
Malaya J. Mat. 5(2)(2017) 194–201

Almost Contra Pre Generalized b - Continuous Functions

in Topological Spaces

S. Sekara,∗ and R. Brindhab

aDepartment of Mathematics, Government Arts College (Autonomous), Salem – 636 007, Tamil Nadu, India.

bDepartment of Mathematics, King College of Technology, Namakkal – 637 020, Tamil Nadu, India.

Abstract

In this paper, the authors introduce a new class of functions called almost contra pre generalized b -
continuous function (briefly almost contra pgb-continuous) in topological spaces. Some characterizations and
several properties concerning almost contra pgb-continuous functions are obtained.
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1 Introduction

In 2002, Jafari and Noiri introduced and studied a new form of functions called contra-pre continuous
functions. The purpose of this paper is to introduce and study almost contra pgb-continuous functions via
the concept of pgb-closed sets. Also, properties of almost contra pgb-continuity are discussed. Moreover, we
obtain basic properties and preservation theorems of almost contra pgb-continuous functions and
relationships between almost contra pgb-continuity and pgb-regular graphs.

Through out this paper (X, τ) and (Y, σ) represent the non-empty topological spaces on which no
separation axioms are assumed, unless otherwise mentioned. Let A ⊆ X, the closure of A and interior of A
will be denoted by cl(A) and int(A) respectively, union of all pgb-open sets X contained in A is called
pgb-interior of A and it is denoted by pgbint(A), the intersection of all pgb-closed sets of X containing A is
called pgb-closure of A and it is denoted by pgbcl(A) [9].

2 Preliminaries

Definition 2.1. Let a subset A of a topological space (X, τ), is called
1) a pre-open set [8] if A ⊆ int(cl(A)).
2) a semi-open set [6] if A ⊆ cl(int(A)).
3) a b -open set [3] if A ⊆ cl(int(A)) ∪ int(cl(A)).
4) a generalized b- closed set (briefly gb- closed) [1] if bcl(A) ⊆ U whenever A ⊆ U and U is open in X.
5) a generalized αb- closed set (briefly gαb- closed) [11] if bcl(A) ⊆ U whenever A ⊆ U and U is α open in X.
6) a regular generalized b- closed set (briefly rgb- closed) [7] if bcl(A) ⊆ U whenever A ⊆ U and U is regular open in
X.
7) a pre generalized b- closed set (briefly pgb- closed) [9] if bcl(A) ⊆ U whenever A ⊆ U and U is pre-open in X.
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Definition 2.2. A function f : (X, τ)→ (Y, σ), is called
1) almost contra continuous [1] if f−1(V) is closed in (X, τ) for every regular-open set V of (Y, σ).
2) almost contra b-continuous [2] if f−1(V) is b-closed in (X, τ) for every regular-open set V of (Y, σ). 3) almost contra
pre-continuous [5] if f−1(V) is pre-closed in (X, τ) for every regular-open set V of (Y, σ).
4) almost contra semi-continuous [4] if f−1(V) is semi-closed in (X, τ) for every regular-open set V of (Y, σ).
5) almost contra rgb-continuous [10] if f−1(V) is rgb-closed in (X, τ) for every regular-open set V of (Y, σ).

3 Almost Contra Pre Generalized b - Continuous Functions

In this section, we introduce almost contra pre generalized b - continuous functions and investigate some
of their properties.

Definition 3.3. A function f : (X, τ)→ (Y, σ) is called almost contra pre generalized b - continuous if f−1(V) is pgb
- closed in (X, τ) for every regular open set V in (Y, σ).

Example 3.1. Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}} and σ = {Y, ϕ, {b}, {c}, {b, c}}. Define a
function f : (X, τ)→ (Y, σ) by f (a) = b, f (b) = a, f (c) = c. Clearly f is almost contra pgb - continuous.

Theorem 3.1. If f : X → Y is contra pgb - continuous then it is almost contra pgb - continuous.

Proof. Obvious, because every regular open set is open set.

Remark 3.1. Converse of the above theorem need not be true in general as seen from the following example.

