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Abstract

In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of an (AQQ):
additive - quadratic - quartic functional equation of the form

fxty+z)+flxty—z)+flx—y+z)+flx—y—2)
=20+ y) +fle=y) + fly+2) + fly —2) + f(x +2) + f(x = 2)]
—4f(x) —4f(y) =2[f(z) + f(=2)]
by using the classical Hyers’ direct method. Counter examples for non stability are discussed also.
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1 Introduction

One of the most interesting questions in the theory of functional equations concerning the famous Ulam
stability problem is, as follows: when is it true that a mapping satisfying a functional equation approximately,
must be close to an exact solution of the given functional equation?

The first stability problem was raised by S.M. Ulam [35] during his talk at the University of Wisconsin in
1940. In fact we are given a group (G, -) and let (G, *) be a metric group with the metric d(-, -). Given e > 0,
does there exist a 6 > 0, such that if a mapping h : G; — G satisfies the inequality d(h(x - y), h(x) * h(y)) < é
for all x,y € Gy, then there exists a homomorphism H : G; — G, with d(h(x), H(x)) < e forall x € G;?

D.H. Hyers [16] gave the first affirmative partial answer to the question of Ulam for Banach spaces. It was
further generalized via excellent results obtained by a number of authors [3} 12} 26} 130} [33].

The solution and stabilities of the following functional equations

1. Additive Functional Equation

flx+y)=f)+fy) 1.1
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2. Quadratic Functional Equation

flety)+fx—y)=2f (x) +2f (y) 12)
3. Cubic Functional Equation
8(x +2y) +3g(x) = 3g(x +y) +8(x —y) +63(y) (1.3)
4. Quartic Functional Equation
F(x+2y) + F(x —2y) + 6F(x) = 4[F(x+y) + F(x — y) + 6F(y)] (1.4)

5. Additive - Quadratic Functional Equation
fQ@Rx+y)+f2x—y)=2f (x+y) +2f (x —y) +2f (2x) — 4f (x). (1.5)
6. Additive - Cubic Functional Equation
3f(x+y+z)+f(—x+y+2)+f(x—y+z2)+f(x+y—2)
+Af )+ fW+fE)=4f(x+y)+f(x+2)+f(y+2)] (1.6)
7. Additive - Quartic Functional Equation

fQRx+y)+fQ2x—y) =4[f(x +y) + f(x —y)] +12[f(x) + f(—x)]
=3[f(y) + f(=y)] = 2[f(x) — f(—x)] (17)

8. Additive - Quadratic - Cubic Functional Equation
flrtky)+f(x—ky) =R [f(x+y)+ f(x =) +2(1-K) f (x) (18)

were investigated by [1], [21], [28], [27], [22], [29], [8], [13] and references cited there in.
Motivated by the above results, in this paper, the authors obtain the general solution and generalized Ulam
- Hyers stability of additive - quadratic - quartic functional equations

fxry+2) +flxty—2)+ flx—y+2)+ flx—y—2)
=2[f(x+y) +fe—y)+fy+2) + fy —2) + fx +2) + f(x - 2)]
—4f(x) —4f(y) —2[f(2) + f(=2)] (1.9)

having solution
f(x) = ax + bx® +cx* (1.10)

using Hyers direct method.

2 General Solution for the Functional Equation

In this section, we present the solution of the functional equation (1.9). Throughout this section let G and
‘H be real vector spaces.

Theorem 2.1. Let f : G — H be an odd mapping. Then f : G — H satisfies the functional equation for all
x,y,z € G, ifand only if f : G — H satisfies the functional equation forallx,y € G.
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Proof. Assume f : G — H be an odd mapping satisfying (L.9). Replacing (x,y,z) by (0,0,0), we get f(0) = 0.
Again replacing (x,y,z) by (0,x,x) and (x,y,z) by (x,x, x) in (L.9), we obtain
f(2x) =2f(x) f(3x) =3f(x) 1)
for all x € G. In general for any positive integer m, we have
f(mx) = mf(x)
for all x € G. Putting z by x in (L9), using oddness of f and [2.1), we get

fx+y)+ f(2x —y) = 4f(x +y) - 4f(y) 22)
forall x, € G. Setting x by 2 in (2.2) and using , we have

flety) + flx—y) =2f(x +2y) —4f(y) 2.3)
forall x,y € G. Interchanging x and y in and using oddness of f, we get

fxty) = flx—y) =2f(2x +y) —4f(x) (24)
forall x,y € G. Replacing y by —y in (2.4), we obtain

fle—y) = flx+y) =2f(2x —y) - 4f (%) 2.5)
forall x,y € G. Adding and 2.5), we arrive

f2x+y) + f(2x —y) = 4f (%) (2.6)

forall x,y € G. Using in (2.2), we derive our desired result.
Conversely, assume f : G — H be an odd mapping satisfying (I.I). Letting y by y 4 z in and using
(1), we have

fxrty+2) = fx) + fy) + f(2) 27)
forall x,y,z € G. Setting z by —z in , we arrive
flxty—2)=flx) + f{y) + f(=2) (28)
forall x,y,z € G. Replacing (x,y) by (x +y,z) in (1.1), we get
flxty+z)=flx+y) +f(2) (29)
forall x,y,z € G. Again replacing z by —z in (2.9), we obtain
fxt+y—2) = flx+y) + f(~2) (2.10)
forall x,y,z € G. Setting y by —y in 2.9), we get
flx—y+z)=flx—y) + f(2) (2.11)
forall x,y,z € G. Again setting z by —z in (2.11), we obtain
flx—y—2) = flx—y) + f(=2) (212)

forall x,y,z € G. Adding (2.9), (2.10), 2.11), (2.12) and using oddness of f, we arrive

frty+2) +flxty—z) +flx—y+2)+ flx —y—2) =2f(x +y) +2f(x —y) 213)
forall x,y,z € G. Replacing (x,y,z) by (y,z,x) in and using oddness of f, we get

fxty+z) = flx—y—2)+ flx+y—2) - flx—y+z) = 2f(y +2) +2f(y — 2) (214)
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forall x,y,z € G. Replacing (x,y,z) by (x,z,y) in (2.13) and using oddness of f, we obtain
fx+y+z)+fx—y+2)+fx+y—z)+f(x—y—2z) =2f(x+2)+2f(x —2) (2.15)
forall x,y,z € G. Adding (2.13), (2.14) and (2.15), we arrive

