Malaya Journal of Matematik		¢:
	 an international journal of mathematical sciences with computer applications...	
www.malayajournal.org		ISSN : 2319-3786

Generalized Ulam - Hyers Stability of on (AQQ): Additive - Quadratic Quartic Functional Equation

John M. Rassias ${ }^{a}$, M. Arunkumar ${ }^{b}$, E.Sathya ${ }^{c}$, N. Mahesh Kumar ${ }^{d}$ *
${ }^{a}$ Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, Athens 15342, Greece.
${ }^{b, c}$ Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
${ }^{d}$ Department of Mathematics, Arunai Engineering College, Tiruvannamalai - 606 603, TamilNadu, India.

Abstract

In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of an (AQQ): additive - quadratic - quartic functional equation of the form $$
\begin{aligned} f(x+y+z) & +f(x+y-z)+f(x-y+z)+f(x-y-z) \\ = & 2[f(x+y)+f(x-y)+f(y+z)+f(y-z)+f(x+z)+f(x-z)] \\ & -4 f(x)-4 f(y)-2[f(z)+f(-z)] \end{aligned}
$$

by using the classical Hyers' direct method. Counter examples for non stability are discussed also.
Keywords: Additive functional equations, Quadratic functional equations, Quartic functional equations, Mixed type functional equations, Ulam - Hyers stability, Ulam - Hyers - Rassias stability, Ulam - Gavruta - Rassias stability, Ulam - JMRassias stability.

2010 MSC: 39B52, 32B72, 32B82.
(C) 2016 MJM. All rights reserved.

1 Introduction

One of the most interesting questions in the theory of functional equations concerning the famous Ulam stability problem is, as follows: when is it true that a mapping satisfying a functional equation approximately, must be close to an exact solution of the given functional equation?

The first stability problem was raised by S.M. Ulam [35] during his talk at the University of Wisconsin in 1940. In fact we are given a group $\left(G_{1}, \cdot\right)$ and let $\left(G_{2}, *\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$, such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x \cdot y), h(x) * h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$?
D.H. Hyers [16] gave the first affirmative partial answer to the question of Ulam for Banach spaces. It was further generalized via excellent results obtained by a number of authors [3, 12, 26, 30, 33].

The solution and stabilities of the following functional equations

1. Additive Functional Equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1.1}
\end{equation*}
$$

*Corresponding author.
E-mail addresses: jrassias@primedu.uoa.gr (John M. Rassias), annarun2002@yahoo.co.in (M. Arunkumar), sathya24mathematics@gmail.com (E.Sathya), mrnmahesh@yahoo.com (N. Mahesh Kumar).
2. Quadratic Functional Equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.2}
\end{equation*}
$$

3. Cubic Functional Equation

$$
\begin{equation*}
g(x+2 y)+3 g(x)=3 g(x+y)+g(x-y)+6 g(y) \tag{1.3}
\end{equation*}
$$

4. Quartic Functional Equation

$$
\begin{equation*}
F(x+2 y)+F(x-2 y)+6 F(x)=4[F(x+y)+F(x-y)+6 F(y)] \tag{1.4}
\end{equation*}
$$

5. Additive - Quadratic Functional Equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+2 f(2 x)-4 f(x) . \tag{1.5}
\end{equation*}
$$

6. Additive - Cubic Functional Equation

$$
\begin{align*}
& 3 f(x+y+z)+f(-x+y+z)+f(x-y+z)+f(x+y-z) \\
& \quad+4[f(x)+f(y)+f(z)]=4[f(x+y)+f(x+z)+f(y+z)] \tag{1.6}
\end{align*}
$$

7. Additive - Quartic Functional Equation

$$
\begin{align*}
f(2 x+y)+f(2 x-y)=4[& f(x+y)+f(x-y)]+12[f(x)+f(-x)] \\
& -3[f(y)+f(-y)]-2[f(x)-f(-x)] \tag{1.7}
\end{align*}
$$

8. Additive-Quadratic - Cubic Functional Equation

$$
\begin{equation*}
f(x+k y)+f(x-k y)=k^{2}[f(x+y)+f(x-y)]+2\left(1-k^{2}\right) f(x) \tag{1.8}
\end{equation*}
$$

were investigated by [1], [21], [28], [27], [22], [29], [8], [13] and references cited there in.
Motivated by the above results, in this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of additive - quadratic - quartic functional equations

$$
\begin{align*}
f(x+y+z)+ & f(x+y-z)+f(x-y+z)+f(x-y-z) \\
=2[f(x+y) & +f(x-y)+f(y+z)+f(y-z)+f(x+z)+f(x-z)] \\
& -4 f(x)-4 f(y)-2[f(z)+f(-z)] \tag{1.9}
\end{align*}
$$

having solution

$$
\begin{equation*}
f(x)=a x+b x^{2}+c x^{4} \tag{1.10}
\end{equation*}
$$

using Hyers direct method.

2 General Solution for the Functional Equation (1.9)

In this section, we present the solution of the functional equation 1.9. Throughout this section let \mathcal{G} and \mathcal{H} be real vector spaces.

Theorem 2.1. Let $f: \mathcal{G} \rightarrow \mathcal{H}$ be an odd mapping. Then $f: \mathcal{G} \rightarrow \mathcal{H}$ satisfies the functional equation 1.9p for all $x, y, z \in \mathcal{G}$, if and only if $f: \mathcal{G} \rightarrow \mathcal{H}$ satisfies the functional equation (1.1) for all $x, y \in \mathcal{G}$.

Proof. Assume $f: \mathcal{G} \rightarrow \mathcal{H}$ be an odd mapping satisfying 1.9). Replacing (x, y, z) by $(0,0,0)$, we get $f(0)=0$. Again replacing (x, y, z) by $(0, x, x)$ and (x, y, z) by (x, x, x) in 1.9$)$, we obtain

$$
\begin{equation*}
f(2 x)=2 f(x) \quad f(3 x)=3 f(x) \tag{2.1}
\end{equation*}
$$

for all $x \in \mathcal{G}$. In general for any positive integer m, we have

$$
f(m x)=m f(x)
$$

for all $x \in \mathcal{G}$. Putting z by x in $\sqrt{1.9}$, using oddness of f and (2.1), we get

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4 f(x+y)-4 f(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathcal{G}$. Setting x by $\frac{x}{2}$ in 2.2 and using 2.1), we have

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x+2 y)-4 f(y) \tag{2.3}
\end{equation*}
$$

for all $x, y \in \mathcal{G}$. Interchanging x and y in (2.3) and using oddness of f, we get

$$
\begin{equation*}
f(x+y)-f(x-y)=2 f(2 x+y)-4 f(x) \tag{2.4}
\end{equation*}
$$

for all $x, y \in \mathcal{G}$. Replacing y by $-y$ in (2.4), we obtain

$$
\begin{equation*}
f(x-y)-f(x+y)=2 f(2 x-y)-4 f(x) \tag{2.5}
\end{equation*}
$$

for all $x, y \in \mathcal{G}$. Adding $(2.4$ and 2.5 , we arrive

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4 f(x) \tag{2.6}
\end{equation*}
$$

for all $x, y \in \mathcal{G}$. Using (2.6) in (2.2), we derive our desired result.
Conversely, assume $f: \mathcal{G} \rightarrow \mathcal{H}$ be an odd mapping satisfying (1.1). Letting y by $y+z$ in (1.1) and using (1.1), we have

$$
\begin{equation*}
f(x+y+z)=f(x)+f(y)+f(z) \tag{2.7}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Setting z by $-z$ in (2.7), we arrive

$$
\begin{equation*}
f(x+y-z)=f(x)+f(y)+f(-z) \tag{2.8}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Replacing (x, y) by $(x+y, z)$ in 1.1), we get

$$
\begin{equation*}
f(x+y+z)=f(x+y)+f(z) \tag{2.9}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Again replacing z by $-z$ in (2.9), we obtain

$$
\begin{equation*}
f(x+y-z)=f(x+y)+f(-z) \tag{2.10}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Setting y by $-y$ in (2.9), we get

$$
\begin{equation*}
f(x-y+z)=f(x-y)+f(z) \tag{2.11}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Again setting z by $-z$ in (2.11, we obtain

$$
\begin{equation*}
f(x-y-z)=f(x-y)+f(-z) \tag{2.12}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Adding (2.9), (2.10), (2.11), (2.12) and using oddness of f, we arrive

$$
\begin{equation*}
f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z)=2 f(x+y)+2 f(x-y) \tag{2.13}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Replacing (x, y, z) by (y, z, x) in 2.13) and using oddness of f, we get

$$
\begin{equation*}
f(x+y+z)-f(x-y-z)+f(x+y-z)-f(x-y+z)=2 f(y+z)+2 f(y-z) \tag{2.14}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Replacing (x, y, z) by (x, z, y) in 2.13 and using oddness of f, we obtain

$$
\begin{equation*}
f(x+y+z)+f(x-y+z)+f(x+y-z)+f(x-y-z)=2 f(x+z)+2 f(x-z) \tag{2.15}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Adding $2.13,(2.14$ and 2.15$)$, we arrive

$$
\begin{align*}
& 3 f(x+y+z)+3 f(x+y-z)+f(x-y+z)+f(x-y-z) \\
& =2[f(x+y)+f(x-y)+f(y+z)+f(y-z)+f(x+z)+f(x-z)] \tag{2.16}
\end{align*}
$$

for all $x, y, z \in \mathcal{G}$. It follows from 2.16 that

$$
\begin{gather*}
f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z) \\
=2[f(x+y)+f(x-y)+f(y+z)+f(y-z)+f(x+z)+f(x-z)] \\
-2[f(x+y+z)+f(x+y-z)] \tag{2.17}
\end{gather*}
$$

for all $x, y, z \in \mathcal{G}$. Using $2.7,2.8$ in 2.17 , we arrive

$$
\begin{align*}
& f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z) \\
&=2[f(x+y)+f(x-y)+f(y+z)+f(y-z)+f(x+z)+f(x-z)] \\
&-2[f(x)+f(y)+f(z)+f(x)+f(y)+f(-z)] \\
&=2[f(x+y)+f(x-y)+f(y+z)+f(y-z)+f(x+z)+f(x-z)] \\
&-4 f(x)-4 f(y)-2[f(z)+f(-z)] \tag{2.18}
\end{align*}
$$

for all $x, y, z \in \mathcal{G}$. Hence the proof is complete.
Lemma 2.1. Let $f: \mathcal{G} \rightarrow \mathcal{H}$ be an odd mapping. Then $f: \mathcal{G} \rightarrow \mathcal{H}$ satisfies the functional equation (1.9) for all $x, y, z \in \mathcal{G}$, if and only if $f: \mathcal{G} \rightarrow \mathcal{H}$ satisfies the functional equation 1.1)

Proof. Assume $f: \mathcal{G} \rightarrow \mathcal{H}$ be an odd mapping satisfying 1.9 . Replacing (x, y) by $(0,0)$, we get $f(0)=0$. Again replacing x by 0 in (1.9) and using oddness of f, we obtain

$$
\begin{equation*}
f(y+z)+f(y-z)=2 f(y) \tag{2.19}
\end{equation*}
$$

for all $y, z \in \mathcal{G}$. By Theorem 2.1 of [4], we derive our desired result.
Theorem 2.2. If $f: \mathcal{G} \rightarrow \mathcal{H}$ is an even mapping satisfying the functional equation 1.9p for all $x, y, z \in \mathcal{G}$, then f is quadratic-quartic for all $x, y \in \mathcal{G}$.

