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Abstract

In this paper, we study the existence of solution for some boundary value problems of functional integro-
differential equations with nonlocal boundary conditions.
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1 Introduction

Mathematical modelling of real-life problems usually results in functional equations, like ordinary or
partial differential equations, integral and integro- differential equations, stochastic equations. Many
mathematical formulation of physical phenomena contain integro-differential equations, these equations
arises in many fields like fluid dynamics, biological models and chemical kinetics integro-differential
equations are usually difficult to solve analytically so it is required to obtain an efficient approximate
solution. Consider the following boundary value problems of functional integro-differential equations with
the nonlocal boundary conditions.

1
¥ (1) :f(t,/o k(t,)x(s)ds), te (0,1) (1.1)
x(1) +ax(&) =0, T7,0e [0,1],a #—1. (1.2)

1
() = f(t, /O k(t, )% (s)ds), te (0,1) (1.3)
x(t)+Bx(§) =0, B # —1 (1.4)
X' (1) + ax'(&) =0, 1,8 € [0,1],a # —1. (1.5)

Here we study the existence of at least one solution of each of the boundary value problems (1.I)-(T.2) and

@3-@).

The existence of exactly one solution of them will be deduced.
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2 Functional integral equation

Here we study the existence of at least one (and exactly one) continuous solution of the functional integral

equation.
1 T «

v(0) = £, [ K69 [ y0)do - [“y@do - 2 [ yoraolas @6)

under the following assumptions

(1) f:1=10,1] x R — Rismeasurableint € [0,1] forall x € Rand continuousinx € R forallt € [0,1]
and there exists integrable function a € L![0,1] and positive constant b > 0 such that

| f(t,x) | < a(t) +blx| t el

(2 a = supla(t)], t €[0,1]
t

(3) k:I=1[0,1] x [0,1] — R is continuous ¢ € [0,1] for every s € [0,1]
and measurable in s € [0,1] forall ¢ € [0,1], such that

1
sup/ k(t,s)dt < M
t 0

Now for the existence of at least one continuous solution of the functional integral equation [2.6), we have
the following theorem.

Theorem 2.1. Let the assumptions (1)-(3) be satisfied. If 2Mb < 1, then the functional integral equation has at
least one solutiony € C[0,1].

Proof. let C = C[0,1] and define the set Q, by
Q={ye C:lyl < r} C Cl01]

where r = =5 .
Define the operator F associated with the functional integral equation (2.6) by

Fytt) = £, [ ke[ y00 — 1 ["y@ao - [ y@)aoas

To show that F: Q, — Q;, lety € Q,, then

R0 | = 1S [ ke v @ - [Ty 15 [ yo)aolas) |

<l +o) [ ke[ y@d - [Ty [y as

< la(t)|+b] |/ ts/ d6d5|+|/ (t,5) 1+1 /Ty(e)de—1j’:a/ogy(9)de}ds|]
< a0+ b1 [ e O ds + [ k)l + ] ly(e) ds]

< fat)| + bl [ ks rds + [ KG9 rds)

< la(t)| +2bMr =r.

< a+ 2bMr =r.
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This proves that F : Q, — Q, and the class of functions {F(y)} is uniformly bounded.
Let ty,t € [0,1] and |t — t1] < 6, then

Fy(t) — Fy(h)] = |f(ts /Olkaz,s)[ [ e )de—ﬁ 6)d6] ds)
Sl [ k[ y@de - / 0)d6] d)
— |f(ta, Olk (ta)s / 0)do — — — / 6)d6] ds)

6)do] ds)

/ 6)d6] ds)
/ 0)d6] ds)|

o [ [
2 )y ve
2 )y ve

<t Olkt2, / 0)do — — — / / 0)do] ds)
+2 )y ve
/
2 )y ve

1
+ tl, k tz, / d9—
0

1
— Aty | K(tas) / 0)d6 — ——

o

1

— ft, | K(tas) / 0)do — —— / 6)do] ds)|
0

6)do] ds)

1
+ tl, k tl/ / dg—
0

—_

— fhy [ k(ts) / 0)d — ——
0

/ 0)d6] ds)|

N G — /Ofyw)de— [ ydo) ds)