3f(x+y+z)+3f(x+y—z)+ f(x—y+z)+ f(x —y—2z)
=2[f(x+y)+flx—y)+fly+2)+fly—2)+ fx+2) + f(x — 2)] (2.16)
forall x,y,z € G. It follows from that
fx+y+z)+flx+y—z)+flx—y+z)+flx—y—2)
=2[f(x+y)+flx—y)+fly+2)+fly—2) + f(x+2) + f(x — 2)]
=2[f(x+y+z)+ f(x+y—2z)] (2.17)

forall x,y,z € G. Using (2.7), (2.8) in (2.17), we arrive

fx+y+z)+fx+y—z)+ flx—y+z)+ flx—y—2)
=2[f(x+y)+flx—y)+fly+2)+fly—2) + f(x +2) + f(x — 2)]
—2[f(x) + f(y) + f(2) + f(x) + f(y) + f(—2)]
=2[f(x+y)+ flx—y)+fly+2)+fly—2)+ fx+2) + f(x — 2)]
—4f(x) —4f(y) = 2[f(2) + f(—2)] (2.18)

for all x,y,z € G. Hence the proof is complete. O

Lemma 2.1. Let f : G — H be an odd mapping. Then f : G — H satisfies the functional equation for all
x,y,z € G, ifand only if f : G — H satisfies the functional equation

Proof. Assume f : G — H be an odd mapping satisfying (1.9). Replacing (x,y) by (0,0), we get f(0) =
Again replacing x by 0 in and using oddness of f, we obtain

fy+2)+fly —2) =2f(y) (219)
forall y,z € G. By Theorem 2.1 of [4], we derive our desired result. O

Theorem 2.2. If f : G — H is an even mapping satisfying the functional equation forall x,y,z € G, then f is
quadratic-quartic for all x,y € G.

Proof. Replacing z by x in (1.9), we arrive

fQRx+y) + f(2x—y) =4[f(x +y) + fx —y)]| +2[f(2x) — 4 (x)] - 6f(y) (2.20)
By Lemma 2.1 of [14], we see that f is quadratic-quartic. O

Theorem 2.3. Let f : G — H be an even mapping. Then f : G — H satisfies forall x,y,z € G if and only
if there exist a unique symmetric multiadditive mapping M : G* — H and a unique symmetric bi-additive mapping
B: G% — H such that

f(x) = M(x,x,x,x) + B(x, x) (2.21)
forall x € G.
Proof. The proof follows from Theorem [2.2|and Theorem 2.2 of [14], we derive our desired result. O

The following Lemmas are important to prove our stability results.

Lemma 2.2. If f : G — H is an odd mapping satisfying (1.9), then

f(2x) = 2f(x) (2.22)
forall x € G, such that f is additive.



126  John M. Rassias et al. / Generalized Ulam - Hyers Stability of on (AQQ): Additive - Quadratic - Quartic Functional Equation

Proof. Letting (x,y,z) by (0,0,0) in (L9), we get f(0) = 0. Replacing (x,y,z) by (x,x,x) in (1.9) and using

oddness of f, we obtain
f(3x) = 6f(2x) = 9f(x)

for all x € G. Again replacing (x,y,z) by (—x, x,x) in (1.9) and using oddness of f, we get
f(3x) =2f(2x) = f(x)

for all x € G. It follows from (2.23) and (2.24), we derive our desired result.

Lemma 2.3. If f : G — H is an even mapping satisfying and if g 1 G — H is a mapping given by
g2(x) = f(2x) = 16f(x)

forall x € G, then
q2(2x) = 4q2(x)
forall x € G, such that q, is quadratic.

Proof. Letting (x,y,z) by (x,x,x) in (1.9), we get
f(3x) = 6f(2x) —15f(x)
for all x € G. Again replacing (x,y,z) by (x, x,2x) in (1.9) and using evenness of f, we have
f(4x) = 4f(3x) —4f (2x) — 4f(x)
forall x € G. Using in (2.28), we get
f(4x) =20f(2x) — 64f(x)
for all x € G. From (2.25), we establish
92(2x) — 442(x) = f(4x) —20f(2x) + 64f (x)
forall x € G. Using in (2.30), we derive our desired result.
Lemma 2.4. If f : G — H is an even mapping satisfying and if g4 © G — H is a mapping given by
qa(x) = f(2x) — 4f(x)
forall x € G, then
74(2x) = 16g4(x)
forall x € G, such that q4 is quartic.
Proof. It follows from (2.31) that
q4(2x) —16q4(x) = f(4x) —20f(2x) + 64f(x)
forall x € G. Using in (2.33), we derive our desired result.

(2.23)

(2.24)
O

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
O

Remark 2.1. Let f : G — H be a mapping satisfying and let q,q4 : G — H be a mapping defined in and

then .
f(x) = 15 (a(x) = 2(x))
forallx € G.

(2.34)

Hereafter, through out this paper, let we consider G be a normed space and H be a Banach space. Define a

mapping Df : G — H by
Df(xy,2) = flx+y+2) + flx+y—2z)+ flx —y+2) + flx —y —2)

—2[f(x+y)+fx—y)+fly+2)+ fly—2) + f(x +2) + f(x — 2)]

—4f(x) —4f(y) —2[f(2) + f(=2)]

forallx,y,z € G.
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3 Stability Results: Odd Case

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.9) for odd
case.

