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Abstract

In this paper, the authors introduce a new class of generalized α regular-interior and generalized α regular-
closure in topological spaces. Some characterizations and several properties concerning generalized α regular-
interior and generalized α regular-closure are obtained.
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1 Introduction

Levine introduced generalized closed sets in topology as a generalization of closed sets. This concept
was found to be useful and many results in general topology were improved. Many researchers like Arya
et al[5], Balachandran et al[6], Bhattarcharya et al[7], Arockiarani et al[4], Gnanambal [8], Nagaveni[14] and
Palaniappan et al[15] have worked on generalized closed sets. Andrjivic[3] gave a new type of generalized
closed set in topological space called b closed sets. A.A.Omari and M.S.M. Noorani [2] made an analytical
study and gave the concepts of generalized b closed sets in topological spaces.

Sekar and Mariappa [18] gave rgb-interior and rgb-closure in topological spaces. In this paper, the notion
of gαr-interior is defined and some of its basic properties are investigated. Also we introduce the idea of gαr-
closure in topological spaces using the notions of gαr-closed sets and obtain some related results. Through
out this paper (X, τ) and (Y, σ) represent the non-empty topological spaces on which no separation axioms
are assumed, unless otherwise mentioned. Let A ⊆ X, the closure of A and interior of A will be denoted by
cl(A) and int(A) respectively, union of all gαr-open sets X contained in A is called gαr-interior of A and it is
denoted by gαrint(A), the intersection of all gαr-closed sets of X containing A is called gαr-closure of A and
it is denoted by gαrcl(A) [17].

2 Preliminaries

Definition 2.1. Let a subset A of a topological space (X, τ), is called

1) a α-open set [13] if A ⊆ int(cl(int(A))).

2) a generalised-closed set (briefly g-closed) [10] if cl(A) ⊆ U whenever A ⊆ U and U is open.

3) a weakly-closed set(briefly w-closed) [16] if cl(A) ⊆ U whenever A ⊆ U and U is semi open.
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4) a generalized ∗-closed set (briefly g∗-closed) [20] if cl(A) ⊆ U whenever A ⊆ U and U is g-open in X.

5) a generalized α-closed set (briefly gα-closed)[12] if αcl(A) ⊆ U whenever A ⊆ U and U is α open in X.

6) an α generalized-closed set (briefly αg-closed)[11] if αcl(A) ⊆ U whenever A ⊆ U and U is open in X.

7) a generalized b- closed set (briefly gb- closed) [1] if bcl(A) ⊆ U whenever A ⊆ U and U is open in X.

8) a semi generalized b-closed set (briefly sgb- closed) [9] if bcl(A) ⊆ U whenever A ⊆ U and U is semi open in X.

9) a generalized αb- closed set (briefly gαb- closed) [19] if bcl(A) ⊆ U whenever A ⊆ U and U is α open in X.

10) a regular generalized b- closed set (briefly rgb- closed) [13] if bcl(A) ⊆ U whenever A ⊆ U and U is regular open
in X.

11) a generalized pre regular-closed set (briefly gpr-closed) [8] if pcl(A) ⊆ U whenever A ⊆ U and U is regular open
in X.

12) a generalized α regular-closed set (briefly gαr-closed) [17] if αcl(A) ⊆ U whenever A ⊆ U and U is regular open in
X.

3 Generalized α regular - interior in Topological space

Definition 3.2. Let A be a subset of X. A point x ∈ A is said to be gαr - interior point of A is A is a gαr - neighbourhood
of x. The set of all gαr - interior points of A is called the gαr - interior of A and is denoted by gαr− int(A).

Theorem 3.1. If A be a subset of X. Then gαr− int(A) = {∪G : G is a gαr - open, G ⊂ A}.

Proof. Let A be a subset of X.

x ∈ gαr− int(A) ⇔ x is a gαr− interior point of A

⇔ A is a gαr - nbhd of point x

⇔ there exists gαr - open set G such that x ∈ G ⊂ A

⇔ x ∈ {∪G : G is a gαr-open , G ⊂ A}
Hence gαr− int(A) = {∪G : G is a gαr-open , G ⊂ A}

Theorem 3.2. Let A and B be subsets of X. Then

(i) gαr− int(X) = X and gαr− int(ϕ) = ϕ.

(ii) gαr− int(A) ⊂ A.

(iii) If B is any gαr - open set contained in A, then B ⊂ gαr− int(A).

(iv) If A ⊂ B, then gαr− int(A) ⊂ gαr− int(B).

(v) gαr− int
(

gαr− int(A)
)
= gαr− int(A).

Proof. (i) Since X and ϕ are gαr open sets, by Theorem 3.2

gαr− int(X) = {∪G : G is a gαr - open, G ⊂ X}
= X ∪ { all gαr open sets }
= X

(i.e.,) gαr int(X) = X. Since ϕ is the only gαr - open set contained in ϕ, gαr− int(ϕ) = ϕ.
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(ii) Let x ∈ gαr− int(A)

x ∈ gαr− int(A) ⇒ x is a interior point of A.

