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Abstract

This paper analyze an M [X]/G/1 queue with feedback, random server breakdowns and Bernoulli schedule server

vacation with general(arbitrary) distribution. Customers arrive in batches with compound Poisson process and are

served one by one with first come first served basis. Both the service time and vacation time follow general (arbitrary)

distribution. After completion of a service the may go for a vacation with probability θor continue staying in the system

to serve a next customer, if any with probability 1− θ. With probability p, the customer feedback to the tail of original

queue for repeating the service until the service be successful. With probability 1 − p = q, the customer departs the

system if service be successful. The system may breakdown at random following Poisson process, whereas the repair time

follows exponential distribution. We obtain the time dependent probability generating function in terms of their Laplace

transforms and the corresponding steady state results explicitly. Also we derive the system performance measures like

average number of customers in the queue and the average waiting time in closed form.
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1 Introduction

Due to a lot of significance in the decision making process, the research on queuing theory has been
extensively increased. Queuing theory has made a revolution in industry and logistics sector apart from its
immense applications in many other areas like air traffic, bio-sciences, population studies, health sectors,
manufacturing and production sections etc. According to the prevailing demands or situations in real life
scenario, queuing models have been encountered enormously, in research perspective.

Most recently research studies on queues with server breakdown have been attracted, as an important
area of queuing theory and have been studied extensively and successfully due to their various applications
in production, communication systems. Mostly in the queuing literature, the server may be considered as an
reliable one,such that service station never fails. But in real situations mostly the servers are unreliable, we
often encounter the cases where service stations may fail which can be repaired. Similarly, many phenomena
always occur in the area of computer communication networks and flexible manufacturing system etc. Since the
performance of such a system may be heavily affected by server breakdowns, followed by a repair immediately,
such systems with a repairable service stations are well worth investigating from the queuing theory point of
view as well as reliability point of view.
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Recently, there have been several contributions in considering non-Markovian single server queuing system,
in which the server may experience with break downs and repairs, such system with repairable server has been
studied as queuing models by many authors including Avi-Itzhak and Naor [2], Graver [6], Takine and Sengupta
[21], Wang [24], Tang [22] Assani and Artalejo [1] etc.

Another feature in queuing theory is the study of queuing models with vacations. when the system is empty,
the server becomes idle and this idle time may be utilized by the server for being engaged for other purposes.
Thus, the non-availability of the server in the system is known as vacation. During the last three or four
decades, queuing theorists are interested in the study of queuing models with vacations immensely, because
of their applicability and theoretical structures in real life situations such as manufacturing and production
systems, computer and communication systems, service and distribution systems, etc.

The most remarkable works have been done in recent past by some researchers on vacation models including
Choudhary [3], Keilson and servi [9], Krishna Kumar [13], Levy and Yechiali [10], Wang [24], Madan [15, 16,
17, 18, 19], Thangaraj [23] etc. The details about vacation queues can be found in the survey of Doshi [5].

Transient state measures, which are very important to track down the functioning of the system at any
instant of time. In this paper we present an analysis of the transient state behavior of a queuing system
where breakdowns may occur at random, and once the system breaks down, it enters a repair process and the
customer whose service is interrupted goes back to the head of the queue. At the same time the server may
go on vacation. The vacations follow a Bernoulli distribution, that is, after a service completion, the server
may go for a vacation with probability p (0 ≤ p ≤ 1) or may continue to serve the next customer, if any, with
probability 1 − p. The service time and the vacation time are generally distributed, while the repair time is
exponentially distributed. The customers arrive in batches to the system and served one by one on a “first
come - first served” basis.

The rest of the paper has been organized as follows: in section 2, the mathematical description of our model
has been found, in section 3, the transient solution of the system has been derived, in section 4, the steady
state analysis has been discussed.