Theorem 3.1. Let j = £1and ¢, & : G — [0, 00) be a function such that

fi ¥ 275 27,2%2)

n—00 2nj

(3.1)

forallx,y,z € G. Let f, : G — H be an odd function satisfying the inequality

IDfa(x,y,2)|| < ¢ (x,y,2) (32)

forall x,y,z € G. Then there exists a unique additive mapping A : G — H which satisfies and

1 00 (: Zkfx
IAt) - A < 3 b (zkj ) 63)
where ¢ (2"7 x) and A(x) are defined by
& (2’<fx) = i [1/1 (zkfx, 2kiy, 2kfx) o (—ijx, 2y, zkfx>] (3.4)
and .
Alx) = Tim £227%) (3.5)

n—oo  2NJj

forall x € G, respectively.

Proof. Replacing (x,y,z) by (x, x, x) in (3.2) and using oddness of f,, we get

1 fa(3x) = 6£a(2x) +9fa(x)[| < ¢ (x, %, x) (3.6)
for all x € G. Again replacing (x,y,z) by (—x, x, x) in (3.2) and using oddness of f,, we obtain
1= fa(3%) + 2fa(2x) — fa(x)|| < 9 (—x,x,x) (3.7)

for all x € G. It follows form and that

18fa(x) —4fa(2x)|| < [Ifa(3x) — 6fa(2x) +9fa(x) || + | fa(3x) + 2fa(2x) — fa(x)|
<P (x,x,%)+9(—x,x,x) (3.8)

for all x € G. Dividing the above inequality by 8, we obtain

1
¢(x) = 1 [ (x,x,x) + ¢ (—x,x,x)]
forall x € G. Now replacing x by 2x and dividing by 2 in , we get

fa(22x) fﬂ(x)H < @ (39)

where

fo(2%) _ fa20) | §(2%)
‘ 22 ‘< 2.2 (3.10)
forall x € §. From (89) and B10), we obtain
(22 (2 (2 3
‘ L (22X) = fa(x) ’ < ‘ @ fa(x)H + f (222") _f (2295) ’

< % [C(x) + é(ix)} (3.11)
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for all x € G. Proceeding further and using induction on a positive integer n, we get

fu (Z"x) 1 n— 1
12
21 - 2 (.12)
1 o0
<3 Z
fa(2"x) Ny
for all x € G. In order to prove the convergence of the sequence on , replace x by 2"x and dividing
by 2™ in (3.12), for any m,n > 0, we deduce
fa(2"x)  f2") | 1 || fa(2"-2"x)
H (n+m) om ~ om on — fa(2"x)
- 1 n—1 €(2k+m9€)
=9 = 2k+m
00 k+m
< % Z ¢ (§k+mX)
k=0
—+0 as m — o0
fa (2nx) . . . .
for all x € G. Hence the sequence T (isa Cauchy sequence. Since H is complete, there exists a

mapping A : G — H such that
n
A(x) = lim M, VY xeg.

n—oo
Letting n — oo in (3.12), we see that (3.3) holds for all x € G. To prove that A satisfies (1.9), replacing (x, y, z)
by (2"x,2"y,2"z) and dividing by 2" in (3.2), we obtain

(2"x,2"y,2"z) H < 2%1/)(2”3{, 2"y, 2"z)

forall x,y,z € G. Letting n — oo in the above inequality and using the definition of A(x), we see that
DA(x,y,z) =

Hence A satisfies for all x,y,z € G. To prove that A is unique, let B(x) be another additive mapping
satisfying and (3.3), then

|AG) ~ B = 5 |AQ2") — B@')|
< o 1A ~ @) + o) ~ B}

2k+n )

g(
- Z k+n

—0 as n— o

for all x € G. Thus A is unique. Hence, for j = 1 the theorem holds.
. X .
Now, replacing x by 5 in 1| we reach

o (2) -] <0 (3 33) <0 (55 o
for all x € G. Dividing the above inequality by 4, we obtain
25 (3) - )] <2 (3) (314)

where X 1 X X X X X X
t(3)=3lv(G3a) v (-533)]

for all x € G. The rest of the proof is similar to that of j = 1. Hence for j = —1 also the theorem holds. This
completes the proof of the theorem. O
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The following corollary is an immediate consequence of Theorem (3.1 concerning the Ulam-Hyers [16],
Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] stabilities of (1.9).

Corollary 3.1. Let p and s be nonnegative real numbers. Let an odd function f, : G — H satisfy the inequality

o,
o Il + 11 + l1zIF}, A1,
Df,(x,y,2)| < 3.15
IDfalx 0N < 4 2l o]l 3 £ 1; (315)
o (1l Fllyl 1121 + 1]+ [l + 2P}, 3s £ 1

forall x,y,z € G. Then there exists a unique additive function A : G — H such that
P

2’ .

3p]|x|]

22 — 25|

1fa(x) =A< pf|x|]? (3.16)
22 — 23]’

20 |x|*

2 —2%]

forallx €G.

Now, we provide an example to illustrate that the functional equation (1.9) is not stable for s = 1 in
condition (ii) of Corollary [3.1]

Example 3.1. Let ¢ : R? — R be a function defined by

o) = { 15 Pl <

u, otherwise

where y > 0 is a constant and define a function f, : R — R by

(o) 2n
fa(x) =Y lP(ZHX) forall x€R.
n=0
Then f, satisfies the functional inequality
[Dfa(x,y,2)| <56 u(|x| + [y[ + |2]) (3.17)

forall x € R. Then there do not exist a additive mapping A : R — R and a constant x > 0 such that
|fa(x) — A(x)| < x|x| forall x eRR. (3.18)

Proof. Now
LGRS
|fa(x)| < Z lp|27n| = Z zﬁn =2
n=0 n=0
Therefore, we see that f, is bounded. We are going to prove that f, satisfies (3.17).

