Malaya
 MJM

 Journal of
 an international journal of mathematical sciences with

 Matematik
 computer applications...

a_i Type *n*- Variable Multi *n*- Dimensional Additive Functional Equation

Matina J. Rassias,^{*a*} *M. Arunkumar,^{*b*} and E. Sathya^{*c*}

^a Department of Statistical Science, University College London, 1-19 Torrington Place, #140, London, WC1E 7HB, UK.

^{b,c}Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.

Abstract

In this paper, the authors investigated the general solution and generalized Ulam - Hyers stability of a_i type n - variable multi n - dimensional additive functional equation

$$2h\left(\sum_{i=1}^{n} a_{i} x_{1i}, \sum_{i=1}^{n} a_{i} x_{2i}, \dots, \sum_{i=1}^{n} a_{i} x_{ni}\right)$$

= $\left(\sum_{i=1}^{n} a_{i}\right) h\left(\sum_{i=1}^{n} x_{1i}, \sum_{i=1}^{n} x_{2i}, \dots, \sum_{i=1}^{n} x_{ni}\right)$
+ $\left(a_{1} - \sum_{i=2}^{n} a_{i}\right) h\left(x_{11} - \sum_{i=2}^{n} x_{1i}, x_{21} - \sum_{i=2}^{n} x_{2i}, \dots, x_{n1} - \sum_{i=2}^{n} x_{ni}\right)$

where a_i (i = 1, 2, ..., n) are different integers greater than 1, using two different technique.

Keywords: Additive functional equations, Ulam - Hyers stability, Ulam - Hyers - Rassias stability, Ulam - Gavruta - Rassias stability, Ulam - JRassias stability.

2010 MSC: 39B52, 32B72, 32B82.

(C)2016 MJM. All rights reserved.

1 Introduction

During the last seven decades, the perturbation problems of several functional equations have been extensively investigated by number of authors [1, 3, 20, 21, 30, 31, 34, 35]. The terminology generalized Ulam -Hyers stability originates from these historical backgrounds. These terminologies are also applied to the case of other functional equations. For more detailed definitions of such terminologies, one can refer to [8, 18, 22– 24].

One of the most famous functional equations is the additive functional equation

$$f(x+y) = f(x) + f(y).$$
 (1.1)

In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued functions. It is often called an additive Cauchy functional equation in honor of Cauchy (see [24]). The additive function f(x) = cx is the solution of the additive functional equation (1.1).

The solution and stability of various additive functional equations were discussed by D.O. Lee [19], K. Ravi, M. Arunkumar [32], M. Arunkumar [4–6, 8, 9]. W.G. Park, J.H. Bae [16, 27] investigate the general solution and the generalized Hyers-Ulam stability of the multi-additive functional equation and 2- variable

^{*}Corresponding author.

E-mail addresses: matina@stats.ucl.ac.uk (Matina J. Rassias), annarun2002@yahoo.co.in (M. Arunkumar), sathya24mathematics@gmail.com (E. Sathya).

quadratic functional equation of the forms

$$f(x_1 + x_2, y_1 + y_2, z_1 + z_2) = \sum_{1 \le i, j, k \le 2} f(x_i, y_j, z_k),$$
(1.2)

$$f(x+y,z+w) + f(x-y,z-w) = 2f(x,z) + 2f(y,w).$$
(1.3)

The stability of the functional equation (1.3) in fuzzy normed space was proved by M. Arunkumar et., al [7]. Using the ideas in [7], the general solution and generalized Hyers-Ulam-Rassias stability of a 3- variable quadratic functional equation

$$f(x+y,z+w,u+v) + f(x-y,z-w,u-v) = 2f(x,z,u) + 2f(y,w,v).$$
(1.4)

was discussed by K. Ravi and M. Arunkumar [33]. Its solution is of the form

$$f(x, y, z) = ax^{2} + by^{2} + cz^{2} + dxy + eyz + fzx.$$
(1.5)