Example 3.2. Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}} and σ = {Y, ϕ, {a}, {b}, {a, b}, {a, c}}.
Define a function f : (X, τ) → (Y, σ) by f (a) = c, f (b) = a, f (c) = b. Then f is almost contra pgb - continuous
function but not contra pgb - continuous, because for the open set {a, c} in Y and f−1{a, c} = {a, b} is not pgb - closed
in X.

Theorem 3.2. 1) Every almost contra b - continuous function is almost contra pgb - continuous function.
2) Every almost contra gα - continuous function is almost contra pgb - continuous function.
3) Every almost contra gα∗ - continuous function is almost contra pgb - continuous function.
4) Every almost contra g - continuous function is almost contra pgb - continuous function.
5) Every almost contra rgb - continuous function is almost contra pgb - continuous function.
6) Every almost contra gαb - continuous function is almost contra pgb - continuous function.

Remark 3.2. Converse of the above statements is not true as shown in the following example.

Example 3.3. i) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}, {b, c}} and σ = {Y, ϕ, {b}, {c}, {b, c}}.
Define a function f : (X, τ) → (Y, σ) by f (a) = a, f (b) = c, f (c) = b. Clearly f is almost contra pgb - continuous
but f is not almost contra b - continuous. Because f−1({b}) = {c} is not b - closed in (X, τ) where {b} is regular -
open in (Y, σ).
ii) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {c}, {a, c}} and σ = {Y, ϕ, {a}, {b}, {a, b}}. Define a function
f : (X, τ)→ (Y, σ) by f (a) = b, f (b) = a, f (c) = c. Clearly f is almost contra pgb - continuous but f is not almost
contra gα - continuous. Because f−1({b}) = {a} is not gα - closed in (X, τ) where {a} is regular - open in (Y, σ).
iii) Let X = Y = {a, b, c} with τ = {X, ϕ, {c}, {a, c}} and σ = {Y, ϕ, {a}, {b}, {a, b}, {a, c}}. Define a function
f : (X, τ)→ (Y, σ) by f (a) = a, f (b) = b, f (c) = c. Clearly f is almost contra pgb - continuous but f is not almost
contra gα∗ - continuous. Because f−1({b}) = {b} is not gα∗ - closed in (X, τ) where {b} is regular - open in (Y, σ).
iv) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {c}, {a, c}} and σ = {Y, ϕ, {a}, {b}, {a, b}}. Define a function
f : (X, τ)→ (Y, σ) by f (a) = b, f (b) = a, f (c) = c. Clearly f is almost contra pgb - continuous but f is not almost
contra g - continuous. Because f−1({b}) = {a} is not g - closed in (X, τ) where {b} is regular - open in (Y, σ).
v) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}} and σ = {Y, ϕ, {b}, {c}, {b, c}}. Define a function
f : (X, τ)→ (Y, σ) by f (a) = c, f (b) = a, f (c) = b. Clearly f is almost contra pgb - continuous but f is not almost
contra rgb - continuous. Because f−1({c}) = {a} is not rgb - closed in (X, τ) where {c} is regular - open in (Y, σ).
vi) Let X = Y = {a, b, c} with τ = {X, ϕ, {a}, {b}, {a, b}, {b, c}} and σ = {Y, ϕ, {a}, {c}, {a, c}}. Define a
function f : (X, τ) → (Y, σ) by f (a) = a, f (b) = b, f (c) = c. Clearly f is almost contra pgb - continuous but f is
not almost contra gαb - continuous. Because f−1({a}) = {a} is not gαb - closed in (X, τ) where {b} is regular - open
in (Y, σ).



196 S. Sekar et al. / Almost Contra Pre Generalized b - Continuous Functions in Topological Spaces

Theorem 3.3. The following are equivalent for a function f : X → Y,
(1) f is almost contra pgb - continuous.
(2) for every regular closed setFofY, f−1(F) is pgb - open set ofX.
(3) for each x ∈ X and each regular closed set F of Y containing f (x), there exists pgb - openU containing x such that
f (U)⊂F.
(4) for each x ∈ X and each regular open set V of Y not containing f (x), there exists pgb - closed set K not containing
x such that f−1(V) ⊂ K.