⇒ A is a nbhd of x.

⇒ x ∈ A

Thus, x ∈ gαr− int(A) ⇒ x ∈ A

Hence gαr− int(A) ⊂ A.

(iii) Let B be any gαr - open sets such that B ⊂ A. Let x ∈ B. Since B is a gαr - open set contained in A. x is a
gαr - interior point of A.
(i.e.,) x ∈ gαr− int(A). Hence B ⊂ gαr− int(A).

(iv) Let A and B be subsets of X such that A ⊂ B. Let x ∈ gαr− int(A). Then x is a gαr - interior point of A
and so A is a gαr - nbhd of x. Since B ⊃ A, B is also gαr - nbhd of x ⇒ x ∈ gαr− int(B). Thus we have
shown that x ∈ gαr− int(A)⇒ x ∈ gαr− int(B).

(v) Proof is obvious.

Theorem 3.3. If a subset A of space X is gαr - open, then gαr− int(A) = A.

Proof. Let A be gαr - open subset of X. We know that gαr− int(A) ⊂ A. Also, A is gαr - open set contained in
A. From Theorem 3.3 (iii) A ⊂ gαr− int(A). Hence gαr− int(A) = A.

The converse of the above theorem need not be true, as seen from the following example.

Example 3.1. Let X = {a, b, c} with τ = {X, ϕ, {b}, {c}, {b, c}}. Then
gαr−O(X) = {X, ϕ, {a}, {b}, {c}, {b, c}}. gαr− int({a, c} = {a} ∪ {c} ∪ {ϕ} = {a, c}. But {a, c} is not gαr -
open set in X.

Theorem 3.4. If A and B are subsets of X, then
gαr− int(A) ∪ gαr− int(B) ⊂ gαr− int(A ∪ B).

Proof. We know that A ⊂ A ∪ B and B ⊂ A ∪ B. We have Theorem 3.3 (iv) gαr− int(A) ⊂ gαr− int(A ∪ B),
gαr− int(B) ⊂ gαr− int(A ∪ B). This implies that gαr− int(A) ∪ gαr− int(B) ⊂ gαr− int(A ∪ B).

Theorem 3.5. If A and B are subsets of X, then
gαr− int(A ∩ B) = gαr− int(A) ∩ gαr− int(B).

Proof. We know that A ∩ B ⊂ A and A ∩ B ⊂ B. We have
gαr− int(A ∩ B) ⊂ gαr− int(A) and gαr− int(A ∩ B) ⊂ gαr− int(B).
This implies that

gαr− int(A ∩ B) ⊂ gαr− int(A) ∩ gαr− int(B). (3.1)

Again let x ∈ gαr − int(A) ∩ gαr − int(B). Then x ∈ gαr − int(A) and x ∈ gαr − int(B). Hence x is a gαr -
int point of each of sets A and B. It follows that A and B is gαr - nbhds of x, so that their intersection A ∩ B
is also a gαr - nbhds of x. Hence x ∈ gαr − int(A ∩ B). Thus x ∈ gαr − int(A) ∩ gαr − int(A) implies that
x ∈ gαr− int(A ∩ B). Therefore

gαr− int(A) ∩ gαr− int(B) ⊂ gαr− int(A ∩ B) (3.2)

From (3.1) and (3.2),
We get gαr− int(A ∩ B) = gαr− int(A) ∩ gαr− int(B).

Theorem 3.6. If A is a subset of X, then int(A) ⊂ gαr− int(A).
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Proof. Let A be a subset of X.

Let x ∈ int(A) ⇒ x ∈ {∪G : G is open, G ⊂ A}
⇒ there exists an open set G

such that x ∈ G ⊂ A

⇒ there exist a gαr - open set G

such that x ∈ G ⊂ A, as every open set is

a gαr - open set in X

⇒ x ∈ {∪G : G is gαr - open, G ⊂ A}
⇒ x ∈ gαr− int(A)

Thus x ∈ int(A) ⇒ x ∈ gαr− int(A)

Hence int(A) ⊂ gαr− int(A).

This completes the proof.

Remark 3.1. Containment relation in the above theorem may be proper as seen from the following example.

Example 3.2. Let X = {a, b, c} with τ = {X, ϕ, {b}, {c}, {b, c}}. Then
gαr −O(X) = {X, ϕ, {a}, {b}, {c}, {b, c}}. Let A = {b, c}. Now gαr − int(A) = {b, c} and int(A) = {b}. It
follows that int(A) ⊂ gαr− int(A) and int(A) 6= gαr− int(A).