Proof. Replacing z by x in 1.9 , we arrive

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4[f(x+y)+f(x-y)]+2[f(2 x)-4 f(x)]-6 f(y) \tag{2.20}
\end{equation*}
$$

By Lemma 2.1 of [14], we see that f is quadratic-quartic.
Theorem 2.3. Let $f: \mathcal{G} \rightarrow \mathcal{H}$ be an even mapping. Then $f: \mathcal{G} \rightarrow \mathcal{H}$ satisfies (1.9) for all $x, y, z \in \mathcal{G}$ if and only if there exist a unique symmetric multiadditive mapping $M: \mathcal{G}^{4} \rightarrow \mathcal{H}$ and a unique symmetric bi-additive mapping $B: \mathcal{G}^{2} \rightarrow \mathcal{H}$ such that

$$
\begin{equation*}
f(x)=M(x, x, x, x)+B(x, x) \tag{2.21}
\end{equation*}
$$

for all $x \in \mathcal{G}$.
Proof. The proof follows from Theorem 2.2 and Theorem 2.2 of [14], we derive our desired result.
The following Lemmas are important to prove our stability results.
Lemma 2.2. If $f: \mathcal{G} \rightarrow \mathcal{H}$ is an odd mapping satisfying (1.9), then

$$
\begin{equation*}
f(2 x)=2 f(x) \tag{2.22}
\end{equation*}
$$

for all $x \in \mathcal{G}$, such that f is additive.

Proof. Letting (x, y, z) by $(0,0,0)$ in 1.9 , we get $f(0)=0$. Replacing (x, y, z) by (x, x, x) in 1.9 and using oddness of f, we obtain

$$
\begin{equation*}
f(3 x)=6 f(2 x)-9 f(x) \tag{2.23}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Again replacing (x, y, z) by $(-x, x, x)$ in 1.9) and using oddness of f, we get

$$
\begin{equation*}
f(3 x)=2 f(2 x)-f(x) \tag{2.24}
\end{equation*}
$$

for all $x \in \mathcal{G}$. It follows from (2.23) and (2.24), we derive our desired result.
Lemma 2.3. If $f: \mathcal{G} \rightarrow \mathcal{H}$ is an even mapping satisfying 1.9) and if $q_{2}: \mathcal{G} \rightarrow \mathcal{H}$ is a mapping given by

$$
\begin{equation*}
q_{2}(x)=f(2 x)-16 f(x) \tag{2.25}
\end{equation*}
$$

for all $x \in \mathcal{G}$, then

$$
\begin{equation*}
q_{2}(2 x)=4 q_{2}(x) \tag{2.26}
\end{equation*}
$$

for all $x \in \mathcal{G}$, such that q_{2} is quadratic.
Proof. Letting (x, y, z) by (x, x, x) in 1.9 , we get

$$
\begin{equation*}
f(3 x)=6 f(2 x)-15 f(x) \tag{2.27}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Again replacing (x, y, z) by $(x, x, 2 x)$ in 1.9 and using evenness of f, we have

$$
\begin{equation*}
f(4 x)=4 f(3 x)-4 f(2 x)-4 f(x) \tag{2.28}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Using 2.27 in 2.28 , we get

$$
\begin{equation*}
f(4 x)=20 f(2 x)-64 f(x) \tag{2.29}
\end{equation*}
$$

for all $x \in \mathcal{G}$. From 2.25 , we establish

$$
\begin{equation*}
q_{2}(2 x)-4 q_{2}(x)=f(4 x)-20 f(2 x)+64 f(x) \tag{2.30}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Using 2.29 in 2.30 , we derive our desired result.
Lemma 2.4. If $f: \mathcal{G} \rightarrow \mathcal{H}$ is an even mapping satisfying (1.9) and if $q_{4}: \mathcal{G} \rightarrow \mathcal{H}$ is a mapping given by

$$
\begin{equation*}
q_{4}(x)=f(2 x)-4 f(x) \tag{2.31}
\end{equation*}
$$

for all $x \in \mathcal{G}$, then

$$
\begin{equation*}
q_{4}(2 x)=16 q_{4}(x) \tag{2.32}
\end{equation*}
$$

for all $x \in \mathcal{G}$, such that q_{4} is quartic.
Proof. It follows from 2.31) that

$$
\begin{equation*}
q_{4}(2 x)-16 q_{4}(x)=f(4 x)-20 f(2 x)+64 f(x) \tag{2.33}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Using 2.29 in 2.33 , we derive our desired result.
Remark 2.1. Let $f: \mathcal{G} \rightarrow \mathcal{H}$ be a mapping satisfying 1.9) and let $q_{2}, q_{4}: \mathcal{G} \rightarrow \mathcal{H}$ be a mapping defined in 2.25) and (2.31) then

$$
\begin{equation*}
f(x)=\frac{1}{12}\left(q_{4}(x)-q_{2}(x)\right) \tag{2.34}
\end{equation*}
$$

for all $x \in \mathcal{G}$.
Hereafter, through out this paper, let we consider \mathcal{G} be a normed space and \mathcal{H} be a Banach space. Define a mapping $D f: \mathcal{G} \rightarrow \mathcal{H}$ by

$$
\begin{gathered}
D f(x, y, z)=f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z) \\
-2[f(x+y)+f(x-y)+f(y+z)+f(y-z)+f(x+z)+f(x-z)] \\
-4 f(x)-4 f(y)-2[f(z)+f(-z)]
\end{gathered}
$$

for all $x, y, z \in \mathcal{G}$.

3 Stability Results: Odd Case

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation 1.9 for odd case.

Theorem 3.1. Let $j= \pm 1$ and $\psi, \xi: \mathcal{G}^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(2^{n j} x, 2^{n j} y, 2^{n j} z\right)}{2^{n j}}=0 \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Let $f_{a}: \mathcal{G} \rightarrow \mathcal{H}$ be an odd function satisfying the inequality

$$
\begin{equation*}
\left\|D f_{a}(x, y, z)\right\| \leq \psi(x, y, z) \tag{3.2}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique additive mapping $A: \mathcal{G} \rightarrow \mathcal{H}$ which satisfies (1.9) and

$$
\begin{equation*}
\left\|f_{a}(x)-A(x)\right\| \leq \frac{1}{2} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\xi\left(2^{k j} x\right)}{2^{k j}} \tag{3.3}
\end{equation*}
$$

where $\xi\left(2^{k j} x\right)$ and $A(x)$ are defined by

$$
\begin{equation*}
\xi\left(2^{k j} x\right)=\frac{1}{4}\left[\psi\left(2^{k j} x, 2^{k j} x, 2^{k j} x\right)+\psi\left(-2^{k j} x, 2^{k j} x, 2^{k j} x\right)\right] \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
A(x)=\lim _{n \rightarrow \infty} \frac{f_{a}\left(2^{n j} x\right)}{2^{n j}} \tag{3.5}
\end{equation*}
$$

for all $x \in \mathcal{G}$, respectively.
Proof. Replacing (x, y, z) by (x, x, x) in 3.2 and using oddness of f_{a}, we get

$$
\begin{equation*}
\left\|f_{a}(3 x)-6 f_{a}(2 x)+9 f_{a}(x)\right\| \leq \psi(x, x, x) \tag{3.6}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Again replacing (x, y, z) by $(-x, x, x)$ in 3.2 and using oddness of f_{a}, we obtain

$$
\begin{equation*}
\left\|-f_{a}(3 x)+2 f_{a}(2 x)-f_{a}(x)\right\| \leq \psi(-x, x, x) \tag{3.7}
\end{equation*}
$$

for all $x \in \mathcal{G}$. It follows form (3.6) and (3.7) that

$$
\begin{align*}
\left\|8 f_{a}(x)-4 f_{a}(2 x)\right\| & \leq\left\|f_{a}(3 x)-6 f_{a}(2 x)+9 f_{a}(x)\right\|+\left\|-f_{a}(3 x)+2 f_{a}(2 x)-f_{a}(x)\right\| \\
& \leq \psi(x, x, x)+\psi(-x, x, x) \tag{3.8}
\end{align*}
$$

for all $x \in \mathcal{G}$. Dividing the above inequality by 8 , we obtain

$$
\begin{equation*}
\left\|\frac{f_{a}(2 x)}{2}-f_{a}(x)\right\| \leq \frac{\xi(x)}{2} \tag{3.9}
\end{equation*}
$$

where

$$
\xi(x)=\frac{1}{4}[\psi(x, x, x)+\psi(-x, x, x)]
$$

for all $x \in \mathcal{G}$. Now replacing x by $2 x$ and dividing by 2 in (3.9), we get

$$
\begin{equation*}
\left\|\frac{f_{a}\left(2^{2} x\right)}{2^{2}}-\frac{f_{a}(2 x)}{2}\right\| \leq \frac{\xi(2 x)}{2 \cdot 2} \tag{3.10}
\end{equation*}
$$

for all $x \in \mathcal{G}$. From (3.9) and (3.10), we obtain

$$
\begin{align*}
\left\|\frac{f_{a}\left(2^{2} x\right)}{2^{2}}-f_{a}(x)\right\| & \leq\left\|\frac{f_{a}(2 x)}{2}-f_{a}(x)\right\|+\left\|\frac{f_{a}\left(2^{2} x\right)}{2^{2}}-\frac{f_{a}(2 x)}{2}\right\| \\
& \leq \frac{1}{2}\left[\xi(x)+\frac{\xi(2 x)}{2}\right] \tag{3.11}
\end{align*}
$$

for all $x \in \mathcal{G}$. Proceeding further and using induction on a positive integer n, we get

$$
\begin{align*}
\left\|\frac{f_{a}\left(2^{n} x\right)}{2^{n}}-f_{a}(x)\right\| & \leq \frac{1}{2} \sum_{k=0}^{n-1} \frac{\xi\left(2^{k} x\right)}{2^{k}} \tag{3.12}\\
& \leq \frac{1}{2} \sum_{k=0}^{\infty} \frac{\xi\left(2^{k} x\right)}{2^{k}}
\end{align*}
$$

for all $x \in \mathcal{G}$. In order to prove the convergence of the sequence $\left\{\frac{f_{a}\left(2^{n} x\right)}{2^{n}}\right\}$, replace x by $2^{m} x$ and dividing by 2^{m} in 3.12 , for any $m, n>0$, we deduce

$$
\begin{aligned}
\left\|\frac{f_{a}\left(2^{n+m} x\right)}{2^{(n+m)}}-\frac{f_{a}\left(2^{m} x\right)}{2^{m}}\right\| & =\frac{1}{2^{m}}\left\|\frac{f_{a}\left(2^{n} \cdot 2^{m} x\right)}{2^{n}}-f_{a}\left(2^{m} x\right)\right\| \\
& \leq \frac{1}{2} \sum_{k=0}^{n-1} \frac{\xi\left(2^{k+m} x\right)}{2^{k+m}} \\
& \leq \frac{1}{2} \sum_{k=0}^{\infty} \frac{\xi\left(2^{k+m} x\right)}{2^{k+m}} \\
& \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

for all $x \in \mathcal{G}$. Hence the sequence $\left\{\frac{f_{a}\left(2^{n} x\right)}{2^{n}}\right\}$ is a Cauchy sequence. Since \mathcal{H} is complete, there exists a mapping $A: \mathcal{G} \rightarrow \mathcal{H}$ such that

$$
A(x)=\lim _{n \rightarrow \infty} \frac{f_{a}\left(2^{n} x\right)}{2^{n}}, \quad \forall x \in \mathcal{G}
$$