Proof. (1)⇒ (2) : Let F be a regular closed set in Y, then Y− F is a regular open set in Y. By (1), f−1(Y− F) =
X− f−1(F) is pgb - closed set in X. This implies f−1(F) is pgb - open set in X. Therefore, (2) holds.
(2)⇒ (1) : Let G be a regular open set of Y. Then Y− G is a regular closed set in Y. By (2), f−1(Y− G) is pgb -
open set in X. This implies X − f−1(G) is pgb - open set in X, which implies f−1(G) is pgb - closed set in X.
Therefore, (1) hold.
(2) ⇒ (3) : Let F be a regular closed set in Y containing f (x), which implies x ∈ f−1(F). By (2), f−1(F)
is pgb - open in X containing x. Set U = f−1(F), which implies U is pgb - open in X containing x and
f (U) = f ( f−1(F)) ⊂ F. Therefore (3) holds.
(3)⇒ (2) : Let F be a regular closed set in Y containing f (x), which implies x ∈ f−1(F). From (3), there exists
pgb - open Ux in X containing x such that f (Ux) ⊂ F. That is Ux ⊂ f−1(F). Thus f−1(F) = {∪Ux : x ∈ f−1(F),
which is union of pgb - open sets. Therefore, f−1(F) is pgb - open set of X.
(3) ⇒ (4) : Let V be a regular open set in Y not containing f (x). Then Y − V is a regular closed set in Y
containing f (x). From (3), there exists a pgb - open set U in X containing x such that f (U) ⊂ Y − V .This
implies U ⊂ f−1(Y − V) = X − f−1(V). Hence, f−1(V) ⊂ X −U. Set K = X − V, then K is pgb - closed set
not containing x in X such that f−1(V) ⊂ K.
(4) ⇒ (3) : Let F be a regular closed set in Y containing f (x). Then Y − F is a regular open set in Y not
containing f (x). From (4), there exists pgb - closed set K in X not containing x such that f−1(Y− F) ⊂ K. This
implies X − f−1(F) ⊂ K. Hence, X − K ⊂ f−1(F), that is f (X − K) ⊂ F. Set U = X − K, then U is pgb - open
set containing x in X such that f (U) ⊂ F.

Theorem 3.4. The following are equivalent for a function f : X → Y,
(1) f is almost contra pgb - continuous.
(2) f−1(Int(Cl(G))) is pgb - closed set in X for every open subset G of Y.
(3) f−1(Cl(Int(F))) is pgb - open set in X for every closed subset F of Y.

Proof. (1)⇒ (2) : Let G be an open set in Y. Then Int(Cl(G)) is regular open set in Y. By (1), f−1(Int(Cl(G)) ∈
pgb− C(X).
(2)⇒ (1) : Proof is obvious.
(1) ⇒ (3) : Let F be a closed set in Y. Then Cl(Int(G)) is regular closed set in Y. By (1), f−1(Cl(Int(G)) ∈
pgb−O(X).
(3)⇒ (1) : Proof is obvious.

Definition 3.4. A function f : X → Y is said to be R - map if f−1(V) is regular open in X for each regular open set V
of Y.

Definition 3.5. A function f : X → Y is said to be perfectly continuous if f−1(V) is clopen in X for each open set V
of Y.

Theorem 3.5. For two functions f : X → Y and g : Y → Z, let g ◦ f : X → Z be a composition function. Then, the
following properties hold.
(1) If f is almost contra pgb - continuous and g is an R - map, then g ◦ f is almost contra pgb - continuous.
(2) If f is almost contra pgb - continuous and g is perfectly continuous, then g ◦ f is contra pgb - continuous.
(3) If f is contra pgb - continuous and g is almost continuous, then g ◦ f is almost contra pgb - continuous.

Proof. (1) Let V be any regular open set in Z. Since g is an R - map, g−1(V) is regular open in Y. Since f is
almost contra pgb - continuous, f−1(g−1(V)) = (g ◦ f )−1(V) is pgb - closed set in X. Therefore g ◦ f is almost
contra pgb - continuous.
(2) Let V be any regular open set in Z. Since g is perfectly continuous, g−1(V) is clopen in Y. Since f is almost
contra pgb - continuous, f−1(g−1(V)) = (g ◦ f )−1(V) is pgb - open and pgb - closed set in X. Therefore g ◦ f
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is pgb continuous and contra pgb - continuous.
(3) Let V be any regular open set in Z. Since g is almost continuous, g−1(V) is open in Y. Since f is almost
contra pgb - continuous, f−1(g−1(V)) = (g ◦ f )−1(V) is pgb - closed set in X. Therefore g ◦ f is almost contra
pgb - continuous.

