0

∫ t

t0

L(s, t, τ, η)g2(u(τ, η))∆2η∆1τ

]
∆2t∆1s , (3.17)

hold for all (x, y) ∈ Ω, then

u(x, y) ≤
{

P∗(x, y)e∫ y
y0

Q∗(τ,η) ∆2η(x, x0)

} 1
p

(3.18)

where

P∗ (x, y) = c +
∫ x

x0

∫ y

y0

f (s, t)
[

g1(
p− 1

p
K

1
p
) + g2(

p− 1
p

K
1
p
)
∫ s

s0

∫ t

t0

L(s, t, τ, η)∆2η∆1τ

]
∆2t∆1s (3.19)

Q∗(s, t) = f (s, t)

[
1
p

K
1−p

p
g′1(

p− 1
p

K
1
p
) +

1
p

K
1−p

p
g′2(

p− 1
p

K
1
p
)
∫ s

s0

∫ t

t0

L(s, t, τ, η)∆2η∆1τ

]
. (3.20)

For K > 0 .
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Proof. Define a function z(x, y) as follows

z(x, y) = c +
∫ x

x0

∫ y

y0

f (s, t)

[
g1(u(s, t))+∫ s

s0

∫ t
t0

L(s, t, τ, η)g2(u(τ, η))∆2η∆1τ

]
∆2t∆1s , (3.21)

Applying the mean value theorem for the functions g1 and g2, from (3.11) and (3.21), we obtain

z (x, y) ≤ c +
∫ x

x0

∫ y

y0

f (s, t)

 g1(
1
p K

1−p
p z(τ, η) + p−1

p K
1
p
)+∫ s

s0

∫ t
t0

L(s, t, τ, η)g2(
1
p K

1−p
p z(τ, η) + p−1

p K
1
p
)∆2η∆1τ

∆2t∆1s. (3.22)

The above inequality can be reformulated as

z (x, y) ≤ P∗(x, y) +
∫ x

x0

∫ y

y0

Q∗(s, t)z(s, t)∆2t∆1s, (3.23)

where P∗ and Q∗ are defined by (3.19)-(3.20).
Using Lemma 2, from (3.23) we obtain

u(x, y) ≤
{

P∗(x, y)e∫ y
y0

Q∗(τ,η) ∆2η(x, x0)

} 1
p

. (3.24)

The required inequality (3.18) follow from (3.11) and (3.24).

Remark 3.2. If we take g1(x) = x, Theorem 3.2 will be reduced to Theorem 3.1 for q = r = 1.

4 An Application

In this section we give an application of Theorem 3.1 . We consider the following partial dynamic equation
on time scales

(up(x, y))∆2y∆1x = F(x, y, uq(x, y),
∫ x

x0

∫ y

y0

h(s, t, τ, η, u(τ, η))∆η∆τ), (4.25)

with the initial boundary conditions

u(x, y0) = α(x), u(x0, y) = β(y), α(0) = β(0) = 0. (4.26)

where u ∈ Crd(Ω, R), h ∈ Crd(Ω×Ω×R, R) and F ∈ Crd(Ω×R×R, R) .

Proposition 4.1. Assume that

|h(x, y, s, t, u(s, t)| ≤ L(x, y, s, t) arctan(|u(s, t)|r)
|F(x, y, u, v)| ≤ f (x, y)(|u|+ |v|),
|α(x) + β(y)| ≤ c, (4.27)

where L, f , c, p, q, r are defined as in Theorem 3.1.

If u(x, y) is a solution of (4.25)-(4.26), then

u(x, y) ≤
{

P(x, y)e∫ y
y0

Q(τ,η) ∆η(x, x0)

} 1
p

, (4.28)

where P(x, y), Q(x, y) are defined as in (3.6)-(3.7) respectively ( by replacing g(x) by arctan(x) and g′(x) by
1

1+x2 ).
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Proof. The solution u(x, y) can be written as

up(x, y) = α(x) + β(y) +
∫ x

x0

∫ y

y0

F(s, t, uq(s, t),
∫ s

s0

∫ t

t0

h(s, t, τ, η, u(τ, η))∆2η∆1τ)∆2t∆1s, (4.29)

using (4.27) in (4.29), we have

|up(x, y)| ≤ c +
∫ x

x0

∫ y

y0

f (s, t)(|uq(s, t)|+
∫ s

s0

∫ t

t0

L(s, t, τ, η) arctan |u(τ, η)|r ∆2η∆1τ)∆2t∆1s, (4.30)

Now, a suitable application of Theorem 3.1 for (4.30), yields the inequality (4.28).

Remark 4.3. We can also replace the function arctan(|u(s, t)|r) by ln(|u(s, t)|r + 1) in (4.27) to obtain another
estimate of the solution of (4.25)− (4.26).
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