If x = y = z = 0 then (3.17) is trivial. If |x| + |y| + |z] > % then the left hand side of (3.17) is less than 56y.

1
Now suppose that 0 < |x| + |y| + |z| < > Then there exists a positive integer k such that
1 1

1 1 1
so that 2~ 1x < E,Zkfly < E,Zkflz < 5 and consequently

2 xty4z), 2 Nty —2), 25 W x —y+2), 28 (x —y —2), 2 x +y), 2 Hx —y),
2k*1(y + z),2k*1(y — z),Zkfl(x + z),Zkfl(x — z),Zkfl(x),Zk*l (y),Zkil(z),Zkfl (=z) € (-1,1).
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Therefore foreachn =0,1,...,k — 1, we have

2"(x+y+2),2"(x+y—2),2"(x—y+2),2"(x—y—2),2"(x+y),2"(x —y),
2"(y+2),2"(y —2),2" (x +z),2" (x — z),2"(x),2"(y), 2" (z),2" (—z) € (—1,1)

and

P2 (x+y+2) + 92" (x+y—2) + P2 (x —y +2)) + (2" (x —y —2))
22" (x+y) + (2" (x —y) +¥(2"(y +2)) + (2" (y — 2))
+P(2"(x +2)) + 92" (x — 2))] + 49 (2"x) +4p(2"y) + 2[(2"2) + (2" —2)] = 0

forn =0,1,...,k — 1. From the definition of f, and , we obtain that
‘f(x+y+z)+f(x+]/—z)+f(x—y+z)+f(x—y—z)—Z[f(x+]/)+f(x—y)
+f(y+2)+f(y—z)+f(x+z)+f(x—Z)]+4f(x)+4f(y)+2[f(2)+f(—2)]’
< Lo

PR (x+y+2) + 92" (x+y—2) + 92 (x -y +2) + 92" (x —y - 2))

— 22" (x+y) + 2" (x —y) +¥(2" (v +2)) + ¥(2"(y — 2))
T2 (x +2)) + (2" (x = 2))] + 49 (2"x) + 49 (2"y) + 2 [(2"2) + (2" - 2)] ’

IA
(agk
N =

2
[
~

q [P (x +y +2)) + (2N (x +y —2)) + (2N (x —y +2)) + (2" (x —y —2))

—2[p2 (x+y) + 92" (x —y)) +¥(2"(y +2)) + (2" (y - 2))
TP (2" (x +2)) + 92" (x — 2))] + 49 (2"x) + 49 (2"y) + 2 [(2"2) + (2" - 2)] (
< i %28;4 =28y X o 2 = =56 u(|x| + |yl + [z]).

1
Thus f, satisfies (3.17) for all x € R with 0 < |x| + |y| + |z| < 5

We claim that the additive functional equation is not stable for s = 1 in condition (ii) Corollary
Suppose on the contrary that there exist a additive mapping A : R — R and a constant x > 0 satisfying (3.18).
Since f; is bounded and continuous for all x € R, A is bounded on any open interval containing the origin
and continuous at the origin. In view of Theorem 3.1, A must have the form A(x) = cx for any x in R. Thus,
we obtain that

[fa(x)] < (e 4 [e]) |- (3.20)
But we can choose a positive integer m with mp > x + |c|.
Ifxe ( ) = 1) then 2"x € (0,1) foralln =0,1,...,m — 1. For this x, we get

0 on m=1, (on
:le( x)ZZy( x>=m;4x>(1c+|c|)x
n=0 n=0
which contradicts (3.20). Therefore the additive functional equation is not stable in sense of Ulam, Hyers
and Rassias if s = 1, assumed in the inequality condition (i) of (3.16). O

A counter example to illustrate the non stability in condition (iii) of Corollary 3.1|is given in the fol-
lowing example.

1
Example 3.2. Let s be such that 0 < s < 3 Then there is a function f, : R — R and a constant A > 0 satisfying

s s 1-2s
IDfa(x,y,2)| < Alx[3 Jy[3 [z[ 37 (3:21)
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forall x,y,z € Rand
sup F20) = AR

~ too (3.22)
x#0 |x|

for every additive mapping A(x) : R — R.

Proof. If we take

[ xIn|x|, if x#0,
f(x){ 0,  if x=0.

Then from the relation (3.22), it follows that

[fa(x) = A(X)] [fa(1) — A(n)]|

sup sup
x#£0 |x| nelN |1’l|
n#0

We have to prove (3.21) is true.
Case (i): If x,y,z > 0 in (3.21)) then,

‘f(x+y+2)+f(x+y—z)+f(x—y+z)+f(x—}/—z)—Z[f(x+y)+f(x—}/)+f(}/+z)
+f(]/—2)+f(x+z)+f(x—z)]—4f(x)—4f(]/)—2[f(z)+f(—z)]’
=|(x+y+z)Infx+y+z|+(x+ty—z)In|x+y—z[+(x —y+z)In[x —y +z|
+(x—y—z)In|x—y—z|-2[(x+y)In|x+y|+ (x—y)In|x —y| + (y + 2) In |y + z|
+(y—z)Infy —z] —4(x) In|x[ — 4(y) In|y| — 2[(z) In |z + (—z) In | — z[]|.

Set x = v,y = vy, z = v3 it follows that

flty+2)+ flxty—2) + flx—y+2) + flx—y—2) =2[f(x+y) + f(x =) + fly+2)
+f(y—2) + f(x+2) + f(x = 2)] - 4f (x) —4f (y) = 2[f(2) + F(~2)]|

= |(v1 +v24+v3)In|vy +v2 + 03| + (v1 +v2 — v3) In|v1 + V2 — V3]
+ (v —v2+v3)In|vg — v + 03] + (v1 — V2 — v3) In|v; — vy — V3]
—2[(v1 +v2) In|v; + 02| + (v1 — v2) In|vg — V2| + (v2 + v3) In|vy + v3]
+(v2 — v3) In vz — v3] — 4(v1) In |01 ] — 4(v2) In[v2| — 2[(v3) In[vs| 4+ (—v3) In | — vs]]| .