Letting $n \rightarrow \infty$ in 3.12, we see that 3.3 holds for all $x \in \mathcal{G}$. To prove that A satisfies 1.9, replacing (x, y, z) by $\left(2^{n} x, 2^{n} y, 2^{n} z\right)$ and dividing by 2^{n} in 3.2, we obtain

$$
\frac{1}{2^{n}}\left\|D f_{a}\left(2^{n} x, 2^{n} y, 2^{n} z\right)\right\| \leq \frac{1}{2^{n}} \psi\left(2^{n} x, 2^{n} y, 2^{n} z\right)
$$

for all $x, y, z \in \mathcal{G}$. Letting $n \rightarrow \infty$ in the above inequality and using the definition of $A(x)$, we see that

$$
D A(x, y, z)=0
$$

Hence A satisfies 1.9 for all $x, y, z \in \mathcal{G}$. To prove that A is unique, let $B(x)$ be another additive mapping satisfying 1.9 and (3.3), then

$$
\begin{aligned}
\|A(x)-B(x)\| & =\frac{1}{2^{n}}\left\|A\left(2^{n} x\right)-B\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{2^{n}}\left\{\left\|A\left(2^{n} x\right)-f_{a}\left(2^{n} x\right)\right\|+\left\|f_{a}\left(2^{n} x\right)-B\left(2^{n} x\right)\right\|\right\} \\
& \leq \sum_{k=0}^{\infty} \frac{\xi\left(2^{k+n} x\right)}{2^{(k+n)}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in \mathcal{G}$. Thus A is unique. Hence, for $j=1$ the theorem holds.
Now, replacing x by $\frac{x}{2}$ in 3.8, we reach

$$
\begin{equation*}
\left\|8 f_{a}\left(\frac{x}{2}\right)-4 f_{a}(x)\right\| \leq \psi\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right)+\psi\left(-\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right) \tag{3.13}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Dividing the above inequality by 4 , we obtain

$$
\begin{equation*}
\left\|2 f_{a}\left(\frac{x}{2}\right)-f_{a}(x)\right\| \leq \xi\left(\frac{x}{2}\right) \tag{3.14}
\end{equation*}
$$

where

$$
\xi\left(\frac{x}{2}\right)=\frac{1}{4}\left[\psi\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right)+\psi\left(-\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right)\right]
$$

for all $x \in \mathcal{G}$. The rest of the proof is similar to that of $j=1$. Hence for $j=-1$ also the theorem holds. This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 3.1 concerning the Ulam-Hyers [16], Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] stabilities of (1.9).
Corollary 3.1. Let ρ and s be nonnegative real numbers. Let an odd function $f_{a}: \mathcal{G} \rightarrow \mathcal{H}$ satisfy the inequality

$$
\left\|D f_{a}(x, y, z)\right\| \leq \begin{cases}\rho, & s \neq 1 \tag{3.15}\\ \rho\left\{\|x\|^{s}+\|y\|^{s}+\|z\|^{s}\right\}, & 3 s \neq 1 \\ \rho\|x\|^{s}| | y \|^{s}| | z| |^{s}, \\ \rho\left\{\|x\|^{s}\|y\|^{s}\|z\|^{s}+\left\{\|x\|^{3 s}+\|y\|^{3 s}+\|z\|^{3 s}\right\}\right\}, & 3 s \neq 1\end{cases}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique additive function $A: \mathcal{G} \rightarrow \mathcal{H}$ such that

$$
\left\|f_{a}(x)-A(x)\right\| \leq\left\{\begin{array}{l}
\frac{\rho}{2}, \tag{3.16}\\
\frac{3 \rho| | x \|^{s}}{2\left|2-2^{s}\right|}, \\
\frac{\rho| | x| |^{3 s}}{2\left|2-2^{3 s}\right|^{\prime}}, \\
\frac{2 \rho| | x| |^{3 s}}{\left|2-2^{3 s}\right|}
\end{array}\right.
$$

for all $x \in \mathcal{G}$.
Now, we provide an example to illustrate that the functional equation (1.9) is not stable for $s=1$ in condition (ii) of Corollary 3.1
Example 3.1. Let $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function defined by

$$
\psi(x)= \begin{cases}\mu x, & \text { if }|x|<1 \\ \mu, & \text { otherwise }\end{cases}
$$

where $\mu>0$ is a constant and define a function $f_{a}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{a}(x)=\sum_{n=0}^{\infty} \frac{\psi\left(2^{n} x\right)}{2^{n}} \quad \text { for all } \quad x \in \mathbb{R} .
$$

Then f_{a} satisfies the functional inequality

$$
\begin{equation*}
\left|D f_{a}(x, y, z)\right| \leq 56 \mu(|x|+|y|+|z|) \tag{3.17}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Then there do not exist a additive mapping $A: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\kappa>0$ such that

$$
\begin{equation*}
\left|f_{a}(x)-A(x)\right| \leq \kappa|x| \quad \text { for all } \quad x \in \mathbb{R} . \tag{3.18}
\end{equation*}
$$

Proof. Now

$$
\left|f_{a}(x)\right| \leq \sum_{n=0}^{\infty} \frac{\left|\psi\left(2^{n} x\right)\right|}{\left|2^{n}\right|}=\sum_{n=0}^{\infty} \frac{\mu}{2^{n}}=2 \mu .
$$

Therefore, we see that f_{a} is bounded. We are going to prove that f_{a} satisfies (3.17).
If $x=y=z=0$ then 3.17 is trivial. If $|x|+|y|+|z| \geq \frac{1}{2}$ then the left hand side of 3.17 is less than 56μ. Now suppose that $0<|x|+|y|+|z|<\frac{1}{2}$. Then there exists a positive integer k such that

$$
\begin{equation*}
\frac{1}{2^{k-1}} \leq|x|+|y|+|z|<\frac{1}{2^{k}} \tag{3.19}
\end{equation*}
$$

so that $2^{k-1} x<\frac{1}{2}, 2^{k-1} y<\frac{1}{2}, 2^{k-1} z<\frac{1}{2}$ and consequently

$$
\begin{aligned}
& 2^{k-1}(x+y+z), 2^{k-1}(x+y-z), 2^{k-1}(x-y+z), 2^{k-1}(x-y-z), 2^{k-1}(x+y), 2^{k-1}(x-y) \\
& 2^{k-1}(y+z), 2^{k-1}(y-z), 2^{k-1}(x+z), 2^{k-1}(x-z), 2^{k-1}(x), 2^{k-1}(y), 2^{k-1}(z), 2^{k-1}(-z) \in(-1,1)
\end{aligned}
$$

Therefore for each $n=0,1, \ldots, k-1$, we have

$$
\begin{aligned}
& 2^{n}(x+y+z), 2^{n}(x+y-z), 2^{n}(x-y+z), 2^{n}(x-y-z), 2^{n}(x+y), 2^{n}(x-y), \\
& \quad 2^{n}(y+z), 2^{n}(y-z), 2^{n}(x+z), 2^{n}(x-z), 2^{n}(x), 2^{n}(y), 2^{n}(z), 2^{n}(-z) \in(-1,1)
\end{aligned}
$$

and

$$
\begin{aligned}
& \psi\left(2^{n}(x+y+z)\right)+\psi\left(2^{n}(x+y-z)\right)+\psi\left(2^{n}(x-y+z)\right)+\psi\left(2^{n}(x-y-z)\right) \\
& \quad-2\left[\psi\left(2^{n}(x+y)\right)+\psi\left(2^{n}(x-y)\right)+\psi\left(2^{n}(y+z)\right)+\psi\left(2^{n}(y-z)\right)\right. \\
& \left.\quad+\psi\left(2^{n}(x+z)\right)+\psi\left(2^{n}(x-z)\right)\right]+4 \psi\left(2^{n} x\right)+4 \psi\left(2^{n} y\right)+2\left[\psi\left(2^{n} z\right)+\psi\left(2^{n}-z\right)\right]=0
\end{aligned}
$$

for $n=0,1, \ldots, k-1$. From the definition of f_{a} and (3.19), we obtain that

$$
\begin{aligned}
& \left|\begin{array}{l}
\mid f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z)-2[f(x+y)+f(x-y) \\
\quad+f(y+z)+f(y-z)+f(x+z)+f(x-z)]+4 f(x)+4 f(y)+2[f(z)+f(-z)] \mid \\
\leq \sum_{n=0}^{\infty} \frac{1}{2^{n}}
\end{array}\right| \psi\left(2^{n}(x+y+z)\right)+\psi\left(2^{n}(x+y-z)\right)+\psi\left(2^{n}(x-y+z)\right)+\psi\left(2^{n}(x-y-z)\right) \\
& \quad-2\left[\psi\left(2^{n}(x+y)\right)+\psi\left(2^{n}(x-y)\right)+\psi\left(2^{n}(y+z)\right)+\psi\left(2^{n}(y-z)\right)\right. \\
& \left.\quad+\psi\left(2^{n}(x+z)\right)+\psi\left(2^{n}(x-z)\right)\right]+4 \psi\left(2^{n} x\right)+4 \psi\left(2^{n} y\right)+2\left[\psi\left(2^{n} z\right)+\psi\left(2^{n}-z\right)\right] \mid \\
& \left.\leq \sum_{n=k}^{\infty} \frac{1}{2^{n}} \right\rvert\, \psi\left(2^{n}(x+y+z)\right)+\psi\left(2^{n}(x+y-z)\right)+\psi\left(2^{n}(x-y+z)\right)+\psi\left(2^{n}(x-y-z)\right) \\
& \quad \quad-2\left[\psi\left(2^{n}(x+y)\right)+\psi\left(2^{n}(x-y)\right)+\psi\left(2^{n}(y+z)\right)+\psi\left(2^{n}(y-z)\right)\right. \\
& \left.\quad+\psi\left(2^{n}(x+z)\right)+\psi\left(2^{n}(x-z)\right)\right]+4 \psi\left(2^{n} x\right)+4 \psi\left(2^{n} y\right)+2\left[\psi\left(2^{n} z\right)+\psi\left(2^{n}-z\right)\right] \mid \\
& \leq \sum_{n=k}^{\infty} \frac{1}{2^{n}} 28 \mu=28 \mu \times \frac{2}{2^{k}}=56 \mu(|x|+|y|+|z|) .
\end{aligned}
$$