Also, M. Arunkumar, S. Hema Latha established the general solution and generalized Ulam - Hyers stability of a 2 - variable Additive Quadratic functional equation

$$f(x+y,u+v) + f(x-y,u-v) = 2f(x,u) + f(y,v) + f(-y,-v)$$
(1.6)

having solutions

$$f(x,y) = ax + by \tag{1.7}$$

and

$$f(x,y) = ax^2 + bxy + cy^2$$
(1.8)

in Banach and Non Archimedean Fuzzy spaces respectively. Infact, M. Arunkumar et. al., [11] introduced and discussed a 2 - variable AC - mixed type functional equation

$$f(2x+y,2z+w) - f(2x-y,2z-w) = 4[f(x+y,z+w) - f(x-y,z-w)] - 6f(y,w)$$
(1.9)

having solutions

$$f(x,y) = ax + by \tag{1.10}$$

and

$$f(x,y) = ax^3 + bx^2y + cxy^2 + dy^3.$$
(1.11)

Recently, M.Arunkumar et.al., [12] introduced and established the general solution and generalized Ulam -Hyers stability of a 2 - variable Associative functional equation

$$g(x,u) + g(y+z,v+w) = g(x+y,u+v) + g(z,w)$$
(1.12)

having solutions

$$g(x,y) = ax + by \tag{1.13}$$

using Banach and Intuitionistic Fuzzy Normed spaces, respectively.

Inspired by the above results in this paper, the authors investigated the general solution generalized Ulam - Hyers stability of a_i type n - variable multi n - dimensional additive functional equation

$$2h\left(\sum_{i=1}^{n} a_{i} x_{1i}, \sum_{i=1}^{n} a_{i} x_{2i}, \dots, \sum_{i=1}^{n} a_{i} x_{ni}\right) = \left(\sum_{i=1}^{n} a_{i}\right) h\left(\sum_{i=1}^{n} x_{1i}, \sum_{i=1}^{n} x_{2i}, \dots, \sum_{i=1}^{n} x_{ni}\right) + \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) h\left(x_{11} - \sum_{i=2}^{n} x_{1i}, x_{21} - \sum_{i=2}^{n} x_{2i}, \dots, x_{n1} - \sum_{i=2}^{n} x_{ni}\right)$$
(1.14)

having solution

$$h(x_1, x_2, \dots, x_n) = \sum_{i=1}^n c_i x_i$$
(1.15)

where a_i (i = 1, 2, ..., n) are different integers greater than 1, using Hyers direct and Alternative fixed point methods.

In particular, when n = 1, 2 in (1.14), we arrive

$$2h(a_1 x_{11}, a_1 x_{21}, \dots, a_1 x_{n1}) = a_1h(x_{11}, x_{21}, \dots, x_{n1}) + a_1h(x_{11}, x_{21}, \dots, x_{n1}).$$
(1.16)

and

$$2h (a_1 x_{11} + a_2 x_{12}, a_1 x_{21} + a_1 x_{22}, \dots, a_1 x_{n1} + a_1 x_{n2}) = (a_1 + a_2) h (x_{11} + x_{12}, x_{21} + x_{22}, \dots, x_{n1} + x_{n2}) + (a_1 - a_2) h (x_{11} - x_{12}, x_{21} - x_{22}, \dots, x_{n1} - x_{n2}).$$
(1.17)

2 General Solution

In this section, the general solution of the functional equation (1.14) is given. Through out this section let as assume A and B be linear normed spaces.

Lemma 2.1. If a mapping $h : \mathcal{A}^n \to \mathcal{B}$ satisfies the functional equation (1.14) then h is additive.

Proof. Assume $h : \mathcal{A}^n \to \mathcal{B}$ be a mapping satisfies the functional equation (1.14). Replacing

$$x_{mi} = 0, \qquad i = 1, 2, \dots n, \qquad m = 1, 2, \dots n$$

in (1.14), we get

 $h(0,0,\ldots,0) = 0. \tag{2.1}$

Again replacing

 $x_{mi} = 0, \qquad i = 2, 3 \dots n, \qquad m = 1, 2, \dots n$

in (1.14), we obtain

$$2h(a_1x_{11}, a_1x_{21}, \dots, a_1x_{n1}) = (a_1 + a_2 + \dots + a_n)h(x_{11}, x_{21}, \dots, x_{n1}) + (a_1 - a_2 - \dots - a_n)h(x_{11}, x_{21}, \dots, x_{n1})$$
(2.2)

for all $x_{11}, x_{21}, ..., x_{n1} \in A$. If we substitute $(x_{11}, x_{21}, ..., x_{n1})$ by (x, x, ..., x) in (2.2), we reach

$$h(a_1x, a_1x, \dots, a_1x) = a_1 h(x, x, \dots, x)$$
(2.3)

for all $x \in A$. Putting

$$x_{mi} = 0, \qquad i = 3, 4 \dots n, \qquad m = 1, 2, \dots n$$

in (1.14), we obtain

$$h(x_{12}, 0, \dots, 0) = -h(-x_{12}, 0, \dots, 0)$$
(2.4)

for all $x_{12} \in A$. So one can show that

$$h(a_1^k x, a_1^k x, \dots, a_1^k x) = a_1^k h(x, x, \dots, x)$$
(2.5)

for all $x \in A$ and all $k \in \mathbb{N}$.

