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Abstract

In this paper, the authors investigated the general solution and generalized Ulam - Hyers stability of ai
type n− variable multi n− dimensional additive functional equation
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1 Introduction

During the last seven decades, the perturbation problems of several functional equations have been ex-
tensively investigated by number of authors [1, 3, 20, 21, 30, 31, 34, 35]. The terminology generalized Ulam -
Hyers stability originates from these historical backgrounds. These terminologies are also applied to the case
of other functional equations. For more detailed definitions of such terminologies, one can refer to [8, 18, 22–
24].

One of the most famous functional equations is the additive functional equation

f (x + y) = f (x) + f (y). (1.1)

In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued functions. It is often called
an additive Cauchy functional equation in honor of Cauchy (see [24]). The additive function f (x) = cx is the
solution of the additive functional equation (1.1).

The solution and stability of various additive functional equations were discussed by D.O. Lee [19], K.
Ravi, M. Arunkumar [32], M. Arunkumar [4–6, 8, 9]. W.G. Park, J.H. Bae [16, 27] investigate the general
solution and the generalized Hyers-Ulam stability of the multi-additive functional equation and 2- variable
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quadratic functional equation of the forms

f (x1 + x2, y1 + y2, z1 + z2) = ∑
1≤i,j,k≤2

f (xi, yj, zk), (1.2)

f (x + y, z + w) + f (x− y, z− w) = 2 f (x, z) + 2 f (y, w). (1.3)

The stability of the functional equation (1.3) in fuzzy normed space was proved by M. Arunkumar et., al
[7]. Using the ideas in [7], the general solution and generalized Hyers-Ulam-Rassias stability of a 3- variable
quadratic functional equation

f (x + y, z + w, u + v) + f (x− y, z− w, u− v) = 2 f (x, z, u) + 2 f (y, w, v). (1.4)

was discussed by K. Ravi and M. Arunkumar [33]. Its solution is of the form

f (x, y, z) = ax2 + by2 + cz2 + dxy + eyz + f zx. (1.5)

Also, M. Arunkumar, S. Hema Latha established the general solution and generalized Ulam - Hyers stability
of a 2 - variable Additive Quadratic functional equation

f (x + y, u + v) + f (x− y, u− v) = 2 f (x, u) + f (y, v) + f (−y,−v) (1.6)

having solutions

f (x, y) = ax + by (1.7)

and

f (x, y) = ax2 + bxy + cy2 (1.8)

in Banach and Non Archimedean Fuzzy spaces respectively. Infact, M. Arunkumar et. al., [11] introduced and
discussed a 2 - variable AC - mixed type functional equation

f (2x + y, 2z + w)− f (2x− y, 2z− w) = 4[ f (x + y, z + w)− f (x− y, z− w)]− 6 f (y, w) (1.9)

having solutions

f (x, y) = ax + by (1.10)

and

f (x, y) = ax3 + bx2y + cxy2 + dy3. (1.11)

Recently, M.Arunkumar et.al., [12] introduced and established the general solution and generalized Ulam -
Hyers stability of a 2 - variable Associative functional equation

g (x, u) + g (y + z, v + w) = g (x + y, u + v) + g (z, w) (1.12)

having solutions

g(x, y) = ax + by (1.13)

using Banach and Intuitionistic Fuzzy Normed spaces, respectively.
Inspired by the above results in this paper, the authors investigated the general solution generalized Ulam

- Hyers stability of ai type n− variable multi n− dimensional additive functional equation
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having solution

h(x1, x2, . . . , xn) =
n

∑
i=1

cixi (1.15)

where ai(i = 1, 2, . . . n) are different integers greater than 1, using Hyers direct and Alternative fixed point
methods.

In particular, when n = 1, 2 in (1.14), we arrive

2h (a1 x11, a1 x21, . . . , a1 xn1) = a1h (x11, x21, . . . , xn1) + a1h (x11, x21 . . . , xn1) . (1.16)

and

2h (a1 x11 + a2 x12, a1 x21 + a1 x22, . . . , a1 xn1 + a1 xn2)

= (a1 + a2) h (x11 + x12, x21 + x22, . . . , xn1 + xn2)

+ (a1 − a2) h (x11 − x12, x21 − x22, . . . , xn1 − xn2) . (1.17)

2 General Solution

In this section, the general solution of the functional equation (1.14) is given. Through out this section let
as assume A and B be linear normed spaces.