Thus f_{a} satisfies 3.17 for all $x \in \mathbb{R}$ with $0<|x|+|y|+|z|<\frac{1}{2}$.
We claim that the additive functional equation $\sqrt{1.9}$ is not stable for $s=1$ in condition (ii) Corollary 3.1. Suppose on the contrary that there exist a additive mapping $A: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\kappa>0$ satisfying (3.18). Since f_{a} is bounded and continuous for all $x \in \mathbb{R}, A$ is bounded on any open interval containing the origin and continuous at the origin. In view of Theorem 3.1. A must have the form $A(x)=c x$ for any x in \mathbb{R}. Thus, we obtain that

$$
\begin{equation*}
\left|f_{a}(x)\right| \leq(\kappa+|c|)|x| . \tag{3.20}
\end{equation*}
$$

But we can choose a positive integer m with $m \mu>\kappa+|c|$.
If $x \in\left(0, \frac{1}{2^{m-1}}\right)$, then $2^{n} x \in(0,1)$ for all $n=0,1, \ldots, m-1$. For this x, we get

$$
f_{a}(x)=\sum_{n=0}^{\infty} \frac{\psi\left(2^{n} x\right)}{2^{n}} \geq \sum_{n=0}^{m-1} \frac{\mu\left(2^{n} x\right)}{2^{n}}=m \mu x>(\kappa+|c|) x
$$

which contradicts (3.20). Therefore the additive functional equation $\sqrt{1.9}$ is not stable in sense of Ulam, Hyers and Rassias if $s=1$, assumed in the inequality condition (ii) of (3.16.

A counter example to illustrate the non stability in condition (iii) of Corollary 3.1 is given in the following example.

Example 3.2. Let s be such that $0<s<\frac{1}{3}$. Then there is a function $f_{a}: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\lambda>0$ satisfying

$$
\begin{equation*}
\left|D f_{a}(x, y, z)\right| \leq \lambda|x|^{\frac{5}{3}}|y|^{\frac{5}{3}}|z|^{\frac{1-2 s}{3}} \tag{3.21}
\end{equation*}
$$

for all $x, y, z \in \mathbb{R}$ and

$$
\begin{equation*}
\sup _{x \neq 0} \frac{\left|f_{a}(x)-A(x)\right|}{|x|}=+\infty \tag{3.22}
\end{equation*}
$$

for every additive mapping $A(x): \mathbb{R} \rightarrow \mathbb{R}$.
Proof. If we take

$$
f(x)=\left\{\begin{array}{cl}
x \ln |x|, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

Then from the relation (3.22), it follows that

$$
\begin{aligned}
\sup _{x \neq 0} \frac{\left|f_{a}(x)-A(x)\right|}{|x|} & \geq \sup _{\substack{n \in \mathbb{N} \\
n \neq 0}} \frac{\left|f_{a}(n)-A(n)\right|}{|n|} \\
& =\sup _{\substack{n \in \mathbb{N} \\
n \neq 0}} \frac{|n \ln | n|-n A(1)|}{|n|} \\
& =\sup _{\substack{n \in \mathbb{N} \\
n \neq 0}}|\ln | n|-A(1)|=\infty .
\end{aligned}
$$

We have to prove (3.21) is true.
Case (i): If $x, y, z>0$ in (3.21) then,

$$
\begin{aligned}
& \mid f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z)-2[f(x+y)+f(x-y)+f(y+z) \\
& \quad+f(y-z)+f(x+z)+f(x-z)]-4 f(x)-4 f(y)-2[f(z)+f(-z)] \mid \\
& =|(x+y+z) \ln | x+y+z|+(x+y-z) \ln | x+y-z|+(x-y+z) \ln | x-y+z \mid \\
& \quad+(x-y-z) \ln |x-y-z|-2[(x+y) \ln |x+y|+(x-y) \ln |x-y|+(y+z) \ln |y+z| \\
& \quad+(y-z) \ln \mid y-z]-4(x) \ln |x|-4(y) \ln |y|-2[(z) \ln |z|+(-z) \ln |-z|] \mid .
\end{aligned}
$$

Set $x=v_{1}, y=v_{2}, z=v_{3}$ it follows that

$$
\begin{aligned}
& \mid f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z)-2[f(x+y)+f(x-y)+f(y+z) \\
& \quad+f(y-z)+f(x+z)+f(x-z)]-4 f(x)-4 f(y)-2[f(z)+f(-z)] \mid \\
& =\left|\left(v_{1}+v_{2}+v_{3}\right) \ln \right| v_{1}+v_{2}+v_{3}\left|+\left(v_{1}+v_{2}-v_{3}\right) \ln \right| v_{1}+v_{2}-v_{3} \mid \\
& \quad+\left(v_{1}-v_{2}+v_{3}\right) \ln \left|v_{1}-v_{2}+v_{3}\right|+\left(v_{1}-v_{2}-v_{3}\right) \ln \left|v_{1}-v_{2}-v_{3}\right| \\
& \quad-2\left[\left(v_{1}+v_{2}\right) \ln \left|v_{1}+v_{2}\right|+\left(v_{1}-v_{2}\right) \ln \left|v_{1}-v_{2}\right|+\left(v_{2}+v_{3}\right) \ln \left|v_{2}+v_{3}\right|\right. \\
& \left.\quad \quad+\left(v_{2}-v_{3}\right) \ln \mid v_{2}-v_{3}\right]-4\left(v_{1}\right) \ln \left|v_{1}\right|-4\left(v_{2}\right) \ln \left|v_{2}\right|-2\left[\left(v_{3}\right) \ln \left|v_{3}\right|+\left(-v_{3}\right) \ln \left|-v_{3}\right|\right] \mid . \\
& =\mid f\left(v_{1}+v_{2}+v_{3}\right)+f\left(v_{1}+v_{2}-v_{3}\right)+f\left(v_{1}-v_{2}+v_{3}\right)+f\left(v_{1}-v_{2}-v_{3}\right) \\
& \quad-2\left[f\left(v_{1}+v_{2}\right)+f\left(v_{1}-v_{2}\right)+f\left(v_{2}+v_{3}\right)+f\left(v_{2}-v_{3}\right)+f\left(v_{1}+v_{3}\right)+f\left(v_{1}-v_{3}\right)\right] \\
& \quad \quad-4 f\left(v_{1}\right)-4 f\left(v_{2}\right)-2\left[f\left(v_{3}\right)+f\left(-v_{3}\right)\right] \mid \\
& \leq \\
& \leq\left|v_{1}\right|^{\frac{s}{3}}\left|v_{2}\right|^{\frac{5}{3}}\left|v_{3}\right|^{\frac{1-2 s}{3}} \\
& =
\end{aligned}
$$

For the cases (ii) $x, y, z<0$, (iii) $x, y>0, z<0$, (iv) $x, y<0, z>0$ and (v) $x=y=z=0$, the proof is similar tracing to that of Case (i).

Now, the authors provide an example to illustrate that the functional equation 1.9 is not stable for $s=\frac{1}{3}$ in condition (iv) of Corollary 3.1

Example 3.3. Let $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function defined by

$$
\psi(x)= \begin{cases}\mu x, & \text { if }|x|<1 \\ \frac{\mu}{3}, & \text { otherwise }\end{cases}
$$

where $\mu>0$ is a constant, and define a function $f_{a}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{a}(x)=\sum_{n=0}^{\infty} \frac{\psi\left(2^{n} x\right)}{2^{n}} \quad \text { for all } \quad x \in \mathbb{R} .
$$

Then f_{a} satisfies the functional inequality

$$
\begin{equation*}
\left|D f_{a}(x, y, z)\right| \leq \frac{56 \mu}{3}\left\{|x|^{\frac{1}{3}}+|y|^{\frac{1}{3}}+|z|^{\frac{1}{3}}+(|x|+|y|+|z|)\right\} \tag{3.23}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Then there do not exist a additive mapping $A: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\kappa>0$ such that

$$
\begin{equation*}
\left|f_{a}(x)-A(x)\right| \leq \kappa|x| \quad \text { for all } \quad x \in \mathbb{R} . \tag{3.24}
\end{equation*}
$$

Proof. Now

$$
\left|f_{a}(x)\right| \leq \sum_{n=0}^{\infty} \frac{\left|\psi\left(2^{n} x\right)\right|}{\left|2^{n}\right|}=\sum_{n=0}^{\infty} \frac{\mu}{3} \frac{1}{2^{n}}=\frac{2 \mu}{3} .
$$

Therefore, we see that f_{a} is bounded. We are going to prove that f_{a} satisfies (3.17).
If $x=y=z=0$ then 3.17 is trivial. If $|x|^{\frac{1}{3}}+|y|^{\frac{1}{3}}+|z|^{\frac{1}{3}}+(|x|+|y|+|z|) \geq \frac{1}{2}$ then the left hand side of 3.17 is less than $\frac{56 \mu}{3}$. Now suppose that $0<|x|^{\frac{1}{3}}+|y|^{\frac{1}{3}}+|z|^{\frac{1}{3}}+(|x|+|y|+|z|)<\frac{1}{2}$. Then there exists a positive integer k such that

$$
\begin{equation*}
\frac{1}{2^{k-1}} \leq|x|^{\frac{1}{3}}+|y|^{\frac{1}{3}}+|z|^{\frac{1}{3}}+(|x|+|y|+|z|)<\frac{1}{2^{k}}, \tag{3.25}
\end{equation*}
$$

so that $2^{k-1} x^{\frac{1}{3}}<\frac{1}{2}, 2^{k-1} y^{\frac{1}{3}}<\frac{1}{2}, 2^{k-1} z^{\frac{1}{3}}<\frac{1}{2}, 2^{k-1} x<\frac{1}{2}, 2^{k-1} y<\frac{1}{2}, 2^{k-1} z<\frac{1}{2}$ and consequently

$$
\begin{aligned}
& 2^{k-1}(x+y+z), 2^{k-1}(x+y-z), 2^{k-1}(x-y+z), 2^{k-1}(x-y-z), 2^{k-1}(x+y), 2^{k-1}(x-y), \\
& 2^{k-1}(y+z), 2^{k-1}(y-z), 2^{k-1}(x+z), 2^{k-1}(x-z), 2^{k-1}(x), 2^{k-1}(y), 2^{k-1}(z), 2^{k-1}(-z) \in(-1,1) .
\end{aligned}
$$