3 Stability Results: Banach Space: Hyers Method

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.14).

In this section, let we consider A be a normed space and B be a Banach space and define a mapping $Dh: A^n \to B$ by

$$Dh(x_{11}, \dots, x_{1n}, x_{21}, \dots, x_{2n}, x_{n1}, \dots, x_{nn})$$

$$= 2h\left(\sum_{i=1}^{n} a_i x_{1i}, \sum_{i=1}^{n} a_i x_{2i}, \dots, \sum_{i=1}^{n} a_i x_{ni}\right) - \left(\sum_{i=1}^{n} a_i\right) h\left(\sum_{i=1}^{n} x_{1i}, \sum_{i=1}^{n} x_{2i}, \dots, \sum_{i=1}^{n} x_{ni}\right)$$

$$- \left(a_1 - \sum_{i=2}^{n} a_i\right) h\left(x_{11} - \sum_{i=2}^{n} x_{1i}, x_{21} - \sum_{i=2}^{n} x_{2i}, \dots, x_{n1} - \sum_{i=2}^{n} x_{ni}\right)$$

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in \mathcal{A}$.

Theorem 3.1. Let $\ell = \pm 1$ and $\vartheta, \Theta : \mathcal{A}^n \to [0, \infty)$ be a function such that

$$\lim_{s \to \infty} \frac{1}{2^{s\ell}} \vartheta \left(a_1^{s\ell} x_{11}, \dots, a_1^{s\ell} x_{1n}, a_1^{s\ell} x_{21}, \dots, a_1^{s\ell} x_{2n}, a_1^{s\ell} x_{n1}, \dots, a_1^{s\ell} x_{nn} \right) = 0$$
(3.1)

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in A$. Let $h : A^n \to B$ be a function satisfying the inequality

$$\|Dh(x_{11},\ldots,x_{1n},x_{21},\ldots,x_{2n},x_{n1},\ldots,x_{nn})\| \le \sum_{j=1}^{n} \vartheta_j \left(x_{j1},x_{j2},\ldots,x_{jn} \right)$$
(3.2)

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in A$. Then there exists a unique n-variable additive mapping $A : A^n \to B$ which satisfies (1.14) and

$$\|h(x, x, \dots, x) - A(x, x, \dots, x)\| \le \frac{1}{a_1} \sum_{t=0}^{\infty} \frac{\Theta(a_1^{t\ell} x)}{a_1^{t\ell}}$$
(3.3)

where $\Theta\left(a_{1}^{t\ell}x\right)$ and $A(x, x, \ldots, x)$ are defined by

$$\Theta(a_1^{t\ell}x) = \frac{1}{2} \sum_{j=1}^n \vartheta_j \left(a_1^{t\ell}x, \underbrace{0, \dots, 0}_{(n-1)-times} \right)$$
(3.4)

and

$$A(x, x, \dots, x) = \lim_{s \to \infty} \frac{1}{a_1^{s\ell}} h(a_1^{s\ell} x, a_1^{s\ell} x, \dots, a_1^{s\ell} x)$$
(3.5)

for all $x \in A$ *, respectively.*

Proof. Given $h : \mathcal{A}^n \to \mathcal{B}$ be a function satisfying the inequality (3.2) for all $x_{11}, \ldots, x_{1n}, \ldots, x_{n1}, \ldots, x_{nn} \in \mathcal{A}$. To establish this theorem, we have to show that

(*i*)
$$\left\{\frac{1}{a_1^s} h(a_1^s x, a_1^s x, \dots, a_1^s x)\right\}$$
 is a Cauchy sequence for every $x \in \mathcal{A}$;
(*ii*) If

$$A(x,x,\ldots,x) = \lim_{s\to\infty} \frac{1}{a_1} h(a_1^s x, a_1^s x, \ldots, a_1^s x)$$

then *A* is additive on A;

- (*iii*) Further *A* satisfies (3.3), for all $x \in A$;
- (iv) A is unique.