Lemma 2.1. If a mapping h : An → B satisfies the functional equation (1.14) then h is additive.

Proof. Assume h : An → B be a mapping satisfies the functional equation (1.14). Replacing

xmi = 0, i = 1, 2, . . . n, m = 1, 2, · · · n

in (1.14), we get

h(0, 0, . . . , 0) = 0. (2.1)

Again replacing

xmi = 0, i = 2, 3 . . . n, m = 1, 2, · · · n

in (1.14), we obtain

2h(a1x11, a1x21, . . . , a1xn1) = (a1 + a2 + · · ·+ an)h(x11, x21, . . . , xn1)

+ (a1 − a2 − · · · − an)h(x11, x21, . . . , xn1) (2.2)

for all x11, x21, . . . , xn1 ∈ A. If we substitute (x11, x21, . . . , xn1) by (x, x . . . , x) in (2.2), we reach

h(a1x, a1x, . . . , a1x) = a1 h(x, x, . . . , x) (2.3)

for all x ∈ A. Putting

xmi = 0, i = 3, 4 . . . n, m = 1, 2, · · · n

in (1.14), we obtain

h(x12, 0, . . . , 0) = −h(−x12, 0, . . . , 0) (2.4)

for all x12 ∈ A. So one can show that

h(ak
1x, ak

1x, . . . , ak
1x) = ak

1 h(x, x, . . . , x) (2.5)

for all x ∈ A and all k ∈N.
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3 Stability Results: Banach Space: Hyers Method

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.14).
In this section, let we consider A be a normed space and B be a Banach space and define a mapping

Dh : An → B by
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for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A.

Theorem 3.1. Let ` = ±1 and ϑ, Θ : An → [0, ∞) be a function such that

lim
s→∞

1
2s` ϑ

(
as`

1 x11, . . . , as`
1 x1n, as`

1 x21, . . . , as`
1 x2n, as`

1 xn1, . . . , as`
1 xnn

)
= 0 (3.1)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. Let h : An → B be a function satisfying the inequality

‖Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)‖ ≤
n

∑
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ϑj
(
xj1, xj2, . . . , xjn

)
(3.2)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. Then there exists a unique n− variable additive mapping A : An →
B which satisfies (1.14) and

‖h(x, x, . . . , x)− A(x, x, . . . , x)‖ ≤ 1
a1

∞

∑
t=0

Θ(at`
1 x)

at`
1

(3.3)

where Θ
(

at`
1 x
)

and A(x, x, . . . , x) are defined by

Θ(at`
1 x) =

1
2

n

∑
j=1

ϑj

at`
1 x, 0, . . . , 0︸ ︷︷ ︸

(n−1)−times

 (3.4)

and

A(x, x, . . . , x) = lim
s→∞

1
as`

1
h(as`

1 x, as`
1 x, . . . , as`

1 x) (3.5)

for all x ∈ A, respectively.

Proof. Given h : An → B be a function satisfying the inequality (3.2) for all x11, . . . , x1n, . . . , xn1, . . . , xnn ∈ A.
To establish this theorem, we have to show that

(i)
{

1
as

1
h (as

1x, as
1x, . . . , as

1x)
}

is a Cauchy sequence for every x ∈ A;

(ii) If

A(x, x, . . . , x) = lim
s→∞

1
a1

h(as
1x, as

1x, . . . , as
1x)

then A is additive on A;

(iii) Further A satisfies (3.3), for all x ∈ A;

(iv) A is unique.
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Replacing
xmi = 0, i = 2, 3 . . . n, m = 1, 2, · · · n

in (3.2), we get

‖2h(a1x11, a1x21, . . . , a1xn1)− (a1 + a2 + · · ·+ an)h(x11, x21, . . . , xn1)