Therefore for each $n=0,1, \ldots, k-1$, we have

$$
\begin{aligned}
& 2^{n}(x+y+z), 2^{n}(x+y-z), 2^{n}(x-y+z), 2^{n}(x-y-z), 2^{n}(x+y), 2^{n}(x-y), \\
& 2^{n}(y+z), 2^{n}(y-z), 2^{n}(x+z), 2^{n}(x-z), 2^{n}(x), 2^{n}(y), 2^{n}(z), 2^{n}(-z) \in(-1,1)
\end{aligned}
$$

and

$$
\begin{aligned}
& \psi\left(2^{n}(x+y+z)\right)+\psi\left(2^{n}(x+y-z)\right)+\psi\left(2^{n}(x-y+z)\right)+\psi\left(2^{n}(x-y-z)\right) \\
& \quad-2\left[\psi\left(2^{n}(x+y)\right)+\psi\left(2^{n}(x-y)\right)+\psi\left(2^{n}(y+z)\right)+\psi\left(2^{n}(y-z)\right)\right. \\
& \left.\quad+\psi\left(2^{n}(x+z)\right)+\psi\left(2^{n}(x-z)\right)\right]+4 \psi\left(2^{n} x\right)+4 \psi\left(2^{n} y\right)+2\left[\psi\left(2^{n} z\right)+\psi\left(2^{n}-z\right)\right]=0
\end{aligned}
$$

for $n=0,1, \ldots, k-1$. From the definition of f_{a} and 3.19, we obtain that

$$
\begin{aligned}
& \mid f(x+y+z)+f(x+y-z)+f(x-y+z)+f(x-y-z)-2[f(x+y)+f(x-y) \\
& +f(y+z)+f(y-z)+f(x+z)+f(x-z)]+4 f(x)+4 f(y)+2[f(z)+f(-z)] \mid \\
& \left.\leq \sum_{n=0}^{\infty} \frac{1}{2^{n}} \right\rvert\, \psi\left(2^{n}(x+y+z)\right)+\psi\left(2^{n}(x+y-z)\right)+\psi\left(2^{n}(x-y+z)\right)+\psi\left(2^{n}(x-y-z)\right) \\
& -2\left[\psi\left(2^{n}(x+y)\right)+\psi\left(2^{n}(x-y)\right)+\psi\left(2^{n}(y+z)\right)+\psi\left(2^{n}(y-z)\right)\right. \\
& \left.+\psi\left(2^{n}(x+z)\right)+\psi\left(2^{n}(x-z)\right)\right]+4 \psi\left(2^{n} x\right)+4 \psi\left(2^{n} y\right)+2\left[\psi\left(2^{n} z\right)+\psi\left(2^{n}-z\right)\right] \mid \\
& \left.\leq \sum_{n=k}^{\infty} \frac{1}{2^{n}} \right\rvert\, \psi\left(2^{n}(x+y+z)\right)+\psi\left(2^{n}(x+y-z)\right)+\psi\left(2^{n}(x-y+z)\right)+\psi\left(2^{n}(x-y-z)\right) \\
& -2\left[\psi\left(2^{n}(x+y)\right)+\psi\left(2^{n}(x-y)\right)+\psi\left(2^{n}(y+z)\right)+\psi\left(2^{n}(y-z)\right)\right. \\
& \left.+\psi\left(2^{n}(x+z)\right)+\psi\left(2^{n}(x-z)\right)\right]+4 \psi\left(2^{n} x\right)+4 \psi\left(2^{n} y\right)+2\left[\psi\left(2^{n} z\right)+\psi\left(2^{n}-z\right)\right] \mid \\
& \leq \sum_{n=k}^{\infty} \frac{1}{2^{n}} \frac{28 \mu}{3}=\frac{28 \mu}{3} \times \frac{2}{2^{k}}=\frac{56 \mu}{3}(|x|+|y|+|z|) \text {. }
\end{aligned}
$$

Thus f_{a} satisfies 3.17 for all $x \in \mathbb{R}$ with $0<|x|^{\frac{1}{3}}+|y|^{\frac{1}{3}}+|z|^{\frac{1}{3}}+(|x|+|y|+|z|)<\frac{1}{2}$.
We claim that the additive functional equation 1.9 is not stable for $s=1$ in condition (iv) Corollary 3.1. Suppose on the contrary that there exist a additive mapping $A: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\kappa>0$ satisfying (3.18). Since f_{a} is bounded and continuous for all $x \in \mathbb{R}, A$ is bounded on any open interval containing the origin and continuous at the origin. In view of Theorem 3.1. A must have the form $A(x)=c x$ for any x in \mathbb{R}. Thus, we obtain that

$$
\begin{equation*}
\left|f_{a}(x)\right| \leq(\kappa+|c|)|x| . \tag{3.26}
\end{equation*}
$$

But we can choose a positive integer m with $m \mu>\kappa+|c|$.
If $x \in\left(0, \frac{1}{2^{m-1}}\right)$, then $2^{n} x \in(0,1)$ for all $n=0,1, \ldots, m-1$. For this x, we get

$$
f_{a}(x)=\sum_{n=0}^{\infty} \frac{\psi\left(2^{n} x\right)}{2^{n}} \geq \sum_{n=0}^{m-1} \frac{\mu\left(2^{n} x\right)}{2^{n}}=m \mu x>(\kappa+|c|) x
$$

which contradicts 3.26 . Therefore the additive functional equation (1.9) is not stable in sense of Ulam, Hyers and Rassias if $s=\frac{1}{3}$, assumed in the inequality condition (ii) of 3.16).

4 Stability Results: Even Case

In this section, we present the generalized Ulam-Hyers stability of the functional equation 1.9 for even case.
Theorem 4.1. Let $j= \pm 1$ and $\psi, \zeta: \mathcal{G}^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(2^{n j} x, 2^{n j} y, 2^{n j} z\right)}{4^{n j}}=0 \tag{4.1}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Let $f_{q}: \mathcal{G} \rightarrow \mathcal{H}$ be an even function satisfying the inequality

$$
\begin{equation*}
\left\|D f_{q}(x, y, z)\right\| \leq \psi(x, y, z) \tag{4.2}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique quadratic mapping $Q_{2}: \mathcal{G} \rightarrow \mathcal{H}$ which satisfies (1.9) and

$$
\begin{equation*}
\left\|f_{q}(2 x)-16 f_{q}(x)-Q_{2}(x)\right\| \leq \frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\zeta\left(2^{k j} x\right)}{4^{k j}} \tag{4.3}
\end{equation*}
$$

where $\zeta\left(2^{k j} x\right)$ and $Q_{2}(x)$ are defined by

$$
\begin{equation*}
\zeta\left(2^{k j} x\right)=4 \psi\left(2^{k j} x, 2^{k j} x, 2^{k j} x\right)+\psi\left(2^{(k+1) j} x, 2^{k j} x, 2^{k j} x\right) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{2}(x)=\lim _{n \rightarrow \infty} \frac{1}{4^{n j}}\left(f_{q}\left(2^{(n+1) j} x\right)-16 f_{q}\left(2^{n j} x\right)\right) \tag{4.5}
\end{equation*}
$$

for all $x \in \mathcal{G}$, respectively.
Proof. Replacing (x, y, z) by (x, x, x) in (4.2) and using evenness of f_{q}, we get

$$
\begin{equation*}
\left\|f_{q}(3 x)-6 f_{q}(2 x)+15 f_{q}(x)\right\| \leq \psi(x, x, x) \tag{4.6}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Again replacing (x, y, z) by $(2 x, x, x)$ in (4.2) and using oddness of f_{q}, we obtain

$$
\begin{equation*}
\left\|f_{q}(4 x)+4 f_{q}(2 x)-4 f_{q}(3 x)+4 f_{q}(x)\right\| \leq \psi(2 x, x, x) \tag{4.7}
\end{equation*}
$$

for all $x \in \mathcal{G}$. It follows from (4.6) and (4.7) that

$$
\begin{align*}
\| f_{q}(4 x) & -20 f_{q}(2 x)+64 f_{q}(x) \| \\
& \leq 4\left\|f_{q}(3 x)-6 f_{q}(2 x)+15 f_{q}(x)\right\|+\left\|f_{q}(4 x)+4 f_{q}(2 x)-4 f_{q}(3 x)+4 f_{q}(x)\right\| \\
& \leq 4 \psi(x, x, x)+\psi(2 x, x, x) \tag{4.8}
\end{align*}
$$

for all $x \in \mathcal{G}$. From (4.8), we arrive

$$
\begin{equation*}
\left\|f_{q}(4 x)-20 f_{q}(2 x)+64 f_{q}(x)\right\| \leq \zeta(x) \tag{4.9}
\end{equation*}
$$

where

$$
\zeta(x)=4 \psi(x, x, x)+\psi(2 x, x, x)
$$

for all $x \in \mathcal{G}$. It is easy to see from (4.9) that

$$
\begin{equation*}
\left\|f_{q}(4 x)-16 f_{q}(2 x)-4\left(f_{q}(2 x)-16 f_{q}(x)\right)\right\| \leq \zeta(x) \tag{4.10}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Using (2.25) in (4.10), we obtain

$$
\begin{equation*}
\left\|q_{2}(2 x)-4 q_{2}(x)\right\| \leq \zeta(x) \tag{4.11}
\end{equation*}
$$

for all $x \in \mathcal{G}$. The rest of the proof is similar to that of Theorem 3.1.
The following corollary is an immediate consequence of Theorem 4.1 concerning the Ulam-Hyers [16], Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] stabilities of (1.9).