— |£(01+ 02 +03) + f(01 + 02— 03) + f (01 — 02+ 03) + f(01 — v — v3)

—2[f(r1 +v2) + f(v1 —v2) + f(v2 +v3) + f(v2 —v3) + f(v1 +v3) + f(v1 — v3)]

—4f (01) = 4f (02) = 2[f(v3) + f(—23)] |

< Alor]3 foal3 Jos] 5
= Alx[3 [yl# Ja] =

For the cases (ii) x,y,z < 0, (iii) x,y > 0,z <0, (iv) x,y <0,z > 0and (v) x =y = z = 0, the proof is
similar tracing to that of Case (7). O

Now, the authors provide an example to illustrate that the functional equation (1.9) is not stable for s = %
in condition (iv) of Corollary 3.1}
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Example 3.3. Let ¢ : R3 — R be a function defined by

w = { 4 T

5,  otherwise

where > 0 is a constant, and define a function f, : R — R by

o n
=) $(2x) forall x e€R.
n=0
Then f, satisfies the functional inequality
56y 1 1 1
IDfa(x,y,2)| < —={1x[3 +1y[3 + [z]3 + (|x[ + [yl + [z])} (3.23)

for all x € R. Then there do not exist a additive mapping A : R — R and a constant ¥ > 0 such that

|fa(x) — A(x)] < x|x] forall x eRR. (3.24)

Proof. Now

Therefore, we see that f, is bounded. We are going to prove that f, satisfies (3.17).

If x = y = z = 0 then (3.17) is trivial. If |x]3 + \y|% +1z]3 + (|x| + ly| + |z]) > % then the left hand side of

56 1
3.17) is less than Ty Now suppose that 0 < |x|3 + [y|3 + |z[5 + (|x| + |y| + |z]) < > Then there exists a
positive integer k such that

1
5 < [P [yl3 + 215+ (] + [yl + [2]) < % (3.25)

1 1 1 1 1 1
so that 2¢-1x3 < = X ,2k= 1y3 <5 26123 < E,Zk_lx < E,Zk_ly < E,Zk_lz <3 and consequently

2N x+y+2),2 (v+y—2), 25—y +2), 28 (x —y—2), 2 (x +y), 25 (x —y),
2k-1 (y+ z),Zk_1 (y — z),Zk_1 (x+ z),Zk_1 (x — z),Zk_1 (x), k-1 (y),Zk_1 (2), 2k_1(—z) € (-1,1).

Therefore foreachn = 0,1,...,k — 1, we have

2"(x4+y+2),2"(x+y—2),2"(x—y+2),2"(x—y—2),2"(x+y),2"(x —y),
2"y +2),2"(y —2),2" (x + 2),2"(x — 2),2"(x),2"(y),2"(2), 2" (—2) € (-1, 1)

and

P2 (x+y+2) + 92" (x+y—2) + 92" (x -y +2)) + (2" (x —y —2))
—2[pQ2"(x+y) + 92" (x —y) +¥(2"(y +2)) + (2" (y — 2))
TP (2" (x +2)) + (2" (x = 2))] + 49 (2"x) +4p(2"y) +2[(2"2) + (2" —2)] =0
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forn =0,1,...,k — 1. From the definition of f, and (3.19), we obtain that
‘f(x+y+z)+f(x+y—z)+f(x—]/+z)+f(x—]/—2)—Z[f(x+y)+f(x—]/)

+f(y+2)+f(y—2)+f(X+Z)+f(x—Z)}+4f(x)+4f(y)+2[f(2)+f(—2)]‘
=

| —

P (x+y+2) + 92" (x+ty —2) + 92N (x —y+2) + 92N (x —y — 2))

n

N

— 22" (x+y) + 92" (x —y)) +¥(2" (v +2)) + ¥(2"(y — 2))
(2" (x +2)) + 92" (x — 2))] + 49 (2"x) + 49 (2"y) + 2 [(2"2) + (2" — 2)] ’

1
<Y o

P2 (x+y+2) + 92N (x+y—2) + 92N (x —y +2)) + (2" (x —y - 2))

—2[p2" (x+y) + 92" (x —y) + 92"y +2)) + ¥(2"(y - 2))
+p(2"(x +2)) + (2" (x — 2))] + 49 (2"x) + 49 (2"y) + 2 [(2"2) + (2" - 2)] ‘

© 128u 28y 2  56u
< ! = _ = — .
<Y ia =3 X = 5 (Kl l2D)

Thus f, satisfies (3.17) for all x € R with 0 < |x|% + |y|% + \z|% + (x| + |y + |z]) < %

We claim that the additive functional equation is not stable for s = 1 in condition (iv) Corollary
Suppose on the contrary that there exist a additive mapping A : R — R and a constant x > 0 satisfying (3.18).
Since f, is bounded and continuous for all x € R, A is bounded on any open interval containing the origin
and continuous at the origin. In view of Theorem A must have the form A(x) = cx for any x in R. Thus,
we obtain that

[fa()] < (k+ le]) |x]- (3.26)
But we can choose a positive integer m with mp > x + |c|.
Ifxe (0,2,,1%1> ,then2"x € (0,1) foralln =0,1,...,m — 1. For this x, we get

S 1y m—1 My
fa(x) — Z 1/’(;1 ) 2 Z .u(in )
n=0 n=0

which contradicts (3.26). Therefore the additive functional equation (1.9) is not stable in sense of Ulam, Hyers
and Rassias if s = %, assumed in the inequality condition (i7) of 1} O