−(a1 − a2 − · · · − an)h(x11, x21, . . . , xn1)‖ ≤
n

∑
j=1

ϑj

xj1, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (3.6)

for all x11, x21, . . . , xn1 ∈ A. If we substitute

xm1 = x, m = 1, 2, . . . n

in (3.7), we arrive

‖2h(a1x, a1x, . . . , a1x)− 2a1h(x, x, . . . , x)‖ ≤
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∑
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for all x ∈ A. Hence from (3.7), we reach∥∥∥∥∥∥∥
1
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h
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
∥∥∥∥∥∥∥ ≤
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for all x ∈ A. It follows from (3.8) that∥∥∥∥∥∥∥
1
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h
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
∥∥∥∥∥∥∥ ≤
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∑
j=1
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x, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times


for all x ∈ A. Now replacing x by a1x and dividing by a1 in (3.9), we get∥∥∥∥∥ 1

a2
1

h
(

a2
1x, a2

1x, . . . , a2
1x
)
− 1

a1
h (a1x, a1x, . . . , a1x)

∥∥∥∥∥ ≤ 1
a2

1
Θ(a1x) (3.10)

for all x ∈ A. From (3.8) and (3.10), we obtain∥∥∥∥∥ 1
a2

1
h
(

a2
1x, a2

1x, . . . , a2
1x
)
− h (x, x, . . . , x)

∥∥∥∥∥ ≤ 1
a1

[
Θ(x) +

Θ(a1x)
a1

]
(3.11)

for all x ∈ A. Proceeding further and using induction on a positive integer s, we get∥∥∥∥ 1
as

1
h (as

1x, as
1x, . . . , as

1x)− h (x, x, . . . , x)
∥∥∥∥ ≤ 1

a1

s−1

∑
t=0

Θ(at
1x)

at
1

(3.12)

for all x ∈ A. In order to prove the convergence of the sequence{
1
as

1
h (as

1x, as
1x, . . . , as

1x)
}

,
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replace x by ar
1x and dividing by ar

1 in (3.12), for any r, s > 0 , we deduce∥∥∥∥∥ 1
ar+s

1
h
(
ar+s

1 x, ar+s
1 x, . . . , ar+s

1 x
)
− 1

ar
1

h (ar
1x, ar

1x, . . . , ar
1x)

∥∥∥∥∥
=

1
ar

1

∥∥∥∥ 1
as

1
h (ar

1 · as
1x, ar

1 · as
1x, . . . , ar

1 · as
1x)− h (ar

1x, ar
1x, . . . , ar

1x)
∥∥∥∥

≤ 1
a1

∞

∑
t=0

Θ(ar+s
1 x)

ar+s
1

→ 0 as r → ∞

for all x ∈ A. Hence the sequence
{

1
as

1
h (as

1x, as
1x, . . . , as

1x)
}

is a Cauchy sequence. Since B is complete, there

exists a mapping A : An → B such that

A(x, x, . . . x) = lim
s→∞

1
as

1
h (as

1x, as
1x, . . . , as

1x) , ∀ x ∈ A.

Letting s→ ∞ in (3.12), we see that (3.3) holds for all x ∈ A. To prove that A satisfies (1.14), replacing

xmi = as
1xmi, i = 1, 2, 3 . . . n, m = 1, 2, · · · n

and dividing by as
1 in (3.2), we obtain

1
as

1
‖Dh(as

1x11, . . . , as
1x1n, as

1x21, . . . , as
1x2n, as

1xn1, . . . , as
1xnn)‖

≤ 1
as

1

n

∑
j=1

ϑj
(
as

1xj1, as
1xj2, . . . , as

1xjn
)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. Letting s → ∞ in the above inequality and using the defini-
tion of A(x, x, . . . , x), we see that

DA(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn) = 0.