Theorem 3.6. Let f : X → Y be a contra pgb - continuous and g : Y → Z be pgb - continuous. If Y is Tpgb - space,
then g ◦ f : X → Z is an almost contra pgb - continuous.

Proof. Let V be any regular open and hence open set in Z. Since g is pgb - continuous g−1(V) is pgb - open
in Y and Y is Tpgb - space implies g−1(V) open in Y. Since f is contra pgb - continuous, f−1(g−1(V)) =

(g ◦ f )−1(V) is pgb - closed set in X. Therefore, g ◦ f is an almost contra pgb - continuous.

Theorem 3.7. If f : X → Y is surjective strongly pgb - open (or strongly pgb - closed) and g : Y → Z is a function
such that g ◦ f : X → Z is an almost contra pgb - continuous, then g is an almost contra pgb - continuous.

Proof. Let V be any regular closed (resp. regular open) set in Z. Since g ◦ f is an almost contra pgb - continuous,
(g ◦ f )−1(V) = f−1(g−1(V)) is pgb - open (resp. pgb - closed) in X. Since f is surjective and strongly pgb -
open (or strongly pgb - closed), f ( f−1(g−1(V))) = g−1(V) is pgb - open(or pgb - closed). Therefore g is an
almost contra pgb - continuous.

Definition 3.6. A function f : X → Y is called weakly pgb - continuous if for each x ∈ X and each open set V of Y
containing f (x), there exists U ∈ pgb−O(X; x) such that f (U) ⊂ cl(V).

Theorem 3.8. If a function f : X → Y is an almost contra pgb - continuous, then f is weakly pgb - continuous
function.

Proof. Let x ∈ X and V be an open set in Y containing f (x). Then cl(V) is regular closed in Y containing f (x).
Since f is an almost contra pgb - continuous function by Theorem 3.4 (2), f−1(cl(V)) is pgb - open set in X
containing x. Set U = f−1(cl(V)), then f (U) ⊂ f ( f−1(Cl(V))) ⊂ cl(V). This shows that f is weakly pgb -
continuous function.

Definition 3.7. A space X is called locally pgb - indiscrete if every pgb - open set is closed in X.

Theorem 3.9. If a function f : X → Y is almost contra pgb - continuous and X is locally pgb - indiscrete space, then
f is almost continuous.

Proof. Let U be a regular open set in Y. Since f is almost contra pgb - continuous f−1(U) is pgb - closed set
in X and X is locally pgb - indiscrete space, which implies f−1(U) is an open set in X. Therefore f is almost
continuous.

Lemma 3.1. Let A and X0 be subsets of a space X. If A ∈ pgb−O(X) and X0 ∈ τα, then A ∩ X0 ∈ pgb−O(X0).

Theorem 3.10. If f : X → Y is almost contra pgb - continuous and X0 ∈ τα then the restriction f /X0 : X0 → Y is
almost contra pgb - continuous.

Proof. Let V be any regular open set of Y. By Theorem, we have f−1(V) ∈ pgb − O(X) and hence
( f /X0)

−1(V) = f−1(V) ∩ X0 ∈ pgb − O(X0). By Lemma 3.1, it follows that f /X0 is almost contra pgb -
continuous.

Theorem 3.11. If f : X → ∏ Yλ is almost contra pgb - continuous, then Pλ ◦ f : X → Yλ is almost contra pgb -
continuous for each λ ∈ ∇, where Pλ is the projection of ∏ Yλ onto Yλ.