=mux > (k+ |c|) x

4 Stability Results: Even Case

In this section, we present the generalized Ulam-Hyers stability of the functional equation (I.9) for even case.
Theorem 4.1. Let j = £1and ¢, : G* — [0, 00) be a function such that

lim 4 (anx'zn.j y,2"2) =

n—oo 41

4.1)

forall x,y,z € G. Let f5 : G — H be an even function satisfying the inequality

IDfa(x,,2)|| < ¢ (x,y,2) 4.2)
forall x,y,z € G. Then there exists a unique quadratic mapping Qp : G — H which satisfies and

w (28
!|fq(2x)—16fq(x>—Qz(x>H331 )y ( .x> (43)

where { (Zkf x) and Qo (x) are defined by

7 (zij) — 4y (2ij, ki, zij) oy (2(k+1)jxl ki, zij) (4.4)
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and
1 , A
Qa(x) = Jim = (32" Vix) — 16£,(2"x)) 45)
forall x € G, respectively.

Proof. Replacing (x,y,z) by (x,x,x) in (4.2) and using evenness of f;, we get
[1f3(3x) — 6£4(2x) +15f5(x) || < 9 (x,x, ) (4.6)
for all x € G. Again replacing (x,y,z) by (2x, x, x) in (4.2) and using oddness of f;, we obtain

|| fa(4x) + 4f3(2x) — 4f3(3x) + 4f3(x)[| < ¢ (2%, x,x) (47)
for all x € G. It follows from and (7) that
|| f5(4x) —20£,(2x) + 6414 (x)||

< 4| f;(8x) — 6f4(2x) +15f5(x) || + || fo(4x) + 44 (2x) — 4f;(Bx) + 4f4(x)|
<4y (x,x,x) + 9P (2x,x,x) (4.8)

for all x € G. From (38), we arrive

qu(4x) - Zqu(Zx) +64fq(x)|| <{(x) (4.9)

where
T(x) =4y (x,x,x) + 9 (2%, x,x)
for all x € G. Itis easy to see from (4.9) that

[ fg(4x) = 16f5(2x) — 4(f(2x) = 16£5(x)) || < ¢ (x) (4.10)

for all x € G. Using (2.25) in (.10), we obtain
[192(2x) — 4g2(x)[| < {(x) (411)
for all x € G. The rest of the proof is similar to that of Theorem 3.1} O

The following corollary is an immediate consequence of Theorem {4.1| concerning the Ulam-Hyers [16],
Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] stabilities of (T.9).

Corollary 4.1. Let p and s be nonnegative real numbers. Let an even function f, : G — H satisfy the inequality

0,
o Clllls = 11lF + 11zl Ry
Df,(x,y,2)|| < 4.12
IPfaGey 2N <9 el s 21, 3 42 412)
o 11 ly izl + {11 + I+ |17} ), 35 22

forall x,y,z € G. Then there exists a unique quadratic function Qy : G — H such that
50

204 —25]
||fq(2x) —16f4(x) — QZ(X)H < (2 +|4)pHx|H3s (4.13)
T 24 —2%]
(25 4+ 2% +18)p||x||%
|4 — 25|

forallx €G.

Now, the authors provide an example to illustrate that the functional equation (1.9) is not stable for s = 2
in condition (ii) of Corollary [4.1]
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Example 4.4. Let ¢ : R3 — R be a function defined by

ux?, i |x| <1
u,  otherwise

v = {

where p > 0 is a constant, and define a function f; : R — R by

AR yicici

n=0

forall xe€R.

Then fq satisfies the functional inequality
112
IDfi(x,y,2) < = E(IxP + [y + |212) (4.14)
for all x € R. Then there do not exist a quadratic mapping Q, : R — R and a constant x > 0 such that
|fa(2x) = 16f5(x) — Qa(x)| < x|x|? forall x€R. (4.15)

Proof. The proof of the example is similar to that of Example O

A counter example to illustrate the non stability in condition (iii) of Corollary 4.1|is given in the fol-
lowing example.

2 ‘ . g
Example 4.5. Let s be such that 0 < s < ~. Then there is a function f; : R — R and a constant A > 0 satisfying

3
s s 2—2s
IDfg(x,y,2)| < Alx|3 |y]3 |2]73 (4.16)
forall x,y,z € Rand
2x) — 16 —
sup 12D 1600 — Q| _ (417)
x#0 |x|

for every quadratic mapping Qz(x) : R — R.

Proof. If we take
x*In|x|, if x#0,
f(x){ 0, if x=0.

Then from the relation (3.22), it follows that

sup \fq(zx)—wfqu)—Qz(x)\ > sup ‘fq(zn)_16fq(2”)_Q2(”)|
x40 |x| neN |n|

|4n%In |n| — n2161n |n| — n? Q, (1)|
|2

= sup
neN |n
n#0

= sup |4In|n| —16In|n| — Q2(1)| = oo.
n€EN
n#0
The proof is similar tracing to that of Example O

Now, the authors provide an example to illustrate that the functional equation l) is not stable for s = %

in condition (iv) of Corollary 4.1}

Example 4.6. Let 1 : R® — R be a function defined by

) opx, if|x| <1
Pp(x) = { 2@”, otherwise
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where p > 0 is a constant, and define a function f; : R — R by

o = £ 12

n=0

forall x €.

Then f, satisfies the functional inequality

28 x 8 2 2 2
IDfa(xy,2)l = — ELxl3 +1yl3 + 1213 + (1 + yl? + |21}

forall x € R. Then there do not exist a quadratic mapping Qz : R — R and a constant x > 0 such that
|fg(2x) = 16f5(x) — Q2(x)| < x|x| forall xeRR.