Hence A satisfies (1.14) for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. To prove that A(x, x, . . . x) is unique,
let B(x, x, . . . x) be another n− variable additive mapping satisfying (1.14) and (3.3), then

‖A(x, x, . . . x)− B(x, x, . . . x)‖

=
1
as

1
‖A(as

1x, as
1x, . . . as

1x)− B(as
1x, as

1x, . . . as
1x)‖

≤ 1
2n {‖A(as

1x, as
1x, . . . as

1x)− h(as
1x, as

1x, . . . as
1x)‖

+ ‖h(as
1x, as

1x, . . . as
1x)− B(as

1x, as
1x, . . . as

1x)‖}

≤ 2
a1

∞

∑
t=0

Θ(at+s
1 x)

a(t+s)
1

→ 0 as s→ ∞

for all x ∈ A. Thus A is unique. Hence for ` = 1 the Theorem holds.
Now, replacing x by x

a1
in (3.7), we reach

∥∥∥∥2h(x, x, . . . , x)− 2a1h
(

x
a1

,
x
a1

, . . . ,
x
a1

)∥∥∥∥ ≤ n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (3.13)

for all x ∈ A. Dividing the above inequality by 2, we obtain∥∥∥∥h(x, x, . . . , x)− a1h
(

x
a1

,
x
a1

, . . . ,
x
a1

x
)∥∥∥∥ ≤ Θ

(
x
a1

)
(3.14)
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where

Θ
(

x
a1

)
=

1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times


for all x ∈ A. The rest of the proof is similar to that of ` = 1. Hence for ` = −1 also the Theorem holds. This
completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 3.1 concerning the Ulam-Hyers [21],
Ulam-TRassias [31] and Ulam-JMRassias [30] stabilities of (1.14).

Corollary 3.1. Let ρ and q be nonnegative real numbers. Let h : An → B be a function satisfying the inequality

‖Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)‖ ≤


ρ,

ρ
n
∑

i=1

n
∑

m=1
||xmi||q, q 6= 1;

ρ

{
n
∏
i=1

n
∏

m=1
||xmi||q +

n
∑

i=1

n
∑

m=1
||xmi||nq,

}
, nq 6= 1;

(3.15)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A. Then there exists a unique n− variable additive function A : A →
B such that

‖h(x, x . . . , x)− A(x, x, . . . x)‖ ≤



na1ρ

2|a1 − 1| ,
na1ρ||x||q

2|a1 − aq
1|

,

na1ρ||x||nq

2|a1 − anq
1 |

,

(3.16)

for all x ∈ A.

Now, we will provide an example to illustrate that the functional equation (1.14) is not stable for q = 1 in
condition (ii) of Corollary 3.1.

Example 3.1. Let ϑ : R→ R be a function defined by

ϑ(x) =
{

µx, if |x| <1
µ, otherwise

where µ > 0 is a constant, and define a function h : Rn → R by

h(x, x . . . , x) =
∞

∑
n=0

ϑ(2nx)
2n f or all x ∈ R.

Then h satisfies the functional inequality

|Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)| ≤
4 µ a1

(a1 − 1)
|x| (3.17)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ R. Then there do not exist a n− variable additive mapping A : Rn →
R and a constant κ > 0 such that

|h(x, x . . . , x)− A(x, x, . . . x)| ≤ κ|x| f or all x ∈ R. (3.18)

Proof. Now

|h(x, x . . . , x)| ≤
∞

∑
n=0

|ϑ(an
1 x)|
|an

1 |
=

∞

∑
n=0

µ

an
1
=

a1µ

a1 − 1
.

Therefore, we see that h is bounded. We are going to prove that h satisfies (3.17).

If xmi = 0, i = 1, 2, . . . , n, m = 1, 2, . . . , n then (3.17) is trivial. If |xmi| ≥
1
a1

then the left hand side of

(3.17) is less than
4 µ a1

a1 − 1
. Now suppose that 0 < |xmi| <

1
a1

. Then there exists a positive integer k such that

1
ak

1
≤ |xmi| <

1
ak−1

1

, (3.19)
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so that ak−1
1 xmi <

1
a1

and consequently

ak−1
1 (xmi), ak−1

1 (−xmi) ∈ (−1, 1).