2 Mathematical description of the queuing model

To describe the required queuing model, we assume the following.
• Let λcidt; i = 1, 2, 3...be the first order probability of arrival of ’i’ customers in batches in the system

during a short period of time(t,t+dt)where 0 ≤ ci ≤ 1,
∑∞

i=1 ci = 1, λ > 0 is the mean arrival rate of batches.
• There is a single server which provides service following a general(arbitrary) distribution with distribution

function B(v)and density function b(v). Letµ(x)dx be the conditional probability density function of service
completion during the interval (x,x+dx] given that the elapsed service time is x, so that

µ(x) =
b(x)

1−B(x)
(2.1)

and therefore

b(v) = µ(v)e
−

∫ v

0

µ(x)
dx (2.2)

• After completion of service, if the customer is not satisfied with the service for certain reason or if customer
received unsuccessful service, the customer may immediately join the tail of the original queue as a feedback
customer for receiving another regular service with probability p(0 < p < 1). Otherwise the customer may
depart forever from the system with probability q(= 1 − p). The service discipline for feedback and newly
customers are first come first served. Also service time for a feedback customer is independent of its previous
service times.

• As soon as a service is completed , the server may take a vacation of random length with probability θ

(or) he may stay in the system providing service with probability 1− θ, where 0 ≤ θ ≤ 1.
• The vacation time of the server follows a general (arbitrary)with distribution function V(s)and the density

function v(s). Let ν(x)dx be the conditional probability of a completion of a vacation during the interval
(x, x + dx] given that the elapsed vacation time is x so that

ν(x) =
v(x)

1− V (x)
(2.3)
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and therefore

v(s) = ν(s)e
−

∫ s

0

ν(x)dx
(2.4)

• The system may breakdown at random and the breakdowns are assumed to occur according to a Poisson
stream with mean breakdown rate α > 0. Further we assume that once the system breakdown, the customer
whose service is interrupted comes back to the head of queue.

• Once the system breaks down it enters a repair process immediately. The repair times are exponentially
distributed with mean repair rate β > 0.

• Various stochastic processes involved in the queuing system are assumed to be independent of each other.

3 Definitions and Equations governing the system

We let,

(i) Pn(x, t) = Probability that at time ’t’ the server is active providing service and there are ’n’ (n ≥ 0)
customers in the queue excluding the one being served and the elapsed service time for this customer is x.
Consequently pn(t) denotes the probability that at time ’t’ there are ’n’ customers in the queue excluding
the one customer in service irrespective of the value of x.

(ii) Vn(x, t) = Probability that at time ’t’, the server is on vacation with elapsed vacation time x, and there
are ’n’ (n ≥ 0) customers waiting in the queue for service. Consequently Vn(t) denotes the probability
that at time ’t’ there are ’n’ customers in the queue and the server is on vacation irrespective of the value
of x.

(iii) Rn(t) = Probability that at time t, the server is inactive due to breakdown and the system is under repair
while there are’n’ (n ≥ 0) customers in the queue.

(iv) Q(t)= Probability that at time ’t’ there are no customers in the system and the server is idle but available
in the system.

The model is then, governed by he following set of differential-difference equations.

∂

∂t
Pn(x, t) +

∂

∂x
Pn(x, t) + (λ + µ(x) + α)Pn(x, t) = λ

n−1∑
i=1

ciPn−i(x, t);n ≥ 1 (3.1)

∂

∂t
P0(x, t) +

∂

∂x
P0(x, t) + (λ + µ(x) + α)P0(x, t) = 0 (3.2)

∂

∂t
Vn(x, t) +

∂

∂x
Vn(x, t) + (λ + ν(x))Vn(x, t) = λ

n−1∑
i=1

ciVn−i(x, t);n ≥ 1 (3.3)

∂

∂t
V0(x, t) +

∂

∂x
V0(x, t) + (λ + ν(x))V0(x, t) = 0 (3.4)

d

dt
Rn(t) = −(λ + β)Rn(t) + λ

n−1∑
i=1

ciRn−i(x, t) + α

∫ ∞

0

Pn−1(x, t)dx (3.5)

d

dt
R0(t) = −(λ + β)R0(t) (3.6)

d

dt
Q(t) = −λQ(t) + βR0(t) +

∫ ∞

0

V0(x, t)ν(x)dx + (1− θ)q
∫ ∞

0

P0(x, t)µ(x)dx (3.7)

The above equations are to be solved subject to the following boundary conditions

Pn(0, t) = (1− θ)
[
p

∫ ∞

0

Pn(x, t)µ(x)dx + q

∫ ∞

0

Pn+1(x, t)µ(x)dx

]
+

∫ ∞

0

Vn+1(x, t)ν(x)dx + βRn+1(t) + λcn+1Q(t);n ≥ 0 (3.8)
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Vn(0, t) = θ

∫ ∞

0

Pn(x, t)µ(x)dx;n ≥ 0 (3.9)

Assuming there are no customers in the system initially so that the server is idle.