Proof. The proof of the example is similar to that of Example

Theorem 4.2. Let j = +1and ¢, : G> — [0,00) be a function such that

@2y
n—oo 16"

forall x,y,z € G. Let fg : G — H be an even function satisfying the inequality

IDfy(x,y,2)|| < ¥ (x,y,2)
forall x,y,z € G. Then there exists a unique quartic mapping Qu : G — H which satisfies and

1 = (20
(| fa(2x) = 4fq(x) — Qa(x)]| < 16 k;ﬂ_ (16kj )
where { (Zkf x) is defined in and Qq4(x) is defined by
Qulw) = lim — (2 Vix) - 4f, (27x) )

forall x € G.
Proof. It follows from ([@.38), we have
| f7(4x) —20£; (2x) + 64 £, ()] < {(x)

where
C(x) =4y (x,x,x) + ¢ (2x, x, x)

for all x € G. Itis easy to see from (4.24) that
(| fq(4x) —4fy(2x) — 16(fg(2x) — 4f3(x))| < C(x)
for all x € G. Using (2.31) in (4.25), we obtain
[[94(2x) — 16g4(x)|| < {(x)
for all x € G. The rest of the proof is similar to that of Theorem

(4.18)

(4.19)

(4.20)

@.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
O

The following corollary is an immediate consequence of Theorem concerning the Ulam-Hyers [16],

Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] stabilities of (T.9).

Corollary 4.2. Let p and s be nonnegative real numbers. Let an even function f; : G — H satisfy the inequality

o,
o LIIx[ 1+ 1yl + =]}, s#4
ollxl Iyl I[1z1]*, 3s #4;
o LIl FHyl P11 + {Ix P + 1yl + 1121} }, 3s # 4

Hqu(x,y,Z)H <

(4.27)
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forall x,y,z € G. Then there exists a unique quartic function Q4 : G — H such that
o
3!
(2 +14)pllx[[*
216 — 25|
[ £7(2x) = 4fy(x) = Qa(x)|| < < (25 1+ 4)p| ||| (4.28)
& TR)PIXIT
2|16 — 23| ’
(28 + 2% + 18)p||x ||’
|16 — 23|

forallx € G.

Now, the author provide an example to illustrate that the functional equation (1.9) is not stable for s = 4
in condition (ii) of Corollary[4.2]

Example 4.7. Let ¢ : R3 — R be a function defined by

x*, if|x
w(x)_{ﬂ ,iflxf <1

u,  otherwise

where p > 0 is a constant, and define a function f; : R — R by

fa(x) = noio 4’(126?) forall xeRR.
Then f, satisfies the functional inequality
DSy, 2)] < 22O (el eyl 2l 429)
forall x € R. Then there do not exist a quartic mapping Q4 : R — R and a constant x > 0 such that
|fa(2x) — 4fy(x) — Qa(x)| < x|x|* forall x€R. (4.30)
Proof. The proof of the example is similar to that of Example O

A counter example to illustrate the non stability in condition (iii) of Corollary 4.2|is given in the fol-
lowing example.

4
Example 4.8. Let s be such that 0 < s < —. Then there is a function f : R — R and a constant A > 0 satisfying

3
El s 4-2s
IDfy(x,y,2)| < Alx|5 |y|5 |23 (4.31)
forall x,y,z € R and
2x) — 4 -
sup |f(2x) —4f(x) — Qu(x)| _ oo 432)

X0 x|
for every quartic mapping Qa(x) : R — R.
Proof. 1f we take
[ x*Inlx|, if x#0,
f(x)_{ 0, if x=0.

Then from the relation (3.22), it follows that

| fa(2x) = 4fq(x) — Qu(x)| |fq(2n) — 4fq(n) — Qu(n)|
sup I > sup i
x40 |x] neN n|

|16n4ln|n| —n*4n|n| —n* Q4 (1)]
= sup 4
nelN |n|
n#0
= sup |16In|n| —4In|n| — Q4(1)| = oo.
nelN
n##0

The proof is similar tracing to that of Example O
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Now, the authors provide an example to illustrate that the functional equation (1.9) is not stable for s = %

in condition (iv) of Corollary 4.2}
Example 4.9. Let ¢ : R3 — R be a function defined by

() = { Z;C if | x| <

-, oOtherwise

where y > 0 is a constant, and define a function f; : R — R by

Z 16" forall x €RR.

Then f, satisfies the functional inequality

112 x 16 4 4 4
IDfy(x,y,2)] < === {Ix]3 + Iyl3 + [213 + (1xl* + yl* +121*)} (4:33)

forall x € R. Then there do not exist a quartic mapping Q4 : R — R and a constant ¥ > 0 such that
|fg(2x) —4f,(x) — Qa(x)| < xx| forall x eRR. (4.34)
Proof. The proof of the example is similar to that of Example O

Theorem 4.3. Let j = +1. Let f; : G — H be a mapping for which there exists a function 1, { : G — [0, 00) with the
conditions given in and respectively, such that the functional inequality

[Dfa(x,y,2)|| < ¢ (x,y,2) (4.35)

forall x,y,z € G. Then there exists a unique quadratic mapping Qx(x) : G — H and a unique quartic mapping
Qu4(x) : G — H satisfying the functional equation and

7(25x) 1

> 7(2kix)
1 f7(x) = Qa(x) — Qa(x)|| < 12 Z]; 2 le TG (4.36)

forall x € G, where {(2"x), Qz(x) and Qq4(x) are respectively defined in , and forallx € G.