Corollary 4.1. Let ρ and s be nonnegative real numbers. Let an even function $f_{q}: \mathcal{G} \rightarrow \mathcal{H}$ satisfy the inequality

$$
\left\|D f_{q}(x, y, z)\right\| \leq \begin{cases}\rho, & s \neq 2 \tag{4.12}\\ \rho\left\{\|x\|^{s}+\|y\|^{s}+\|z\|^{s}\right\}, & 3 s \neq 2 \\ \rho\|x\|\left\|^{s}\right\| y\left\|^{s}\right\| z \|^{s}, & 3 x \neq 2 \\ \rho\left\{\|x\|^{s}\|y\|^{s}\|z\|^{s}+\left\{\|x\|^{3 s}+\|y\|^{3 s}+\|z\|^{3 s}\right\}\right\}, & 3 s \neq 2\end{cases}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique quadratic function $Q_{2}: \mathcal{G} \rightarrow \mathcal{H}$ such that

$$
\left\|f_{q}(2 x)-16 f_{q}(x)-Q_{2}(x)\right\| \leq\left\{\begin{array}{l}
\frac{5 \rho}{3}, \tag{4.13}\\
\frac{\left(2^{s}+14\right) \rho\|x\|^{s}}{2\left|4-2^{s}\right|} \\
\frac{\left(2^{s}+4\right) \rho| | x| |^{3 s}}{2\left|4-2^{3 s}\right|} \\
\frac{\left(2^{s}+2^{3 s}+18\right) \rho| | x \mid \|^{3 s}}{\left|4-2^{3 s}\right|}
\end{array}\right.
$$

for all $x \in \mathcal{G}$.
Now, the authors provide an example to illustrate that the functional equation (1.9) is not stable for $s=2$ in condition (ii) of Corollary 4.1

Example 4.4. Let $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function defined by

$$
\psi(x)= \begin{cases}\mu x^{2}, & \text { if }|x|<1 \\ \mu, & \text { otherwise }\end{cases}
$$

where $\mu>0$ is a constant, and define a function $f_{q}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{q}(x)=\sum_{n=0}^{\infty} \frac{\psi\left(2^{n} x\right)}{4^{n}} \quad \text { for all } \quad x \in \mathbb{R}
$$

Then f_{q} satisfies the functional inequality

$$
\begin{equation*}
\left|D f_{q}(x, y, z)\right| \leq \frac{112 \mu}{3}\left(|x|^{2}+|y|^{2}+|z|^{2}\right) \tag{4.14}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Then there do not exist a quadratic mapping $Q_{2}: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\kappa>0$ such that

$$
\begin{equation*}
\left|f_{q}(2 x)-16 f_{q}(x)-Q_{2}(x)\right| \leq \kappa|x|^{2} \quad \text { for all } \quad x \in \mathbb{R} \tag{4.15}
\end{equation*}
$$

Proof. The proof of the example is similar to that of Example 3.1 .
A counter example to illustrate the non stability in condition (iii) of Corollary 4.1 is given in the following example.

Example 4.5. Let s be such that $0<s<\frac{2}{3}$. Then there is a function $f_{q}: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\lambda>0$ satisfying

$$
\begin{equation*}
\left|D f_{q}(x, y, z)\right| \leq \lambda|x|^{\frac{s}{3}}|y|^{\frac{s}{3}}|z|^{\frac{2-2 s}{3}} \tag{4.16}
\end{equation*}
$$

for all $x, y, z \in \mathbb{R}$ and

$$
\begin{equation*}
\sup _{x \neq 0} \frac{\left|f_{q}(2 x)-16 f_{q}(x)-Q_{2}(x)\right|}{|x|^{2}}=+\infty \tag{4.17}
\end{equation*}
$$

for every quadratic mapping $Q_{2}(x): \mathbb{R} \rightarrow \mathbb{R}$.
Proof. If we take

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \ln |x|, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

Then from the relation (3.22), it follows that

$$
\begin{aligned}
\sup _{x \neq 0} \frac{\left|f_{q}(2 x)-16 f_{q}(x)-Q_{2}(x)\right|}{|x|^{2}} & \geq \sup _{\substack{n \in \mathbb{N} \\
n \neq 0}} \frac{\left|f_{q}(2 n)-16 f_{q}(n)-Q_{2}(n)\right|}{|n|^{2}} \\
& =\sup _{\substack{n \in \mathbb{N} \\
n \neq 0}} \frac{\left|4 n^{2} \ln \right| n\left|-n^{2} 16 \ln \right| n\left|-n^{2} Q_{2}(1)\right|}{|n|^{2}} \\
& =\sup _{\substack{n \in \mathbb{N} \\
n \neq 0}}|4 \ln | n|-16 \ln | n\left|-Q_{2}(1)\right|=\infty .
\end{aligned}
$$

The proof is similar tracing to that of Example 3.2
Now, the authors provide an example to illustrate that the functional equation $\sqrt{1.9}$ is not stable for $s=\frac{2}{3}$ in condition ($i v$) of Corollary 4.1 .

Example 4.6. Let $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function defined by

$$
\psi(x)= \begin{cases}\mu x, & \text { if }|x|<1 \\ \frac{2 \mu}{3}, & \text { otherwise }\end{cases}
$$

where $\mu>0$ is a constant, and define a function $f_{q}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{q}(x)=\sum_{n=0}^{\infty} \frac{\psi\left(2^{n} x\right)}{2^{n}} \quad \text { for all } \quad x \in \mathbb{R}
$$

Then f_{q} satisfies the functional inequality

$$
\begin{equation*}
\left|D f_{q}(x, y, z)\right| \leq \frac{28 \times 8 \mu}{3}\left\{|x|^{\frac{2}{3}}+|y|^{\frac{2}{3}}+|z|^{\frac{2}{3}}+\left(|x|^{2}+|y|^{2}+|z|^{2}\right)\right\} \tag{4.18}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Then there do not exist a quadratic mapping $Q_{2}: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\kappa>0$ such that

$$
\begin{equation*}
\left|f_{q}(2 x)-16 f_{q}(x)-Q_{2}(x)\right| \leq \kappa|x| \quad \text { for all } \quad x \in \mathbb{R} \tag{4.19}
\end{equation*}
$$

Proof. The proof of the example is similar to that of Example 3.3 .
Theorem 4.2. Let $j= \pm 1$ and $\psi, \zeta: \mathcal{G}^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(2^{n j} x, 2^{n j} y, 2^{n j} z\right)}{16^{n j}}=0 \tag{4.20}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Let $f_{q}: \mathcal{G} \rightarrow \mathcal{H}$ be an even function satisfying the inequality

$$
\begin{equation*}
\left\|D f_{q}(x, y, z)\right\| \leq \psi(x, y, z) \tag{4.21}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique quartic mapping $Q_{4}: \mathcal{G} \rightarrow \mathcal{H}$ which satisfies (1.9) and

$$
\begin{equation*}
\left\|f_{q}(2 x)-4 f_{q}(x)-Q_{4}(x)\right\| \leq \frac{1}{16} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\zeta\left(2^{k j} x\right)}{16^{k j}} \tag{4.22}
\end{equation*}
$$

where $\zeta\left(2^{k j} x\right)$ is defined in 4.4 and $Q_{4}(x)$ is defined by

$$
\begin{equation*}
Q_{4}(x)=\lim _{n \rightarrow \infty} \frac{1}{16^{n j}}\left(f_{q}\left(2^{(n+1) j} x\right)-4 f_{q}\left(2^{n j} x\right)\right) \tag{4.23}
\end{equation*}
$$

for all $x \in \mathcal{G}$.
Proof. It follows from (4.8), we have

$$
\begin{equation*}
\left\|f_{q}(4 x)-20 f_{q}(2 x)+64 f_{q}(x)\right\| \leq \zeta(x) \tag{4.24}
\end{equation*}
$$

where

$$
\zeta(x)=4 \psi(x, x, x)+\psi(2 x, x, x)
$$

for all $x \in \mathcal{G}$. It is easy to see from (4.24) that

$$
\begin{equation*}
\left\|f_{q}(4 x)-4 f_{q}(2 x)-16\left(f_{q}(2 x)-4 f_{q}(x)\right)\right\| \leq \zeta(x) \tag{4.25}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Using 2.31 in 4.25, we obtain

$$
\begin{equation*}
\left\|q_{4}(2 x)-16 q_{4}(x)\right\| \leq \zeta(x) \tag{4.26}
\end{equation*}
$$

for all $x \in \mathcal{G}$. The rest of the proof is similar to that of Theorem 3.1.
The following corollary is an immediate consequence of Theorem 4.2 concerning the Ulam-Hyers [16], Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] stabilities of (1.9].

Corollary 4.2. Let ρ and s be nonnegative real numbers. Let an even function $f_{q}: \mathcal{G} \rightarrow \mathcal{H}$ satisfy the inequality

$$
\left\|D f_{q}(x, y, z)\right\| \leq \begin{cases}\rho, & s \neq 4 \tag{4.27}\\ \rho\left\{\|x\|^{s}+\|y\|^{s}+\|z\|^{s}\right\} \\ \rho\|x\|^{s}\|y\|^{s}\left\|^{s}\right\|^{s}, & 3 s \neq 4 \\ \rho\left\{\|x\|^{s}\|y\|^{s}\|z\|^{s}+\left\{\|x\|^{3 s}+\|y\|^{3 s}+\|z\|^{3 s}\right\}\right\}, & 3 s \neq 4\end{cases}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique quartic function $Q_{4}: \mathcal{G} \rightarrow \mathcal{H}$ such that

$$
\left\|f_{q}(2 x)-4 f_{q}(x)-Q_{4}(x)\right\| \leq\left\{\begin{array}{l}
\frac{\rho}{3}, \tag{4.28}\\
\frac{\left(2^{s}+14\right) \rho| | x \|^{s}}{2\left|16-2^{s}\right|}, \\
\frac{\left(2^{s}+4\right) \rho \| x| |^{3 s}}{2\left|16-2^{3 s}\right|} \\
\frac{\left(2^{s}+2^{3 s}+18\right) \rho\|x\|^{3 s}}{\left|16-2^{3 s}\right|}
\end{array}\right.
$$

for all $x \in \mathcal{G}$.
Now, the author provide an example to illustrate that the functional equation 1.9 is not stable for $s=4$ in condition (ii) of Corollary 4.2
Example 4.7. Let $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function defined by

$$
\psi(x)= \begin{cases}\mu x^{4}, & \text { if }|x|<1 \\ \mu, & \text { otherwise }\end{cases}
$$

where $\mu>0$ is a constant, and define a function $f_{q}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{q}(x)=\sum_{n=0}^{\infty} \frac{\psi\left(2^{n} x\right)}{16^{n}} \quad \text { for all } \quad x \in \mathbb{R} .
$$

Then f_{q} satisfies the functional inequality

$$
\begin{equation*}
\left|D f_{q}(x, y, z)\right| \leq \frac{28 \times 16 \mu}{15}\left(|x|^{4}+|y|^{4}+|z|^{4}\right) \tag{4.29}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Then there do not exist a quartic mapping $Q_{4}: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\kappa>0$ such that

$$
\begin{equation*}
\left|f_{q}(2 x)-4 f_{q}(x)-Q_{4}(x)\right| \leq \kappa|x|^{4} \quad \text { for all } \quad x \in \mathbb{R} \tag{4.30}
\end{equation*}
$$

Proof. The proof of the example is similar to that of Example 3.1 .
A counter example to illustrate the non stability in condition (iii) of Corollary 4.2 is given in the following example.