Replacing

$$x_{mi} = 0, \qquad i = 2, 3 \dots n, \qquad m = 1, 2, \dots n$$

in (3.2), we get

$$\|2h(a_1x_{11}, a_1x_{21}, \dots, a_1x_{n1}) - (a_1 + a_2 + \dots + a_n)h(x_{11}, x_{21}, \dots, x_{n1}) - (a_1 - a_2 - \dots - a_n)h(x_{11}, x_{21}, \dots, x_{n1})\| \le \sum_{j=1}^n \vartheta_j \left(x_{j1}, \underbrace{0, \dots, 0}_{(n-1)-times} \right)$$
(3.6)

for all $x_{11}, x_{21}, \ldots, x_{n1} \in A$. If we substitute

$$x_{m1}=x, \qquad m=1,2,\ldots n$$

in (3.7), we arrive

$$\|2h(a_1x, a_1x, \dots, a_1x) - 2a_1h(x, x, \dots, x)\| \le \sum_{j=1}^n \vartheta_j \left(x, \underbrace{0, \dots, 0}_{(n-1)-times}\right)$$
(3.7)

for all $x \in A$. Hence from (3.7), we reach

$$\left\|\frac{1}{a_1} h\left(\underbrace{a_1x, a_1x, \dots, a_1x}_{n-times}\right) - h\left(\underbrace{x, x, \dots, x}_{n-times}\right)\right\| \le \frac{1}{2 \times a_1} \sum_{j=1}^n \vartheta_j\left(x, \underbrace{0, \dots, 0}_{(n-1)-times}\right)$$
(3.8)

for all $x \in A$. It follows from (3.8) that

$$\left\|\frac{1}{a_1} h\left(\underbrace{a_1x, a_1x, \dots, a_1x}_{n-times}\right) - h\left(\underbrace{x, x, \dots, x}_{n-times}\right)\right\| \le \frac{1}{a_1}\Theta(x)$$
(3.9)

where

$$\Theta(x) = \frac{1}{2} \sum_{j=1}^{n} \vartheta_j \left(x, \underbrace{0, \dots, 0}_{(n-1)-times} \right)$$

for all $x \in A$. Now replacing *x* by a_1x and dividing by a_1 in (3.9), we get

$$\left\|\frac{1}{a_1^2} h\left(a_1^2 x, a_1^2 x, \dots, a_1^2 x\right) - \frac{1}{a_1} h\left(a_1 x, a_1 x, \dots, a_1 x\right)\right\| \le \frac{1}{a_1^2} \Theta(a_1 x)$$
(3.10)

for all $x \in A$. From (3.8) and (3.10), we obtain

$$\left\|\frac{1}{a_1^2} h\left(a_1^2 x, a_1^2 x, \dots, a_1^2 x\right) - h\left(x, x, \dots, x\right)\right\| \le \frac{1}{a_1} \left[\Theta(x) + \frac{\Theta(a_1 x)}{a_1}\right]$$
(3.11)

for all $x \in A$. Proceeding further and using induction on a positive integer *s*, we get

$$\left\|\frac{1}{a_1^s} h\left(a_1^s x, a_1^s x, \dots, a_1^s x\right) - h\left(x, x, \dots, x\right)\right\| \le \frac{1}{a_1} \sum_{t=0}^{s-1} \frac{\Theta(a_1^t x)}{a_1^t}$$
(3.12)

for all $x \in A$. In order to prove the convergence of the sequence

$$\bigg\{\frac{1}{a_1^s} \ h\left(a_1^s x, a_1^s x, \dots, a_1^s x\right)\bigg\},\$$

replace *x* by $a_1^r x$ and dividing by a_1^r in (3.12), for any r, s > 0, we deduce

$$\begin{aligned} \left\| \frac{1}{a_1^{r+s}} \ h\left(a_1^{r+s}x, a_1^{r+s}x, \dots, a_1^{r+s}x\right) - \frac{1}{a_1^r} \ h\left(a_1^rx, a_1^rx, \dots, a_1^rx\right) \right\| \\ &= \frac{1}{a_1^r} \left\| \frac{1}{a_1^s} h\left(a_1^r \cdot a_1^sx, a_1^r \cdot a_1^sx, \dots, a_1^r \cdot a_1^sx\right) - h\left(a_1^rx, a_1^rx, \dots, a_1^rx\right) \right\| \\ &\leq \frac{1}{a_1} \sum_{t=0}^{\infty} \frac{\Theta(a_1^{r+s}x)}{a_1^{r+s}} \\ &\to 0 \ as \ r \to \infty \end{aligned}$$