Therefore for each p = 0, 1, . . . , k− 1, we have

ap
1 (xmi), ap

1 (−xmi) ∈ (−1, 1)

and

2ϑ

(
ap

1

n

∑
i=1

ai x1i, ap
1

n

∑
i=1

ai x2i, . . . . . . , ap
1

n

∑
i=1

ai xni

)

−
(

n

∑
i=1

ai

)
ϑ

(
ap

1

n

∑
i=1

x1i, ap
1

n

∑
i=1

x2i, . . . . . . , ap
1

n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
ϑ

(
ap

1 x11 − ap
1

n

∑
i=2

x1i, ap
1 x21 − ap

1

n

∑
i=2

x2i, . . . . . . , ap
1 xn1 − ap

1

n

∑
i=2

xni

)
= 0

for p = 0, 1, . . . , k− 1. From the definition of h and (3.19), we obtain that∣∣∣∣∣2h

(
n

∑
i=1

ai x1i,
n

∑
i=1

ai x2i, . . . . . . ,
n

∑
i=1

ai xni

)

−
(

n

∑
i=1

ai

)
h

(
n

∑
i=1

x1i,
n

∑
i=1

x2i, . . . . . . ,
n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
h

(
x11 −

n

∑
i=2

x1i, x21 −
n

∑
i=2

x2i, . . . . . . , xn1 −
n

∑
i=2

xni

)∣∣∣∣∣
≤

∞

∑
p=0

1
an

1

∣∣∣∣∣2ϑ

(
ap

1

n

∑
i=1

ai x1i, ap
1

n

∑
i=1

ai x2i, . . . . . . , ap
1

n

∑
i=1

ai xni

)

−
(

n

∑
i=1

ai

)
ϑ

(
ap

1

n

∑
i=1

x1i, ap
1

n

∑
i=1

x2i, . . . . . . , ap
1

n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
ϑ

(
ap

1 x11 − ap
1

n

∑
i=2

x1i, ap
1 x21 − ap

1

n

∑
i=2

x2i, . . . . . . , ap
1 xn1 − ap

1

n

∑
i=2

xni

)∣∣∣∣∣
≤

∞

∑
p=k

1
ap

1

∣∣∣∣∣2ϑ

(
ap

1

n

∑
i=1

ai x1i, ap
1

n

∑
i=1

ai x2i, . . . . . . , ap
1

n

∑
i=1

ai xni

)

−
(

n

∑
i=1

ai

)
ϑ

(
ap

1

n

∑
i=1

x1i, ap
1

n

∑
i=1

x2i, . . . . . . , ap
1

n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
ϑ

(
ap

1 x11 − ap
1

n

∑
i=2

x1i, ap
1 x21 − ap

1

n

∑
i=2

x2i, . . . . . . , ap
1 xn1 − ap

1

n

∑
i=2

xni

)∣∣∣∣∣
≤

∞

∑
p=k

1
ap

1
4µ = 4 µ× a1

(a1 − 1) ak
1
=

4 µ a1

(a1 − 1)
|x|.

Thus h satisfies (3.17) for all xmi ∈ R with 0 < |xmi| <
1
a1

.

We claim that the additive functional equation (1.14) is not stable for q = 1 in condition (ii) Corollary 3.1.
Indeed, assume the contrary that there exist a additive mapping A : Rn → R and a constant κ > 0 satisfying
(3.18). Since h is bounded and continuous for all x ∈ R, A is bounded on any open interval containing the
origin and continuous at the origin. In view of Theorem 3.1, A must have the form A(x, x, . . . , x) = cx for any
x in R. Thus, we obtain that

|h(x, x, . . . , x)| ≤ (κ + |c|) |x|. (3.20)
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But, choose a positive integer i with iµ > κ + |c|.
If x ∈

(
0, 1

2i−1

)
, then 2px ∈ (0, 1) for all p = 0, 1, . . . , i− 1 . For this x, we get

h(x, x, . . . , x) =
∞

∑
p=0

ϑ(ap
1 x)

ap
1
≥

i−1

∑
p=0

µ(2px)
2p = iµx > (κ + |c|) x

which contradicts (3.20). Therefore the additive functional equation (1.14) is not stable in sense of Ulam, Hyers
and Rassias if q = 1, assumed in the inequality condition (ii) of (3.16).