Example 4.8. Let s be such that $0<s<\frac{4}{3}$. Then there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\lambda>0$ satisfying

$$
\begin{equation*}
\left|D f_{q}(x, y, z)\right| \leq \lambda|x|^{\frac{5}{3}}|y|^{\frac{5}{3}}|z|^{\frac{4-2 s}{3}} \tag{4.31}
\end{equation*}
$$

for all $x, y, z \in \mathbb{R}$ and

$$
\begin{equation*}
\sup _{x \neq 0} \frac{\left|f_{q}(2 x)-4 f_{q}(x)-Q_{4}(x)\right|}{|x|^{2}}=+\infty \tag{4.32}
\end{equation*}
$$

for every quartic mapping $Q_{4}(x): \mathbb{R} \rightarrow \mathbb{R}$.
Proof. If we take

$$
f(x)=\left\{\begin{array}{cl}
x^{4} \ln |x|, & \text { if } x \neq 0, \\
0, & \text { if } x=0
\end{array}\right.
$$

Then from the relation (3.22), it follows that

$$
\begin{aligned}
\sup _{x \neq 0} \frac{\left|f_{q}(2 x)-4 f_{q}(x)-Q_{4}(x)\right|}{|x|^{4}} & \geq \sup _{\substack{n \in \mathbb{N} \\
n \neq 0}} \frac{\left|f_{q}(2 n)-4 f_{q}(n)-Q_{4}(n)\right|}{|n|^{4}} \\
& =\sup _{\substack{n \in \mathbb{N} \\
n \neq 0}} \frac{\left|16 n^{4} \ln \right| n\left|-n^{4} 4 \ln \right| n\left|-n^{4} Q_{4}(1)\right|}{|n|^{4}} \\
& =\sup _{\substack{n \in \mathbb{N} \\
n \neq 0}}|16 \ln | n|-4 \ln | n\left|-Q_{4}(1)\right|=\infty .
\end{aligned}
$$

The proof is similar tracing to that of Example 3.2

Now, the authors provide an example to illustrate that the functional equation 1.9 is not stable for $s=\frac{4}{3}$ in condition (iv) of Corollary 4.2.

Example 4.9. Let $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function defined by

$$
\psi(x)= \begin{cases}\mu x, & \text { if }|x|<1 \\ \frac{4 \mu}{3}, & \text { otherwise }\end{cases}
$$

where $\mu>0$ is a constant, and define a function $f_{q}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{q}(x)=\sum_{n=0}^{\infty} \frac{\psi\left(2^{n} x\right)}{16^{n}} \quad \text { for all } \quad x \in \mathbb{R}
$$

Then f_{q} satisfies the functional inequality

$$
\begin{equation*}
\left|D f_{q}(x, y, z)\right| \leq \frac{112 \times 16 \mu}{45}\left\{|x|^{\frac{4}{3}}+|y|^{\frac{4}{3}}+|z|^{\frac{4}{3}}+\left(|x|^{4}+|y|^{4}+|z|^{4}\right)\right\} \tag{4.33}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Then there do not exist a quartic mapping $Q_{4}: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $\kappa>0$ such that

$$
\begin{equation*}
\left|f_{q}(2 x)-4 f_{q}(x)-Q_{4}(x)\right| \leq \kappa|x| \quad \text { for all } \quad x \in \mathbb{R} \tag{4.34}
\end{equation*}
$$

Proof. The proof of the example is similar to that of Example 3.3 .
Theorem 4.3. Let $j= \pm 1$. Let $f_{q}: \mathcal{G} \rightarrow \mathcal{H}$ be a mapping for which there exists a function $\psi, \zeta: \mathcal{G}^{3} \rightarrow[0, \infty)$ with the conditions given in (4.1) and 4.20. respectively, such that the functional inequality

$$
\begin{equation*}
\left\|D f_{q}(x, y, z)\right\| \leq \psi(x, y, z) \tag{4.35}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique quadratic mapping $Q_{2}(x): \mathcal{G} \rightarrow \mathcal{H}$ and a unique quartic mapping $Q_{4}(x): \mathcal{G} \rightarrow \mathcal{H}$ satisfying the functional equation 1.9) and

$$
\begin{equation*}
\left\|f_{q}(x)-Q_{2}(x)-Q_{4}(x)\right\| \leq \frac{1}{12}\left\{\frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\zeta\left(2^{k j} x\right)}{4^{k j}}+\frac{1}{16} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\zeta\left(2^{k j} x\right)}{16^{k j}}\right\} \tag{4.36}
\end{equation*}
$$

for all $x \in \mathcal{G}$, where $\zeta\left(2^{k j} x\right), Q_{2}(x)$ and $Q_{4}(x)$ are respectively defined in 4.4, 4.5, and 4.23, for all $x \in \mathcal{G}$.
Proof. By Theorems 4.1 and 4.2 , there exists a unique quadratic function $Q_{2_{1}}(x): \mathcal{G} \rightarrow \mathcal{H}$ and a unique quartic function $Q_{4_{1}}(x): \mathcal{G} \rightarrow \mathcal{H}$ such that

$$
\begin{equation*}
\left\|f_{q}(2 x)-16 f_{q}(x)-Q_{2_{1}}(x)\right\| \leq \frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\zeta\left(2^{k j} x\right)}{4^{k j}} \tag{4.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{q}(2 x)-4 f_{q}(x)-Q_{4_{1}}(x)\right\| \leq \frac{1}{16} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\zeta\left(2^{k j} x\right)}{16^{k j}} \tag{4.38}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Now from 4.37 and 4.38 , one can see that

$$
\begin{aligned}
& \left\|f_{q}(x)+\frac{1}{12} Q_{2_{1}}(x)-\frac{1}{12} Q_{4_{1}}(x)\right\| \\
& \quad=\left\|\left\{-\frac{f_{q}(2 x)}{12}+\frac{16 f_{q}(x)}{12}+\frac{Q_{2_{1}}(x)}{12}\right\}+\left\{\frac{f_{q}(2 x)}{12}-\frac{4 f_{q}(x)}{12}-\frac{Q_{4_{1}}(x)}{12}\right\}\right\| \\
& \quad \leq \frac{1}{12}\left\{\left\|f_{q}(2 x)-16 f_{q}(x)-Q_{2_{1}}(x)\right\|+\left\|f_{q}(2 x)-4 f_{q}(x)-Q_{4_{1}}(x)\right\|\right\} \\
& \quad \leq \frac{1}{12}\left\{\frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\zeta\left(2^{k j} x\right)}{4^{k j}}+\frac{1}{16} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\zeta\left(2^{k j} x\right)}{16^{k j}}\right\}
\end{aligned}
$$

for all $x \in \mathcal{G}$. Thus, we obtain 4.36) by defining $Q_{2}(x)=\frac{-1}{12} Q_{2_{1}}(x)$ and $Q_{4}(x)=\frac{1}{12} Q_{4_{1}}(x)$, where $\zeta\left(2^{k j} x\right)$, $Q_{2}(x)$ and $Q_{4}(x)$ are respectively defined in 4.4, 4.5 and 4.23 for all $x \in \mathcal{G}$.

The following corollary is the immediate consequence of Theorem 4.3, using Corollaries 4.1 and 4.2 concerning the Ulam-Hyers [16], Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] stabilities of 1.9 .

Corollary 4.3. Let $f_{q}: \mathcal{G} \rightarrow \mathcal{H}$ be a mapping and there exists real numbers ρ and such that

$$
\left\|D f_{q}(x, y, z)\right\| \leq \begin{cases}\rho, & s \neq 2,4 \tag{4.39}\\ \rho\left\{\|x\|^{s}+\|y\|^{s}+\|z\|^{s}\right\}, & 3 s \neq 2,4 \\ \left.\rho\|x\|\right|^{s}|y|\left\|^{s}| | z\right\|^{s}, \\ \rho\left\{\|x\|^{s}\|y\|^{s}\|z\|^{s}+\left\{\|x\|^{3 s}+\|y\|^{3 s}+\|z\|^{3 s}\right\}\right\}, & 3 s \neq 2,4\end{cases}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique quadratic function $Q_{2}: \mathcal{G} \rightarrow \mathcal{H}$ and a unique quartic function $Q_{4}: \mathcal{G} \rightarrow$ \mathcal{H} such that

$$
\left\|f_{q}(x)-Q_{2}(x)-Q_{4}(x)\right\| \leq\left\{\begin{array}{l}
\frac{\rho}{6^{\prime}} \tag{4.40}\\
\frac{\left.\left(2^{s}+14\right) \rho| | x\right|^{s}}{24}\left(\frac{1}{\left|16-2^{s}\right|}+\frac{1}{\left|4-2^{s}\right|}\right) \\
\frac{\left(2^{s}+4\right) \rho| | x| |^{3 s}}{24}\left(\frac{1}{\left|16-2^{3 s}\right|}+\frac{1}{\left|4-2^{3 s}\right|}\right) \\
\frac{\left(2^{s}+2^{3 s}+18\right) \rho| | x| |^{3 s}}{12}\left(\frac{1}{\left|16-2^{3 s}\right|}+\frac{1}{\left|4-2^{3 s}\right|}\right)
\end{array}\right.
$$

for all $x \in \mathcal{G}$.

5 Stability Results: Mixed Case

Theorem 5.1. Let $j= \pm 1$. Let $f: \mathcal{G} \rightarrow \mathcal{H}$ be a mapping for which there exists a function $\psi: \mathcal{G}^{3} \rightarrow[0, \infty)$ with the conditions given in (3.1, 4.1) and 4.20 respectively, satisfying the functional inequality

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \psi(x, y, z) \tag{5.1}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. Then there exists a unique additive mapping $A(x): \mathcal{G} \rightarrow \mathcal{H}$, a unique quadratic mapping $Q_{2}(x):$ $\mathcal{G} \rightarrow \mathcal{H}$, a unique quartic mapping $Q_{4}(x): \mathcal{G} \rightarrow \mathcal{H}$ satisfying the functional equation 1.9) and

$$
\begin{align*}
& \left\|f(x)-A(x)-Q_{2}(x)-Q_{4}(x)\right\| \\
& \leq \frac{1}{2}\left\{\frac{1}{2} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\zeta\left(2^{k j} x\right)}{2^{k j}}+\frac{\zeta\left(-2^{k j} x\right)}{2^{k j}}\right)\right. \\
& \left.\quad+\frac{1}{12}\left[\frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\zeta\left(2^{k j} x\right)}{4^{k j}}+\frac{\zeta\left(-2^{k j} x\right)}{4^{k j}}\right)+\frac{1}{16} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\zeta\left(2^{k j} x\right)}{16^{k j}}+\frac{\zeta\left(-2^{k j} x\right)}{16^{k j}}\right)\right]\right\} \tag{5.2}
\end{align*}
$$

for all $x \in \mathcal{G}$, where $\xi\left(2^{k j} x\right), \zeta\left(2^{k j} x\right), A(x), Q_{2}(x)$ and $Q_{4}(x)$ are respectively defined in 3.4, 4.4, 3.5, 4.5, and (4.23) for all $x \in \mathcal{G}$.