Proof. Let Yλ be any regular open set of Y. Since Pλ is continuous open, it is an R - map and hence (Pλ)
−1 ∈

RO(∏ Yλ).
By theorem, f−1(P−1

λ (V)) = (Pλ ◦ f )−1 ∈ pgb−O(X). Hence Pλ ◦ f is almost contra pgb - continuous.
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4 Pre Generalized b - Regular Graphs and Strongly Contra Pre Generalized b - Closed
Graphs

Definition 4.8. A graph G f of a function f : X → Y is said to be pgb - regular (strongly contra pgb - closed) if
for each (x, y) ∈ (X × Y)\G f , there exist a pgb - closed set U in X containing x and V ∈ R − O(Y) such that
(U ×V) ∩ G f = ϕ.

Theorem 4.12. If f : X → Y is almost contra pgb - continuous and Y is T2, then G f is pgb - regular in X×Y.

Proof. Let (x, y) ∈ (X × Y)\G f ). It is obvious that f (x) 6= y. Since Y is T2, there exists V, W ∈ RO(Y) such
that f (x) ∈ V, y ∈W and V ∩W = ϕ. Since f is almost contra pgb - continuous, f−1(V) is a pgb - closed set in
X containing x. If we take U = f−1(V), we have f (U) ⊂ V. Hence, f (U)∩W = ϕ and G f is pgb - regular.

Theorem 4.13. Let f : (X, τ)→ (Y, σ) be a function and g : (X, τ)→ (X×Y, τ × σ) the graph function defined by
g(x) = (x, f (x)) for every x ∈ X. Then f is almost pgb - continuous if and only if g is almost pgb - continuous.

Proof. Necessary : Let x ∈ X and V ∈ pgb − O(Y) containing f (x). Then, we have g(x) = (x, f (x)) ∈
R−O(X × Y). Since f is almost pgb - continuous, there exists a pgb - open set U of X containing x such that
g(U) ⊂ X×Y. Therefore, we obtain f (U) ⊂ V. Hence f is almost pgb continuous.
Sufficiency : Let x ∈ X and w be a regular open set of X × Y containing g(x). There exists U1 ∈ RO(X, τ)

and V ∈ RO(Y, σ) such that (x, f (x)) ∈ (U1 × V) ⊂ W. Since f is almost pgb - continuous, there exists
U2 ∈ pgb−O(X, τ) such that x ∈ U2 and f (U2) ⊂ V. Set U = U1 ∩U2. We have x ∈ Ux ∈ pgb−O(X, τ) and
g(U) ⊂ (U1 ×V) ⊂W. This shows that g is almost pgb - continuous.

Theorem 4.14. If a function f : X → Y be a almost contra pgb - continuous and almost continuous, then f is regular
set - connected.

Proof. Let V ∈ RO(Y). Since f is almost contra pgb - continuous and almost continuous, f−1(V) is pgb -
closed and open. So f−1(V) is clopen. It turns out that f is regular set - connected.

5 Connectedness

Definition 5.9. A space X is called pgb - connected if X cannot be written as a disjoint union of two non - empty pgb
- open sets.

Theorem 5.15. If f : X → Y is an almost contra pgb - continuous surjection and X is pgb - connected, then Y is
connected.

Proof. Suppose that Y is not a connected space. Then Y can be written as Y = U0 ∪V0 such that U0 and V0 are
disjoint non - empty open sets. Let U = int(cl(U0)) and V = int(cl(V0)). Then U and V are disjoint nonempty
regular open sets such that Y = U ∪ V. Since f is almost contra pgb - continuous, then f−1(U) and f−1(V)

are pgb - open sets of X. We have X = f−1(U) ∪ f−1(V) such that f−1(U) and f−1(V) are disjoint. Since f is
surjective, this shows that X is not pgb - connected. Hence Y is connected.

Theorem 5.16. The almost contra pgb - continuous image of pgb - connected space is connected.

Proof. Let f : X → Y be an almost contra pgb - continuous function of a pgb - connected space X onto a
topological space Y. Suppose that Y is not a connected space. There exist non - empty disjoint open sets V1
and V2 such that Y = V1 ∪V2. Therefore, V1 and V2 are clopen in Y. Since f is almost contra pgb - continuous,
f−1(V1) and f−1(V2) are pgb - open in X. Moreover, f−1(V1) and f−1(V2) are non - empty disjoint and
X = f−1(V1) ∪ f−1(V2). This shows that X is not pgb - connected. This is a contradiction and hence Y is
connected.