Now, we will provide an example to illustrate that the functional equation (1.14) is not stable for q = 1
n in

condition (iii) of Corollary 3.1.

Example 3.2. Let ϑ : R→ R be a function defined by

ϑ(x) =
{

µx, if |x| < 1
n

µ
n , otherwise

where µ > 0 is a constant, and define a function h : Rn → R by

h(x, x . . . , x) =
∞

∑
n=0

ϑ(2nx)
2n f or all x ∈ R.

Then h satisfies the functional inequality

|Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)| ≤
4 µ a1

n(a1 − 1)
|x| (3.21)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ R. Then there do not exist a n− variable additive mapping A : Rn →
R and a constant κ > 0 such that

|h(x, x . . . , x)− A(x, x, . . . x)| ≤ κ|x| f or all x ∈ R. (3.22)

4 Stability Results: Banach Space: Alternative Fixed Point Method

In this section, we apply a fixed point method for achieving stability of the functional equation (1.14) is
present.

Now, first we will recall the fundamental results in fixed point theory.

Theorem 4.2. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping T : X →
X which is strictly contractive mapping, that is

(A1) d(Tx, Ty) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping T has one and only fixed point x∗ = T(x∗);
(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) limn→∞Tnx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(Tnx, x∗) ≤ 1
1−L d(Tnx, Tn+1x), ∀ n ≥ 0, ∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 4.3. [26] Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive mapping
T : Ω→ Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or there exists a natural number n0 such that
(FP1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(FP2) The sequence (Tnx) is convergent to a fixed to a fixed point y∗ of T
(FP3) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0 x, y) < ∞};
(FP4) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ ∆.
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In this section, we take let us consider E and F to be a normed space and a Banach space, respectively and
define a mapping Dh : En → F by

Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)

= 2h

(
n

∑
i=1

ai x1i,
n

∑
i=1

ai x2i, . . . . . . ,
n

∑
i=1

ai xni

)
−
(

n

∑
i=1

ai

)
h

(
n

∑
i=1

x1i,
n

∑
i=1

x2i, . . . . . . ,
n

∑
i=1

xni

)

−
(

a1 −
n

∑
i=2

ai

)
h

(
x11 −

n

∑
i=2

x1i, x21 −
n

∑
i=2

x2i, . . . . . . , xn1 −
n

∑
i=2

xni

)
for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ E .

Theorem 4.4. Let h : En → F be a mapping for which there exists a function ζ : En → [0, ∞) with the condition

lim
k→∞

1
τk

i
ζ(τk

i x) = 0 (4.1)

where

τi =

{
a1 i f i = 0;
1
a1

i f i = 1,
(4.2)

such that the functional inequality

‖Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)‖ ≤
n

∑
j=1

ϑj
(
xj1, xj2, . . . , xjn

)
(4.3)

for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ E . If there exists L = L(i) < 1 such that the function

x → Θ(x) =
1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 ,

has the property
1
τi

Θ(τix) = L Θ (x) . (4.4)

for all x ∈ E . Then there exists a unique additive mapping A : E → F satisfying the functional equation (1.14) and

‖h(x, x, . . . , x)− A(x, x, . . . , x)‖ ≤ L1−i

1− L
Θ(x) (4.5)

for all x ∈ E .

Proof. Consider the set
Γ = { f / f : En → F , f (0) = 0}

and introduce the generalized metric on Γ,

d( f , g) = inf{K ∈ (0, ∞) :‖ f (x, x, . . . , x)− g(x, x, . . . , x) ‖≤ KΘ(x), x ∈ E}.

It is easy to see that (Γ, d) is complete.
Define Υ : Γ→ Γ by

Υ f (x, x, . . . , x) =
1
τi

f (τix, τix, . . . , τix),

for all x ∈ E . Now f , g ∈ Γ,

d( f , g) ≤ K ⇒ ‖ f (x, x, . . . , x)− g(x, x, . . . , x) ‖≤ KΘ(x), x ∈ E .