Theorem 3.7. If A is a subset of X, then g− int(A) ⊂ gαr − int(A), where g− int(A) is given by g− int(A) =

∪{G : G is g - open, G ⊂ A}.

Proof. Let A be a subset of X.

Let x ∈ int(A) ⇒ x ∈ {∪G : G is g - open, G ⊂ A}
⇒ there exists an g - open set G

such that x ∈ G ⊂ A

⇒ there exist a gαr - open set G

such that x ∈ G ⊂ A, as every g open set

is a gαr - open set in X

⇒ x ∈ {∪G : G is gαr - open, G ⊂ A}
⇒ x ∈ gαr− int(A)

Hence g− int(A) ⊂ gαr− int(A).

This completes the proof.

Remark 3.2. Containment relation in the above theorem may be proper as seen from the following example.

Example 3.3. Let X = {a, b, c} with τ = {X, ϕ, {a}, {b, c}}. Then gαr −O(X) = {X, ϕ, {a}, {b, c}}. and g -
open (X) = {X, ϕ, {a}, {b}, {a, b}}. Let A = {b, c}, gαr− int(A) = {b, c} and g− int(A) = {b}. It follows that
g− int(A) ⊂ gαr− int(A) and g− int(A) 6= gαr− int(A).

4 Generalized α regular - closure in Topological space

Definition 4.3. Let A be a subset of a space X. We define the gαr - closure of A to be the intersection of all gαr - closed
sets containing A.
In symbols, gαr− cl(A) = {∩F : A ⊂ F ∈ gαrc(X)}.

Theorem 4.8. If A and B are subsets of a space X. Then

(i) gαr− cl(X) = X and gαr− cl(ϕ) = ϕ

(ii) A ⊂ gαr− cl(A)
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(iii) If B is any gαr - closed set containing A, then gαr− cl(A) ⊂ B

(iv) If A ⊂ B then gαr− cl(A) ⊂ gαr− cl(B)

Proof. (i) By the definition of gαr - closure, X is the only gαr - closed set containing X. Therefore gαr −
cl(X) = Intersection of all the gαr - closed sets containing X = ∩{X} = X. That is gαr − cl(X) = X.
By the definition of gαr - closure, gαr − cl(ϕ) = Intersection of all the gαr - closed sets containing ϕ =

{ϕ} = ϕ. That is gαr− cl(ϕ) = ϕ.

(ii) By the definition of gαr - closure of A, it is obvious that A ⊂ gαr− cl(A).

(iii) Let B be any gαr - closed set containing A. Since gαr − cl(A) is the intersection of all gαr - closed
sets containing A, gαr − cl(A) is contained in every gαr - closed set containing A. Hence in particular
gαr− cl(A) ⊂ B.

(iv) Let A and B be subsets of X such that A ⊂ B. By the definition
gαr − cl(B) = {∩F : B ⊂ F ∈ gαr − c(X)}. If B ⊂ F ∈ gαr − c(X), then gαr − cl(B) ⊂ F. Since
A ⊂ B, A ⊂ B ⊂ F ∈ gαr− c(X),
we have gαr − cl(A) ⊂ F. Therefore gαr − cl(A) ⊂ {∩F : B ⊂ Fgαr − c(X)} = gαr − cl(B). (i.e.,)
gαr− cl(A) ⊂ gαr− cl(B).

Theorem 4.9. If A ⊂ X is gαr - closed, then gαr− cl(A) = A.

Proof. Let A be gαr - closed subset of X. We know that A ⊂ gαr− cl(A). Also A ⊂ A and A is gαr - closed.
By Theorem 4.2 (iii) gαr− cl(A) ⊂ A. Hence gαr− cl(A) = A.

Remark 4.3. The converse of the above theorem need not be true as seen from the following example.

Example 4.4. Let X = {a, b, c} with topology τ = {X, ϕ, {b}, {b, c}}. Then gαr − C(X) = {X, ϕ, {a}, {b, c}}.
gαr− cl({c}) = {b, c}. But {c} is not gαr - closed set in X.

Theorem 4.10. If A and B are subsets of a space X, then
gαr− cl(A ∩ B) ⊂ gαr− cl(A) ∩ gαr− cl(B).

Proof. Let A and B be subsets of X. Clearly A ∩ B ⊂ A and A ∩ B ⊂ B. By Theorem gαr − cl(A ∩ B) ⊂
gαr− cl(A) and gαr− cl(A ∩ B) ⊂ gαr− cl(B). Hence gαr− cl(A ∩ B) ⊂ gαr− cl(A) ∩ gαr− cl(B).

Theorem 4.11. If A and B are subsets of a space X then
gαr− cl(A ∪ B) = gαr− cl(A) ∪ gαr− cl(B).