V0(0) = 0;Vn(0) = 0;Q(0) = 1;Pn(0) = 0, n = 0, 1, 2, ... (3.10)

Generating functions of the queue length. The time dependent solution.

We define the probability generating functions
Pq(x, z, t) =

∑∞
n=0 znPn(x, t)

Pq(z, t) =
∑∞

n=0 znPn(t)

Vq(x, z, t) =
∑∞

n=0 znVn(x, t)

Vq(z, t) =
∑∞

n=0 znVn(t)

Rq(z, t) =
∑∞

n=0 znRn(t)

C(z) =
∞∑

n=1

cnzn (3.11)

which are convergent inside the circle given by |z| ≤ 1 and define the Laplace transform of a function f(t)
as

f(s) =
∫ ∞

0

f(t)e−stdt. (3.12)

Taking Laplace transforms of equations (3.1) to (3.9) and using the probability generating function defined
above.

∂

∂x
P̄n(x, s) + (s + λ + µ(x) + α)P̄n(x, s) = λ

n−1∑
i=1

ciP̄n−i(x, s) (3.13)

∂

∂x
P̄0(x, s) + (s + λ + µ(x) + α)P̄0(x, s) = 0 (3.14)

∂

∂x
V̄n(x, s) + (s + λ + ν(x))V̄n(x, s) = λ

n−1∑
i=1

ciV̄n−i(x, s) (3.15)

∂

∂x
V̄0(x, s) + (s + λ + ν(x))V̄0(x, s) = 0 (3.16)

(s + λ + β)R̄n(s) = λ
n−1∑
i=1

ciR̄n−i(s) + α

∫ ∞

0

P̄n−1(x, s)dx (3.17)

(s + λ + β)R̄0(s) = 0 (3.18)

(s + λ)Q̄(s) = 1 + βR̄0(s) +
∫ ∞

0

V̄0(x, s)ν(x)dx

+(1− θ)q
∫ ∞

0

P̄0(x, s)µ(x)dx (3.19)

for boundary conditions,

P̄n(0, s) = (1− θ)
[
p

∫ ∞

0

P̄n(x, s)µ(x)dx + q

∫ ∞

0

P̄n+1(x, s)µ(x)dx

]
+

∫ ∞

0

V̄n+1(x, s)ν(x)dx + βR̄n+1(s) + λcn+1Q̄(s);n ≥ 0 (3.20)
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V̄n(0, s) = θ

∫ ∞

0

P̄n(x, s)µ(x)dx;n ≥ 0 (3.21)

multiply equation (3.13) by zn and add (3.14) implies

∂

∂x
P̄q(x, z, s) + (s + λ− λC(z) + µ(x) + α)P̄q(x, z, s) = 0 (3.22)

performing similar operations to equations (3.15) to (3.18).

∂

∂x
V̄q(x, z, s) + (s + λ− λC(z) + ν(x))V̄q(x, z, s) = 0 (3.23)

(s + λ− λC(z) + β)R̄q(z, s) = αz

∫ ∞

0

P̄q(x, z, s)dx (3.24)

For the boundary conditions, we multiply equation(3.20)by zn+1, sum over n from 0 to ∞ and use gener-
ating function defined above, we get

zP̄q(0, z, s) = (1− θ)(pz + q)
∫ ∞

0

P̄q(x, z, s)µ(x)dx

+
∫ ∞

0

V̄q(x, z, s)ν(x)dx + βR̄q(z, s) + (1− sQ̄(s)) + λ(C(z)− 1)Q̄(s) (3.25)

Similarly multiply equation (3.21) by znand sum over n from 0 to ∞ and use generating function defined
above

V̄q(0, z, s) = θ

∫ ∞

0

P̄q(x, z, s)µ(x)dx (3.26)

Integrating equation(3.22) from 0 to x yields

P̄q(x, z, s) = P̄q(0, z, s)e
−(s+λ−λC(z)+α)x−

∫ x

0

µ(t)dt
(3.27)

where P̄q(0, z, s) is given by equation(3.25). Again integrating equation (3.27) by parts with respect to x
yields