⇒
∥∥∥∥ 1

τi
f (τix, τix, . . . , τix)−

1
τi

g(τix, τix, . . . , τix)
∥∥∥∥ ≤ 1

τi
KΘ(τix), x ∈ E ,

⇒
∥∥∥∥ 1

τi
f (τix, τix, . . . , τix)−

1
τi

g(τix, τix, . . . , τix)
∥∥∥∥ ≤ LKΘ(x), x ∈ E ,

⇒ ‖ Υ f (x, x, . . . , x)− Υg(x, x, . . . , x) ‖≤ LKΘ(x), x ∈ E ,

⇒d(Υ f , Υg) ≤ LK.
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This implies d(Υ f , Υg) ≤ Ld( f , g), for all f , g ∈ Γ. i.e., T is a strictly contractive mapping on Γ with Lipschitz
constant L.

It follows from, (3.9) that

‖2h(a1x, a1x, . . . , a1x)− 2a1h(x, x, . . . , x)‖ ≤
n

∑
j=1

ϑj

x, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (4.6)

for all x ∈ E . Now, from (4.6), we get∥∥∥∥ 1
a1

h (a1x, a1x, . . . , a1x)− h (x, x, . . . , x)
∥∥∥∥ ≤ 1

2a1
Θ(x) (4.7)

for all x ∈ E . Using (4.4) for the case i = 0 it reduces to∥∥∥∥ 1
a1

h (a1x, a1x, . . . , a1x)− h (x, x, . . . , x)
∥∥∥∥ ≤ LΘ(x)

for all x ∈ E ,
i.e., d(Υh, h) ≤ L⇒ d(Υh, h) ≤ L = L1 < ∞. (4.8)

Again replacing x = x
ai

in (4.6), we get

∥∥∥∥h(x, x, . . . , x)− a1h
(

x
ai

,
x
ai

, . . . ,
x
ai

)∥∥∥∥ ≤ 1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 (4.9)

for all x ∈ E . Using (4.4) for the case i = 1 it reduces to∥∥∥∥h(x, x, . . . , x)− a1h
(

x
ai

,
x
ai

, . . . ,
x
ai

)∥∥∥∥ ≤ Θ(x)

for all x ∈ E ,
i.e., d(h, Υh) ≤ 1⇒ d(h, Υh) ≤ 1 = L0 < ∞. (4.10)

From (4.8) and (4.10), we arrive
d(h, Υh) ≤ L1−i.

Therefore (FP1) holds.
By (FP2), it follows that there exists a fixed point A of Υ in Γ such that

A(x, x, . . . , x) = lim
k→∞

h(τk
i x, τk

i x . . . , τk
i x)

τk
i

, ∀ x ∈ E . (4.11)

To order to prove A : E → F satisfies (1.14), replacing

xmi = τk
i xmi, i = 1, 2, 3 . . . n, m = 1, 2, · · · n

in (4.3) and dividing by τk
i , it follows from (4.1) that

1
τk

i

∥∥∥Dh(τk
i x11, . . . , τk

i x1n, τk
i x21, . . . , τk

i x2n, τk
i xn1, . . . , τk

i xnn)
∥∥∥

≤ 1
τk

i

n

∑
j=1

ϑj

(
τk

i xj1, τk
i xj2, . . . , τk

i xjn

)
for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ E . Letting k→ ∞ in the above inequality and using the definition
of A(x, x, . . . , x), we see that

DA(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn) = 0.

Hence A satisfies (1.14) for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ A.
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By (FP3), A is the unique fixed point of Υ in the set

∆ = {A ∈ Γ : d(h, A) < ∞},

such that
‖h(x, x, . . . , x)− A(x, x, . . . , x)‖ ≤ KΘ(x)

for all x ∈ E and K > 0. Finally by (FP4), we obtain

d(h, A) ≤ 1
1− L

d(h, Υh)

this implies

d(h, A) ≤ L1−i

1− L
which yields

‖h(x, x, . . . , x)− A(x, x, . . . , x)‖ ≤ L1−i

1− L
Θ(x)

this completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 4.4 concerning the stability of (1.14).