Proof. Let A and B be subsets of X. Clearly A ⊂ A ∪ B and B ⊂ A ∪ B. We have

gαr− cl(A) ∪ gαr− cl(B) ⊂ gαr− cl(A ∪ B) (4.3)

Now to prove gαr− cl(A ∪ B) ⊂ gαr− cl(A) ∪ gαr− cl(B).
Let x ∈ gαr − cl(A ∪ B) and suppose x /∈ gαr − cl(A) ∪ gαr − cl(B) . Then there exists gαr - closed sets A1
and B1 with A ⊂ A1, B ⊂ B1 and x /∈ A1 ∪ B1. We have A ∪ B ⊂ A1 ∪ B1 and A1 ∪ B1 is gαr - closed set by
Theorem such that x /∈ A1 ∪ B1. Thus x /∈ gαr − cl(A ∪ B) which is a contradiction to x ∈ gαr − cl(A ∪ B).
Hence

gαr− cl(A ∪ B) ⊂ gαr− cl(A) ∪ gαr− cl(B) (4.4)

From (4.3) and (4.4), we have gαr− cl(A ∪ B) = gαr− cl(A) ∪ gαr− cl(B).

Theorem 4.12. For an x ∈ X, x ∈ gαr− cl(A) if and only if V ∩ A 6= ϕ for every gαr - open sets V containing x.

Proof. Let x ∈ X and x ∈ gαr− cl(A). To prove V ∩ A 6= ϕ for every gαr - open set V containing x.
Prove the result by contradiction. Suppose there exists a gαr - open set V containing x such that V ∩ A = ϕ.
Then A ⊂ X − V and X − V is gαr-closed. We have gαr− cl(A) ⊂ X − V. This shows that x /∈ gαr− cl(A),
which is a contradiction. Hence V ∩ A 6= ϕ for every gαr - open set V containing x.
Conversely, let V ∩ A = ϕ for every gαr - open set V containing x. To prove x ∈ gαr − cl(A). We prove
the result by contradiction. Suppose x /∈ gαr − cl(A). Then x ∈ X − F and S − F is gαr - open. Also
(X− F) ∩ A = ϕ, which is a contradiction. Hence x ∈ gαr− cl(A).



120 S. Sekar et al. / On generalized α regular-interior and generalized α regular-closure in Topological Spaces

Theorem 4.13. If A is a subset of a space X, then gαr− cl(A) ⊂ cl(A).

Proof. Let A be a subset of a space S. By the definition of closure,
cl(A) =

{
∩ F : A ⊂ F ∈ C(X)

}
. If A ⊂ F ∈ C(X), Then A ⊂ F ∈ gαr − C(X), because every closed set

is gαr - closed. That is gαr − cl(A) ⊂ F. Therefore gαr − cl(A) ⊂
{
∩ F ⊂ X : F ∈ C(X)

}
= cl(A). Hence

gαr− cl(A) ⊂ cl(A).

Theorem 4.14. If A is a subset of X, then gαr− cl(A) ⊂ g− cl(A), where g− cl(A) is given by g− cl(A) = {∩F ⊂
X : A ⊂ F and f is a g - closed set in X}.

Proof. Let A be a subset of X. By definition of g− cl(A) = {∩F ⊂ X : A ⊂ F and f is a g - closed set in X}.
If A ⊂ F and F is g - closed subset of x, then A ⊂ F ∈ gαr − cl(X), because every g closed is gαr - closed
subset in X. That is gαr− cl(A) ⊂ F. Therefore gαr− cl(A) ⊂ {∩F ⊂ X : A ⊂ F and f is a g - closed set in
X} = g− cl(A). Hence gαr− cl(A) ⊂ g− cl(A).

Corollary 4.1. Let A be any subset of X. Then

(i)
(

gαr− int(A)
)c

= gαr− cl(Ac)

(ii) gαr− int(A) =
(

gαr− cl(Ac)
)c

(iii) gαr− cl(A) =
(

gαr− int(Ac)
)c

Proof. (i) Let x ∈
(

gαr − int(A)
)c. Then x /∈ gαr − int(A). That is every gαr - open set U containing x is

such that U not subset of A. That is every gαr - open set U containing x is such that U ∩ Ac 6= ϕ. By
Theorem x ∈

(
gαr− cl(Ac)

)
and therefore

(
gαr− int(A)

)c ⊂ gαr− cl(Ac).
Conversely, let x ∈ gαr − cl(Ac). Then by theorem, every gαr - open set U containing x is such that
U ∩ Ac 6= ϕ. That is every gαr - open set U containing x is such that U not subset of A. This implies
by definition of gαr - interior of A, x /∈ gαr − int(A). That is x ∈

(
gαr − int(A)

)c and gαr − cl(Ac) ⊂(
gαr− int(A)

)c. Thus
(

gαr− int(A)
)c

= gαr− cl(Ac).

(ii) Follows by taking complements in (i).

(iii) Follows by replacing A by Ac in (i).
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