P̄q(z, s) = P̄q(0, z, s)
[
1− B̄(s + λ− λC(z) + α)

(s + λ− λC(z) + α)

]
(3.28)

where

B̄(s + λ− λC(z) + α) =
∫ ∞

0

e−(s+λ−λC(z)+α)xdB(x) (3.29)

is Laplace - Stieltjes transform of the service time B(x). Now multiplying both sides of equation (3.27) by µ(x)
and integrating over x, we get∫ ∞

0

P̄q(x, z, s)µ(x)dx = P̄q(0, z, s)B̄(s + λ− λC(z) + α) (3.30)

Using equation (3.30) equation (3.26) becomes

V̄q(0, z, s) = θP̄q(0, z, s)B̄(s + λ− λC(z) + α) (3.31)

Similarly integrate equation (3.23) from 0 to x, we get

V̄q(x, z, s) = V̄q(0, z, s)e
−(s+λ−λC(z))x−

∫ x

0

ν(t)dt
(3.32)

substituting by the value of V̄q(0, z, s) from (3.31), in equation (3.33) we get

V̄q(x, z, s) = θP̄q(0, z, s)B̄(s + λ− λ(C(z)) + α)e
−(s+λ−λz)x−

∫ x

0

ν(t)dt
(3.33)
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Again integrating equation (3.33) by parts with respect to x

V̄q(z, s) = θP̄q(0, z, s)B̄(s + λ− λC(z) + α)
[
1− V̄ (s + λ− λ(C(z)))

(s + λ− λ(C(z)))

]
(3.34)

where

V̄ (s + λ− λC(z)) =
∫ ∞

0

e−(s+λ−λC(z))xdV (x) (3.35)

is Laplace - Stieltjes transform of the vacation time V(x). Now multiplying both sides of equation(3.33) by
ν(x) and integrating over x, we get∫ ∞

0

V̄q(x, z, s)ν(x)dx = θP̄q(0, z, s)B̄(s + λ− λC(z) + α)V̄ (s + λ− λC(z)) (3.36)

Using equation (3.28), equation (3.24) becomes

R̄q(z, s) =
αzP̄q(0, z, s)[1− B̄(s + λ− λC(z) + α)]
[s + λ− λC(z) + β][s + λ− λC(z) + α]

(3.37)

Now using (3.30), (3.36) and (3.37) in equation (3.25) and solving for P̄q(0, z, s) we get

P̄q(0, z, s) =
f1(z)f2(z)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(3.38)

where Dr = f1(z)f2(z){z − (1− θ)(pz + q)B̄[f1(z)]− θV̄ (s + λ− λC(z))B̄[f1(z)]}
− αβz{1− B̄[f1(z)]}

f1(z) = s + λ− λC(z) + α

f2(z) = s + λ− λC(z) + β

substituting the value of P̄q(0, z, s) from equation (3.38)in to equations (3.26), (3.34) and (3.37)

P̄q(z, s) =
f2(z)1− B̄[f1(z)][(1− sQ̄(s)) + λ(C((z))− 1)Q̄(s)]

Dr
(3.39)

V̄q(z, s) =
θf1(z)f2(z)B̄[f1(z)][(1− sQ̄(s)) + λ(C((z))− 1)Q̄(s)]

[
1−V̄ (s+λ−λC(z))

(s+λ−λC(z))

]
Dr

(3.40)

R̄q(z, s) =
αz[1− B̄[f1(z)]][(1− sQ̄(s)) + λ(C((z))− 1)Q̄(s)]

Dr
(3.41)

where Dr is given in the above.