- f(tl,/olk<tz,s)[/osy( )d()—% y(0)d6 —

&[5 0)de) d
moy() ] ds)|

1 o

+ L|/01k(t2,s)[/osy(9)d9— [ wen - 1+“/Ogy(9)d9] ds
— [T [ y@do [Ty - 5 [ yydo) as
1, [ ke s) [ y0)i0 [ y(@ao - 2 [ y(oyao] do

o [ k) [ y0)a0 — o [Tyo)a0 - fy(@)d@] )|

IN

1
1+«

1
+ 2Lyl [ k(tars) — k(t,9)lds,

< 1, [ K[ 00— [Tyyo - [ y(@raa) s
o [ k) [ y@o — 1 [y@)a0 2 [ y(oyde] a)

1
n 2Lr/0 Ik(ts, s) — k(t,s)|ds.

This means that the class of functions F{y} is equi-continuous on Q;.
Using Arzela-Ascoli Theorem (see[13]), we find that F is compact.
Now we prove that F : Q, — Q, is continuous.
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Let {y»} C Qr, and y, — y, then

T o ¢
Fyn(t) = f(t / (t,9)] /yn de—— yn(e)d9—1+a/o yn(0)d6]ds)
lim F — T n(@)de — — [* . (0)deld
tim Fyn(t) = Jim £, [ k(1) [ va(0)0 1 [ ya@)d0 — 12 [y (@)delas)
Now
I ' ds) = F(t, 1i )d6 Tede & el
tim £, [ K15 ya(s)ds) = £0 Jim [ k(1) [ va(0)d0 — 1 [T ya0)d0 — 22 [* yu(o)dolas)
then using Lebesgue dominated convergence Theorem (see[13]), we have
) 1
}}gﬂopyn = r}g{}of(/ k(t,s)f /0 (t,s)[ /yn
1 o ¢
= L - [y e)delds)
"k oo — —— [Tyere— — [ y(0)de] d
= £, [ k) [ w©)a0 - [ yo)a0 - 5 ["y(e)an) as)

Then Fy, (t) — Fy(t).

Which means that the operator F is continuous.

Since all conditions of Schauder fixed point theorem [12] are satisfied, then the operator F has at least one
fixed point y € C[0,1], which completes the proof. m

Now for the uniqueness of the solution of the functional integral equation (2.6).
Consider following assumptions

(1*) f:1=1[0,1] x R — R ismeasurablein t € [0,1] forall x € R and satisfies
the lipschitz such that

[f(t,x) = f(t,y)| < blx —y|, b >0 2.7)

(2*) f(t,0) € L'[0,1] sup If(t,0)] < a.

Theorem 2.2. Let the assumptions (1*),(2*) and (3) be satisfied. If 2Mb < 1, then the functional integral equation
has a unique solution y € C[0,1].

Proof. From we can obtain
If(tx)] < [f(£,0)]+ b [x].

This shows that the assumptions of Theorem (2.1) are satisfied
Now let y1,2 be two solution of functional integral equation (2.6)

(0 =1 [ ke[ @ - [0 [Fyio)dolas)
wat) = £t [ K[ 00— 1o [“ya0)d0 — 25 [* y(0)a0)as
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) -n0l = 17 [ e[ o e—ﬁ "0~ [ yi(0)de] )
- / (t,9)] /yz d@—— yz(e))de—ﬁ éyzw)de]dsn
< b|/ ts/ )d@—% yl((?)de—ﬁ Ogyl(e)de]ds
— [ R [ a0 [Ta@rdo - [ yao)aoas
< b]/Olk(t,s)/osyl(e)d(?ds—/Olk(t,s)[lj_“/(]Tyl(e)d(?—i-T y1(6)do] ds
1 s 1 1 T o ¢
_ /Ok(t,s)/o yz(G)des—l—/O k(t,s)[m/o yz(G)dG—i-m/o y2(0)d6] ds|
< b|/ ts/y1 d9—/y2 )db]ds|

bl [ Ky [ 020 - @) + 1 [ (1200 - ya (@) |

< b|/ ts/ (6) — y2(0))dods|

b bl [ )l — il + iy~ il |
1 1

< b(lln-wall [ ksl + ||]/1—y2||/0 k(1 5)]ds)

< 26M [y — 2|

then
1 = vall < Klly1 — 2|
where K = 2bM < 1, then
ly1 =yl —k) < 0
and
ly1 =yal[ = 0

which implies that y; = y, then the functional integral equation (2.6) has a unique continuous solution.