Definition 5.10. A topological space X is said to be pgb - ultra connected if every two non - empty pgb - closed subsets
of X intersect.

A topological space X is said to be hyper connected if every open set is dense.

Theorem 5.17. If X is pgb - ultra connected and f : X → Y is an almost contra pgb - continuous surjection, then Y
is hyper connected.
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Proof. Suppose that Y is not hyperconnected. Then, there exists an open set V such that V is not dense in Y.
So, there exist non - empty regular open subsets B1 = int(cl(V)) and B2 = Y − cl(V) in Y. Since f is almost
contra pgb - continuous, f−1(B1) and f−1(B2) are disjoint pgb - closed. This is contrary to the pgb - ultra -
connectedness of X. Therefore, Y is hyperconnected.

6 Separation axioms

Definition 6.11. A topological space X is said to be pgb− T1 space if for any pair of distinct points x and y, there exist
a pgb - open sets G and H such that x ∈ G, y /∈ G and x /∈ H, y ∈ H.

Theorem 6.18. If f : X → Y is an almost contra pgb - continuous injection and Y is weakly Hausdorff, then X is
pgb− T1.

Proof. Suppose Y is weakly Hausdorff. For any distinct points x and y in X, there exist V and W regular
closed sets in Y such that f (x) ∈ V , f (y) /∈ V , f (y) ∈ W and f (x) /∈ W. Since f is almost contra pgb -
continuous, f−1(V) and f−1(W) are pgb - open subsets of X such that x ∈ f−1(V), y /∈ f−1(V), y ∈ f−1(W)

and x /∈ f−1(W). This shows that X is pgb− T1.

Corollary 6.1. If f : X → Y is a contra pgb - continuous injection and Y is weakly Hausdorff, then X is pgb− T1.

Definition 6.12. A topological space X is called Ultra Hausdorff space, if for every pair of distinct points x and y in X,
there exist disjoint clopen sets U and V in X containing x and y, respectively.

Definition 6.13. A topological space X is said to be pgb− T2 space if for any pair of distinct points x and y, there exist
disjoint pgb - open sets G and H such that x ∈ G and y ∈ H.

Theorem 6.19. If f : X → Y is an almost contra pgb - continuous injective function from space X into a Ultra
Hausdorff space Y, then X is pgb− T2.

Proof. Let x and y be any two distinct points in X. Since f is an injective f (x) 6= f (y) and Y is Ultra Hausdorff
space, there exist disjoint clopen sets U and V of Y containing f (x) and f (y) respectively. Then x ∈ f−1(U)

and y ∈ f−1(V), where f−1(U) and f−1(V) are disjoint pgb - open sets in X. Therefore X is pgb− T2.

Definition 6.14. A topological space X is called Ultra normal space, if each pair of disjoint closed sets can be separated
by disjoint clopen sets.

Definition 6.15. A topological space X is said to be pgb - normal if each pair of disjoint closed sets can be separated by
disjoint pgb - open sets.

Theorem 6.20. If f : X → Y is an almost contra pgb - continuous closed injection and Y is ultra normal, then X is
pgb - normal.

Proof. Let E and F be disjoint closed subsets of X. Since f is closed and injective f (E) and f (F) are disjoint
closed sets in Y . Since Y is ultra normal there exists disjoint clopen sets U and V in Y such that f (E) ⊂ U and
f (F) ⊂ V . This implies E ⊂ f−1(U) and F ⊂ f−1(V). Since f is an almost contra pgb - continuous injection,
f−1(U) and f−1(V) are disjoint pgb - open sets in X. This shows X is pgb - normal.

Theorem 6.21. If f : X → Y is an almost contra pgb - continuous and Y is semi - regular, then f is pgb - continuous.