Proof. Let $f_{o}(x)=\frac{f_{a}(x)-f_{a}(-x)}{2}$ for all $x \in \mathcal{G}$. Then $f_{o}(0)=0$ and $f_{o}(-x)=-f_{o}(x)$ for all $x \in \mathcal{G}$. Hence

$$
\begin{equation*}
\left\|D f_{o}(x, y, z)\right\| \leq \frac{1}{2}\{\psi(x, y, z)+\psi(-x,-y,-z)\} \tag{5.3}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. By Theorem 3.1, there exists a unique additive function $A(x): \mathcal{G} \rightarrow \mathcal{H}$ such that

$$
\begin{equation*}
\left\|f_{o}(x)-A(x)\right\| \leq \frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\xi\left(2^{k j} x\right)}{2^{k j}}+\frac{\xi\left(-2^{k j} x\right)}{2^{k j}}\right) \tag{5.4}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Also, let $f_{e}(x)=\frac{f_{q}(x)+f_{q}(-x)}{2}$ for all $x \in \mathcal{G}$. Then $f_{e}(0)=0$ and $f_{e}(-x)=f_{e}(x)$ for all $x \in \mathcal{G}$. Hence

$$
\begin{equation*}
\left\|D f_{e}(x, y, z)\right\| \leq \frac{1}{2}\{\psi(x, y, z)+\psi(-x,-y,-z)\} \tag{5.5}
\end{equation*}
$$

for all $x, y, z \in \mathcal{G}$. By Theorem 4.3, there exists a unique quadratic mapping $Q_{2}(x): \mathcal{G} \rightarrow \mathcal{H}$ and a unique quartic mapping $Q_{4}(x): \mathcal{G} \rightarrow \mathcal{H}$ such that

$$
\begin{align*}
& \left\|f_{e}(x)-Q_{2}(x)-Q_{4}(x)\right\| \\
& \quad \leq \frac{1}{24}\left\{\frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\zeta\left(2^{k j} x\right)}{4^{k j}}+\frac{\zeta\left(-2^{k j} x\right)}{4^{k j}}\right)+\frac{1}{16} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\zeta\left(2^{k j} x\right)}{16^{k j}}+\frac{\zeta\left(-2^{k j} x\right)}{16^{k j}}\right)\right\} \tag{5.6}
\end{align*}
$$

for all $x \in \mathcal{G}$. Define

$$
\begin{equation*}
f(x)=f_{o}(x)+f_{e}(x) \tag{5.7}
\end{equation*}
$$

for all $x \in \mathcal{G}$. Now from (5.7), (5.6) and (5.4), we arrive

$$
\begin{align*}
& \left\|f(x)-A(x)-Q_{2}(x)-Q_{4}(x)\right\| \\
& =\left\|f_{0}(x)+f_{e}(x)-A(x)-Q_{2}(x)-Q_{4}(x)\right\| \\
& \leq\left\|f_{0}(x)-A(x)\right\|+\left\|f_{e}(x)-Q_{2}(x)-Q_{4}(x)\right\| \\
& \leq \frac{1}{2}\left\{\frac{1}{2} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\xi\left(2^{k j} x\right)}{2^{k j}}+\frac{\xi\left(-2^{k j} x\right)}{2^{k j}}\right)\right. \\
& \left.\quad+\frac{1}{12}\left[\frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\zeta\left(2^{k j} x\right)}{4^{k j}}+\frac{\zeta\left(-2^{k j} x\right)}{4^{k j}}\right)+\frac{1}{16} \sum_{k=\frac{1-j}{2}}^{\infty}\left(\frac{\zeta\left(2^{k j} x\right)}{16^{k j}}+\frac{\zeta\left(-2^{k j} x\right)}{16^{k j}}\right)\right]\right\} \tag{5.8}
\end{align*}
$$

for all $x \in \mathcal{G}$, where $\xi\left(2^{k j} x\right), \zeta\left(2^{k j} x\right), A(x), Q_{2}(x)$ and $Q_{4}(x)$ are respectively defined in (3.4), (4.4), (3.5), (4.5) and (4.23) for all $x \in \mathcal{G}$.

The following corollary is the immediate consequence of Theorem 5.1, using Corollaries 3.1 and 4.3 concerning the Ulam-Hyers [16], Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] stabilities of (1.9).

Corollary 5.1. Let $f: \mathcal{G} \rightarrow \mathcal{H}$ be a mapping and there exists real numbers ρ and s such that

$$
\|D f(x, y, z)\| \leq \begin{cases}\rho, & s \neq 1,2,4 \tag{5.9}\\ \rho\left\{\|x\|^{s}+\|y\|^{s}+\|z\|^{s}\right\}, & 3 s \neq 1,2,4 \\ \left.\rho\|x\|\right|^{s}|y|\left\|^{s}| | z\right\|^{s}, \\ \rho\left\{\|x\|^{s}\|y\|^{s}\|z\|^{s}+\left\{\|x\|^{3 s}+\|y\|^{3 s}+\|z\|^{3 s}\right\}\right\}, & 3 s \neq 1,2,4\end{cases}
$$

for all $x, y, z \in \mathcal{G}$, then there exists a unique additive mapping $A(x): \mathcal{G} \rightarrow \mathcal{H}$, a unique quadratic mapping $Q_{2}(x)$: $\mathcal{G} \rightarrow \mathcal{H}$ and a unique quartic mapping $Q_{4}(x): \mathcal{G} \rightarrow \mathcal{H}$ such that

$$
\begin{align*}
& \left\|f(x)-A(x)-Q_{2}(x)-Q_{4}(x)\right\| \\
& \quad \leq\left\{\begin{array}{l}
\frac{2 \rho}{3}, \\
\frac{\rho| | x \|^{s}}{2}\left(\frac{3}{\left|2-2^{s}\right|}+\frac{\left(2^{s}+14\right)}{12\left|16-2^{s}\right|}+\frac{\left(2^{s}+14\right)}{12\left|4-2^{s}\right|}\right), \\
\frac{\rho \| x| |^{3 s}}{2}\left(\frac{1}{\left|2-2^{3 s}\right|}+\frac{\left(2^{s}+4\right)}{12 \mid 16-2^{3 s \mid}}+\frac{\left(2^{s}+4\right)}{12\left|4-2^{3 s}\right|}\right), \\
\frac{\rho \| x| |^{3 s}}{2}\left(\frac{4}{\left|2-2^{3 s}\right|}+\frac{\left(2^{s}+2^{3 s}+18\right)}{6\left|16-2^{3 s}\right|}+\frac{\left(2^{s}+2^{3 s}+18\right)}{6\left|4-2^{3 s}\right|}\right)
\end{array}\right. \tag{5.10}
\end{align*}
$$

for all $x \in \mathcal{G}$.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
[2] M. Ait SiBaha, B. Bouikhalene and E. Elquorachi , Ulam-Gavruta-Rassias stability of a linear functional equation, Intern. J. Math. Sta. 7(Fe07)(2007), 157-166.
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[4] M. Arunkumar, S. Hema latha, C. Devi Shaymala Mary, Functional equation originating from arithmetic Mean of consecutive terms of an arithmetic Progression are stable in Banach space: Direct and fixed point methods, JP Journal of Mathematical Sciences, Vol 3(1), 2012, 27-43.
[5] M. Arunkumar, G. Britto Antony Xavier, Functional equation Originating from sum of higher Powers of Arithmetic Progression using Difference Operator is stable in Banach space: Direct and Fixed point Methods, Malaya Journal of Matematik (MJM), Vol 1. Issue 1, (2014), 49-60.
[6] M. Arunkumar, Perturbation of n Dimensional AQ - mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences (IJAMS), Vol. 2 (1), (2014), 34-56.
[7] M. Arunkumar, S. Hemalatha, E. Sathya, 2 - Variable AQCQ - functional equation, International Journal of Advanced Mathematical Sciences, 3 (1) (2015), 65-86 .
[8] M. Arunkumar, S. Hema latha, Additive - Quartic Functional Equations Are Stable in Random Normed Space, Jamal Academic Research Journal an Interdisciplinary, (2015), 31-38.
[9] M. Arunkumar, S. Murthy, S. Hema latha, M. Arulselvan, Additive - quartic functional equations are stable in random normed space: a fixed point method, Malaya Journal of Mathematics, (2015), 215-227.
[10] Bouikhalene Belaid and Elquorachi Elhoucien, Ulam-Gavruta-Rassias stability of the Pexider functional equation, Intern. J. Math. Sta. 7(Fe07)(2007), 27-39.
[11] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[12] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[13] M. Eshaghi Gordji, H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008.
[14] M. Eshaghi Gordji, M. Bavand Savadkouhi and Choonkil Park, Quadratic-Quartic Functional Equations in RN-Spaces, Journal of Inequalities and Applications Volume 2009, Article ID 868423, 14 pages doi:10.1155/2009/868423.
[15] M. Eshaghi Gordji, S. Zolfaghari , J. M. Rassias and M. B. Savadkouhi, Solution and Stability of a Mixed type Cubic and Quartic functional equation in Quasi-Banach spaces, Abstract and Applied Analysis, Volume 2009, Art. ID 417473, 1-14, [Doi:10.1155/2009/417473].
[16] D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.
[17] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables,Birkhäuser, Basel, 1998.
[18] K.W. Jun, H.M. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation, Bull. Korean Math. Soc. 42(1) (2005), 133-148.
[19] K. W. Jun and H. M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl 9(1) (2006), 153-165.
[20] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001..
[21] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
[22] A. Najati, M.B. Moghimi, On the stability of a quadratic and additive functional equation, J. Math. Anal. Appl. 337 (2008), 399-415.
[23] P. Nakmahachalasint, Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities of additive functional equation in several variables, International Journal of Mathematics and Mathematical Sciences, Volume 2007, Art. ID 13437, 6 pages, [Doi:10.1155/2007/13437].
[24] P. Nakmahachalasint, On the generalized Ulam-Gavruta-Rassias stability of mixed-type linear and Euler-Lagrange-Rassias functional equations, International Journal of Mathematics and Mathematical Sciences, Volume 2007, Art. ID 63239, 10 pages, Doi:10.1155/2007/63239.
[25] Chung-Gil Park and John Michael Rassias, Hyers-Ulam stability of an Euler-Lagrange type additive mapping, Intern. J. Math. Sta. 7(Fe07)(2007), 112-125.
[26] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
[27] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Mathematicki, 34(54) (1999), No.2, 243-252.
[28] J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Mathematicki, Ser. III 36(56) (2001), No.1, 63-72.
[29] J.M. Rassias, K.Ravi, M.Arunkumar and B.V.Senthil Kumar, Llam Stability of Mixed type Cubic and Additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149-175.
[30] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
[31] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Boston London, 2003.
[32] K. Ravi and M. Arunkumar, On the Ulam-Gavruta-Rassias stability of the orthogonally Euler-Lagrange type functional equation, Intern. J. Math. Sta. 7(Fe07)(2007), 143-156.
[33] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 3647.
[34] K. Ravi, J. M. Rassias, M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Pure and Appl. Math. JIPAM 10(2009), Issue 4, Article 114, 1-29.
[35] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.

Received: September 17, 2016; Accepted: December 10, 2016

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