Corollary 4.2. Let h : E → F be a mapping and exists real numbers ρ and r such that

‖Dh(x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn)‖ ≤


ρ,

ρ
n
∑

i=1

n
∑

m=1
||xmi||q, q 6= 1;

ρ

{
n
∏
i=1

n
∏

m=1
||xmi||q +

n
∑

i=1

n
∑

m=1
||xmi||nq,

}
, nq 6= 1;

(4.12)

for all for all x11, . . . , x1n, x21, . . . , x2n, xn1, . . . , xnn ∈ E . Then there exists a unique additive function A : E → F such
that

‖h(x, x . . . , x)− A(x, x, . . . x)‖ ≤



nρ

2|a1 − 1| ,
nρ||x||q

2|a1 − aq
1|

,

nρ||x||nq

2|a1 − anq
1 |

,

(4.13)

for all x ∈ E .

Proof. Setting

ϑ(x) =


ρ,

ρ
n
∑

i=1

n
∑

m=1
||xmi||q,

ρ

{
n
∏
i=1

n
∏

m=1
||xmi||q +

n
∑

i=1

n
∑

m=1
||xmi||nq,

}
,

for all x ∈ E . Now,

1
τk

i
ϑ(τk

i x) =



ρ

τk
i

,

ρ

τk
i

n

∑
i=1

n

∑
m=1
||τk

i xi||q,

ρ

τk
i

{
n

∏
i=1

n

∏
m=1
||τk

i xmi||q +
n

∑
i=1

n

∑
m=1
||τk

i xmi||nq,

}
,

=



→ 0 as k→ ∞,

→ 0 as k→ ∞,

→ 0 as k→ ∞.

Thus, (4.1) is holds. We, already have

Θ(x) =
1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 ,
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with the property
1
τi

Θ(τix) = L Θ (x)

for all x ∈ E . Hence

Θ(x) =
1
2

n

∑
j=1

ϑj

 x
a1

, 0, . . . , 0︸ ︷︷ ︸
(n−1)−times

 =



nρ

2nρ

2 · aq
1
||x||q

nρ

2 · anq
1
||x||nq.

Also,

1
τi

Θ(τix) =



nρ

2τinρ

2τi
||τix||q

nρ

2τi
||τix||nq.

=


τ−1

i
nρ

2
,

τ
q−1
i n

nρ||x||q
2

τ
nq−1
i n

nρ||x||nq

2

=



τ−1
i Θ(x),

τ
q−1
i Θ(x)

τ
nq−1
i Θ(x).

Hence the inequality (4.4) holds either, L = a−1
1 if i = 0 and L = 1

a−1
1

if i = 1. Now from (4.5), we prove the

following cases for condition (i).
Case:1 L = a−1

1 if i = 0

‖h(x)− A(x)‖ ≤

(
a−1

1

)1−0

1− a−1
1

Θ(x) =
nρ

2(a1 − 1)
.

Case:2 L = 1
a−1

1
or if i = 1

‖h(x)− A(x)‖ ≤

(
1

a−1
1

)1−1

1− 1
a−1

1

Θ(x) =
nρ

2(1− a1)
.

Also the inequality (4.4) holds either, L = aq−1
1 for q < 1 if i = 0 and L = 1

aq−1
1

for q > 1 if i = 1. Now from

(4.5), we prove the following cases for condition (ii).
Case:3 L = aq−1

1 for q < 1 if i = 0

‖h(x)− A(x)‖ ≤

(
a(q−1)

1

)1−0

1− a(q−1)
1

Θ(x) =
nρ||x||q

2(a1 − aq
1)

Case:4 L = 1
aq−1

1

for q > 1 if i = 1

‖h(x)− A(x)‖ ≤

(
1

a(q−1)
1

)1−1

1− 1
a(q−1)

1

Θ(x) =
nρ||x||q

2(aq
1 − a1)

.

The proof of condition (iii) is similar to that of condition (ii). Hence the proof is complete.
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