3 Nonlocal boundary value problems
Here we study the existence of at least one (and exactly one) solution of each of the functional integro-

differential equations (1.T),(1.3).

Consider the functional integro differential equation

1
Y (t) = f(t,/ k(,5) x(s) ds) te (0,1).
0
with the nonlocal boundary value condition
x(1)+ax(¢)=0. 7,6 €010 # —1

Theorem 3.3. Let the assumptions of theorem be satisfied, then the nonlocal boundary value problem (I.1)-(1.2)
has at least one continuous solution x € C[0,1].
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Proof. Let x'(t) = y(t). Integrating both sides we get
t
x(t) = x(0)+ [ ys)ds,

x(1) = x(0) + /OTy(s)ds
and :

X() = x(0) + [ y(s)ds
Using the nonlocal boundary condition we obtain

x(0) + /OTy(s)ds = —ax(0)—u« /Oé y(s)ds,
and ) N :

x(0) =~ [ vers— 5 [ys)as,
then

1) = [ ytets — o [Tyo)is - 1 [Fy(s)as

where y satisfies the functional integral equation

o

v = £ [ ko) [ v@a0 i [Tyo - [ yieaelas)

191

(3.8)

This complete the proof of equivalent between the nonlocal problem (1.I)-(1.2) and the functional integral
equation . This implies that there exists at least one solution x € C[0,1] of the nonlocal problem

C1)-(T2)m

Corollary 3.1. Let the assumptions (1*),(2*) and (3) be satisfied, then the solution of nonlocal boundary value problem

({1.1)-({T.2) has a unique continuous solution x € C|0,1].

Consider the functional integro-differential equation

1
fﬁ):ﬂnAk@@f@m) te (0,1)

with the nonlocal boundary conditions
x(7) + px(6) =0,
X' (1) + ax/(&) =0.

Theorem 3.4. Let the assumptions of theorem be satisfied then the boundary value problems (1.3)-(1.5) has at least

one continuous solution x € C[0,1].

Proof. Let x/(t) = y(t) integrating both sides, we obtain

x%%:ﬂ®+£y@%

and
x(t) = x(0) + tx'(0) —0—/0 (t—s) y(s)ds.
then .
x'(t) = x'(0) +/0 y(s) ds,
and

R\
~
™~
N—

|

x'(0) + /OC y(s) ds.



192 A.M. A. El-Sayed et al. / On some boundary-value problems of functional integro-differential equations...

Using the nonlocal condition (1.5) we obtain

x'(0) = ! /OT y(s)ds — “ /Oé y(s) ds

144 1+a

and

x(t) = x(0) +7x'(0) + /(; (t—s) y(s) ds,

K@) = x(O +EX O+ [ @5 y(o) s

1

/ T o ¢
x'(0) = —1+06/0 y(s)ds—1+a/(] y(s) ds.

Using Boundary condition (1.4) we obtain

x(0) = T 0) — g [ leds - 5 M@ -

w0 = BT [Ty i [y

T ¢
— 1_1!3 A (T —s)y(s)ds — L ; (& —s)ds

B 1
1+«

+ 1 /OTy(s)ds - 1% fy(s)ds] + [ (t=9)y(s)ds, (3.9)

1

x'(t) = 17z /O.Ty(s)ds - ﬁ Ogy(s)ds +/0 y(s)ds,

and y satisfies the functional integral equation

vt = £t [ k) [ y0)a0 — [ y(@ndo - 5 [*y(oydolas)

This complete the proof of equivalent between the nonlocal problem (1.3)-(L.5) and the functional integral
equation (2.6). This implies that there exists at least one solution x € C[0,1] of the nonlocal problem (1.3)-

@5.m

Corollary 3.2. Let the assumptions (1*),(2*) and (3) be satisfied, then the solution of nonlocal boundary value problem
({1.3)-(1.5) has a unique continuous solution x € C[0,1].
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