Proof. By Theorems and there exists a unique quadratic function Qy, (x) : ¢ — H and a unique quartic
function Qg (x) : G — H such that

o 2kix
| fa(2x) = 16f,(x) — Qa, ()| < 411 Y (4kj ) (4.37)
k=131
and N y
|| f7(2%) = 4f(x) — Qu, ()] < 11—6 Zl | 5(126,;) (4.39)
k="

for all x € G. Now from and (4.38), one can see that

f2(0) + 25, (x) — 75 Qu, ()
_ H{ fq (2x) 16fq(x) . Qo (x )}+ {fq(Zx) 4fq( ) Qu (%) }H

12 12 12

Sﬁ{”fq(z")*mﬁi( = Qo ()| + [ f3(2%) = 4f3(x) = Qu (D) ||}
1 J1 & ¢(2bx) 1 7(2x)
Su{z;k;/ 4kj +16k77. 16"1 }

for all x € G. Thus, we obtain {4 by defining Qz( ) = 121 Qo (x) and Qu(x) = %Qéh(x), where 7 (2Nx),
Q2(x) and Qq(x) are respectively defmed in (44), @.5) and (4.23) forall x € G. O
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The following corollary is the immediate consequence of Theorem [4.3] using Corollaries 4.1 and [4.2] con-
cerning the Ulam-Hyers [16], Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] sta-

bilities of (L.9).

Corollary 4.3. Let f; : G — H be a mapping and there exists real numbers p and s such that

o LIx[1°+ [yl +[1z]1°}, s #£2,4;
Dfs(x,y,2)|| <
|Dfy(x,,2)]| ol Ix[ 1yl *]]z]1°, 3s #2,4;
o {IIx[B 1yl 111zl 15 4 {1x [P + [yl1® + [|z]1%} }, 3s #2,4;

forall x,y,z € G. Then there exists a unique quadratic function Qp : G — H and a unique quartic function Q4 : G —
‘H such that

(4.39)

P
e

+14p||x||5 1
|16 > Ta— )

[1£3(x) = Qa(x) = Qa(x)[| < (zs+4 p||x||3s 1 (4.40)
(|16 25 a2
(25+235+18 pl|x|[% (

16— zw*‘4—ﬁﬂ)
forallx € G.

5 Stability Results: Mixed Case

Theorem 5.1. Let j = +1. Let f : G — H be a mapping for which there exists a function ¥ : G> — [0, c0) with the
conditions given in (3.1)), and respectively, satisfying the functional inequality

IDf(x,y,2) | < ¥ (xy,2) .1)

forall x,y,z € G. Then there exists a unique additive mapping A(x) : G — H, a unique quadratic mapping Qo (x) :
G — H, a unique quartic mapping Qu(x) : G — H satisfying the functional equation and

[1f(x) = A(x) — Qa(x) — Qa(x)]]
1 & [E(2Yx) | g(—2Yx)
(12 ()

L > (2ki 2ki > (72N —2ki
1 ;,(gﬂf) a4]m> ;:< ) | amww>]} 62

12

<

forall x € G, where &(28x), £(25x), A(x), Qa(x) and Q4(x) are respectively defined in , , , and
@23) forall x € G.

Proof. Let fo(x) = M forall x € G. Then f,(0) = 0 and f,(—x) = —fo(x) for all x € G. Hence

1
IDf(xy 2| < 5 {9(5y,2) + (-2, —y, ~2)) 5.3
forall x,y,z € G. By Theorem 3.1} there exists a unique additive function A(x) : G — H such that
1 & [ &Q2Ny) g(—zkfx)
_ | <2
[ fo(x) <7 ; ( 5 5 (5.4)

forall x € G. Also, let fo(x) = M forall x € G. Then f,(0) = 0and f.(—x) = fe(x) forallx € G.
Hence

IDfe(xy,2)] < 5 (9(09,2) + p(—x—y,~2)) 5
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for all x,y,z € G. By Theorem there exists a unique quadratic mapping Q»(x) : G — H and a unique
quartic mapping Q4(x) : G — H such that

[[ fe(x) — Qa(x) — Qa(x)||
1)1 & (229  g(—2Yx) 1 & (429 | ¢(—25x)
§24{4ij< T >+16 Z,( T em >} (5.6)

for all x € G. Define

f(x) = fo(x) + fe(x) (5.7)
for all x € G. Now from (5.7), and (5.4), we arrive

1f(x) = A(x) = Qa(x) — Qa()]]
= [lfo(x) + fe(x) = A(x) = Qa(x) — Qa(x)]|
< [lfo(x) = A + [l fe(x) = Qa(x) — Qa(x)]]

1)1 & 2Kj —2kj
§2{22:<aﬂfx+azhw>

k=t
1|1 & (8(9%) | {(=2Yx) = (@) | ((-29)
2 4k—21:f< & T ) le ( TG TG (5.8)

for all x € G, where &(28x), 7(28x), A(x), Q2(x) and Q4(x) are respectively defined in , , ,
and (.23) forall x € G. O

The following corollary is the immediate consequence of Theorem [5.1} using Corollaries 3.1 and 43| con-
cerning the Ulam-Hyers [16], Ulam-Rassias [30], Ulam - Gavruta - Rassias [26] and Ulam-JMRassias [33] sta-

bilities of (1.9).

Corollary 5.1. Let f : G — H be a mapping and there exists real numbers p and s such that

0,
o LIIxIF + 1yl + 2]}, s#1,2,4;
< .
1Dy 2)ll < ol [yl |=]I*, 3s #1,2,4; &2

o {IIxIPIylFl1zl1 + {1l + [yl + (121}, 3s #1,2,4

forall x,y,z € G, then there exists a unique additive mapping A(x) : G — H, a unique quadratic mapping Qo (x) :
G — H and a unique quartic mapping Q4(x) : G — H such that

1£(x) = A(x) = Qa(x) — Qa(x) ||

21’
p||x||5 3 L e @21
2 — 12\16 25| " 12[4 —2°]
= mums (2+4) | (244 510
2 — 23s 12|16 23| 12|4f23s£’
p||x||35 25 42% 118) (28 42% 4 18)
2 — 235 6|16 23] 6|4 — 25|
forallx € G.
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