Proof. Let x ∈ X and V be an open set of Y containing f (x). By definition of semi - regularity of Y, there exists
a regular open set G of Y such that f (x) ∈ G ⊂ V. Since f is almost contra pgb - continuous, there exists
U ∈ pgb−O(X, x) such that f (U) ⊂ G. Hence we have f (U) ⊂ G ⊂ V. This shows that f is pgb - continuous
function.
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7 Compactness

Definition 7.16. A space X is said to be:
(1) pgb - compact if every pgb - open cover of X has a finite subcover.
(2) pgb - closed compact if every pgb - closed cover of X has a finite subcover.
(3) Nearly compact if every regular open cover of X has a finite subcover.
(4) Countably pgb - compact if every countable cover of X by pgb - open sets has a finite subcover.
(5) Countably pgb - closed compact if every countable cover of X by pgb - closed sets has a finite sub cover.
(6) Nearly countably compact if every countable cover of X by regular open sets has a finite sub cover.
(7) pgb - Lindelof if every pgb - open cover of X has a countable sub cover.
(8) pgb - Lindelof if every pgb - closed cover of X has a countable sub cover.
(9) Nearly Lindelof if every regular open cover of X has a countable sub cover.
(10) S - Lindelof if every cover of X by regular closed sets has a countable sub cover.
(11) Countably S - closed if every countable cover of X by regular closed sets has a finite sub - cover.
(12) S - closed if every regular closed cover of x has a finite sub cover.

Theorem 7.22. Let f : X → Y be an almost contra pgb - continuous surjection. Then, the following properties hold:
(1) If X is pgb - closed compact, then Y is nearly compact.
(2) If X is countably pgb - closed compact, then Y is nearly countably compact.
(3) If X is pgb - Lindelof, then Y is nearly Lindelof.

Proof. (1) Let {Vα : α ∈ I} be any regular open cover of Y. Since f is almost contra pgb - continuous, { f−1(Vα) :
α ∈ I} is pgb - closed cover of X. Since X is pgb - closed compact, there exists a finite subset I0 of I such that
X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{(Vα) : α ∈ I0} which is finite sub cover of Y, therefore
Y is nearly compact.
(2) Let {Vα : α ∈ I} be any countable regular open cover of Y . Since f is almost contra pgb - continuous,
{ f−1(Vα) : α ∈ I} is countable pgb - closed cover of X. Since X is countably pgb - closed compact, there exists
a finite subset I0 of I such that X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{(Vα) : α ∈ I0} is finite
subcover for Y . Hence Y is nearly countably compact.
(3) Let {Vα : α ∈ I} be any regular open cover of Y. Since f is almost contra pgb - continuous, { f−1(Vα) :
α ∈ I} is pgb - closed cover of X. Since X is pgb - Lindelof, there exists a countable subset I0 of I such that
X = { f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{(Vα) : α ∈ I0} is finite sub cover for Y . Therefore, Y is
nearly Lindelof.

Theorem 7.23. Let f : X → Y be an almost contra pgb - continuous surjection. Then, the following properties hold:
(1) If X is pgb - compact, then Y is S - closed.
(2) If X is countably pgb - closed, then Y is is countably S - closed.
(3) If X is pgb - Lindelof, then Y is S - Lindelof.

Proof. (1) Let {Vα : α ∈ I} be any regular closed cover of Y. Since f is almost contra pgb - continuous,
{ f−1(Vα) : α ∈ I} is pgb - open cover of X. Since X is pgb - compact, there exists a finite subset I0 of I such
that X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{Vα : α ∈ I0} is finite sub cover for Y. Therefore, Y
is S - closed.
(2) Let {Vα : α ∈ I} be any countable regular closed cover of Y. Since f is almost contra pgb - continuous,
{ f−1(Vα) : α ∈ I} is countable pgb - open cover of X. Since X is countably pgb - compact, there exists a finite
subset I0 of I such that X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{Vα : α ∈ I0} is finite sub cover
for Y. Hence, Y is countably S - closed.
(3) Let {Vα : α ∈ I} be any regular closed cover of Y. Since f is almost contra pgb - continuous, { f−1(Vα) :
α ∈ I} is pgb - open cover of X. Since X is pgb - Lindelof, there exists a countable sub - set I0 of I such that
X = ∪{ f−1(Vα) : α ∈ I0}. Since f is surjective, Y = ∪{Vα : α ∈ I0} is finite sub cover for Y. Hence, Y is S -
Lindelof.
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