4 The steady state analysis

In this section we shall derive the steady state probability distribution for our queuing model. To define
the steady state probabilities, suppress the argument’t’ where ever it appears in the time dependent analysis.
By using well known Tauberian property,

Lts→0sf̄(s) = Ltt→∞f(t) (4.1)

multiplying both sides of equation (3.39),(3.40),(3.41) and applying equation(4.1) and simplifying, we get

Pq(z) =
f2(z)(1− B̄[f1(z)])[λ(C((z))− 1)Q]

Dr
(4.2)

Vq(z) =
pf1(z)f2(z)B̄[f1(z)][V̄ (λ− λC((z))− 1)]Q

Dr
(4.3)
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Rq(z) =
θλαz[1− B̄[f1(z)]][(C((z))− 1)Q]

Dr
(4.4)

where Dr and f1(z) and f2(z) are given by in previous section. LetWq(z) denotes the probability generating
function of queue size irrespective of the state of the system. Then adding (4.2),(4.3) and (4.4), we get

Wq(z) = Pq(z) + Vq(z) + Rq(z) (4.5)

Wq(z) =
f2(z)[1−B[f1(z)]][λ(C((z))− 1)Q]

Dr
+

θf1(z)f2(z)B[f1(z)][V (λ− λC((z))− 1)]Q
Dr

+
λαz[1−B[f1(z)]][(C((z))− 1)Q]

Dr
(4.6)

In order to obtain Q, we use the normalization condition, as follows

Wq(1) + Q = 1 (4.7)

We see that at z=1, Wq(z) is indeterminate of the form 0/0. We apply L’Hospital rule in equation (4.6)

Wq(1) =
λQE(I)(α + β)[1− B̄(α)] + θαβB(α)E[V ]

(q + pθ)αβB̄(α)− λ(α + β)(1− B̄(α))E(I)− θλαβB̄(α)E(I)E[V ]
(4.8)

where B̄(0) = 1, V̄ (0) = 1,−V ′(0) = E[V ] the mean vacation time. Using equation (4.8) in equation (4.7)

Q = 1− λE(I)
q + pθ

{
1

βB̄(α)
+

1
αB̄(α)

− 1
β
− 1

α
+ θE(V )

}
(4.9)

and the the utilization factorρ of the system is given by

ρ =
λE(I)
q + pθ

{
1

βB̄(α)
+

1
αB̄(α)

− 1
β
− 1

α
+ θE(V )

}
(4.10)

where ρ < 1 is the stability condition under which the steady state exists, equation(4.9) gives the probability
that the server is idle. Substitute Q from equation (4.9) in equation (4.6) Wq(z) have been completely and
explicitly determined which is the the probability generating function of the queue size.
The average queue size and average waiting time
Let Lqdenote the mean number of customers in the queue under the steady state, then Lq = d

dz Wq(z) |z=1,since
this formula gives 0/0 form, then we write Wq(z) = N(z)

D(z) where N(z) and D(z) are the numerator and denomi-
nator of the right hand side of equation (4.5) respectively, then we use

Lq =
D′(1)N ′′(1)−N ′(1)D′′(1)

2[D′(1)]2
(4.11)

where primes and double primes in equation (4.11) denote first and second derivation at z=1 respectively.
Carrying out the derivatives at z=1, we have

N ′(1) = λE(I)Q[(α + β)− B̄(α)(θαβE(V )− α− β)] (4.12)

N ′′(1) = 2Q[λE(I)]2
{

( α
λE(I) − 1) + B̄(α)[1− α

λE(I) − θαE(V )− θβE(V )]

+ 1
2θαβE(V 2) + B̄

′
(α)(α + β − θαβE(V ))

}
+λQE(I(I − 1))

{
(α + β) + B̄(α)(θαβE(V )− α− β)

}
(4.13)

D′(1) = −λE(I)(α + β) + B̄(α) {αβ(q + pθ) + λE(I)(α + β)− θαβE(V )} (4.14)

D′′(1) = 2[λE(I)]2
{

(1− α+β
λE(I) ) + B̄(α) [−(q + pθ) + θαE(V ) + θβE(V )− 1

2αβθE(V 2)]

+B̄
′
(α)[−(q + pθ)(α + β)− αβ

λE(I) + αβθE(V )]
}

+λE(I(I − 1))
{
−(α + β) + B̄(α)(α + β − θαβE(V ))

}
(4.15)
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where E(V 2) is the second moment of the vacation time and Q has been found in equation (4.9). Then if
we substitute the values of N ′(1), N ′′(1), D′(1) and D′′(1) from equations (4.12), (4.13), (4.14) and (4.15) in
to equation (4.11), we obtain Lq in a closed form.
Mean waiting time of a customer could be found, as follows

Wq =
Lq

λ
(4.16)

by using Little’s formula.
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