...

for all $x \in A$. Hence the sequence $\left\{\frac{1}{a_1^s} h(a_1^s x, a_1^s x, \dots, a_1^s x)\right\}$ is a Cauchy sequence. Since \mathcal{B} is complete, there exists a mapping $A : \mathcal{A}^n \to \mathcal{B}$ such that

$$A(x,x,\ldots x) = \lim_{s\to\infty} \frac{1}{a_1^s} h(a_1^s x, a_1^s x, \ldots, a_1^s x), \quad \forall \ x \in \mathcal{A}.$$

Letting $s \to \infty$ in (3.12), we see that (3.3) holds for all $x \in A$. To prove that A satisfies (1.14), replacing

$$x_{mi} = a_1^s x_{mi}, \qquad i = 1, 2, 3 \dots n, \qquad m = 1, 2, \dots n$$

and dividing by a_1^s in (3.2), we obtain

$$\frac{1}{a_1^s} \|Dh(a_1^s x_{11}, \dots, a_1^s x_{1n}, a_1^s x_{21}, \dots, a_1^s x_{2n}, a_1^s x_{n1}, \dots, a_1^s x_{nn})\| \\ \leq \frac{1}{a_1^s} \sum_{j=1}^n \vartheta_j \left(a_1^s x_{j1}, a_1^s x_{j2}, \dots, a_1^s x_{jn}\right)$$

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in A$. Letting $s \to \infty$ in the above inequality and using the definition of $A(x, x, \ldots, x)$, we see that

$$DA(x_{11},\ldots,x_{1n},x_{21},\ldots,x_{2n},x_{n1},\ldots,x_{nn})=0$$

Hence *A* satisfies (1.14) for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in A$. To prove that $A(x, x, \ldots, x)$ is unique, let $B(x, x, \ldots, x)$ be another n-variable additive mapping satisfying (1.14) and (3.3), then

for all $x \in A$. Thus *A* is unique. Hence for $\ell = 1$ the Theorem holds.

Now, replacing *x* by $\frac{x}{a_1}$ in (3.7), we reach

$$\left\|2h(x,x,\ldots,x)-2a_1h\left(\frac{x}{a_1},\frac{x}{a_1},\ldots,\frac{x}{a_1}\right)\right\| \le \sum_{j=1}^n \vartheta_j\left(\frac{x}{a_1},\underbrace{0,\ldots,0}_{(n-1)-times}\right)$$
(3.13)

for all $x \in A$. Dividing the above inequality by 2, we obtain

$$\left\|h(x,x,\ldots,x) - a_1 h\left(\frac{x}{a_1},\frac{x}{a_1},\ldots,\frac{x}{a_1}x\right)\right\| \le \Theta\left(\frac{x}{a_1}\right)$$
(3.14)

,

`

where

$$\Theta\left(\frac{x}{a_1}\right) = \frac{1}{2} \sum_{j=1}^n \vartheta_j \left(\frac{x}{a_1}, \underbrace{0, \dots, 0}_{(n-1)-times}\right)$$

for all $x \in A$. The rest of the proof is similar to that of $\ell = 1$. Hence for $\ell = -1$ also the Theorem holds. This completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 3.1 concerning the Ulam-Hyers [21], Ulam-TRassias [31] and Ulam-JMRassias [30] stabilities of (1.14).

Corollary 3.1. Let ρ and q be nonnegative real numbers. Let $h : \mathcal{A}^n \to \mathcal{B}$ be a function satisfying the inequality

$$\|Dh(x_{11},\ldots,x_{1n},x_{21},\ldots,x_{2n},x_{n1},\ldots,x_{nn})\| \leq \begin{cases} \rho,\\ \rho\sum_{i=1}^{n}\sum_{m=1}^{n}||x_{mi}||^{q}, & q \neq 1; \\ \rho\left\{\prod_{i=1}^{n}\prod_{m=1}^{n}||x_{mi}||^{q}+\sum_{i=1}^{n}\sum_{m=1}^{n}||x_{mi}||^{nq},\right\}, & nq \neq 1; \end{cases}$$
(3.15)

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in A$. Then there exists a unique n-variable additive function $A : A \to B$ such that $(na_1 \rho)$

$$\|h(x,x...,x) - A(x,x,...x)\| \le \begin{cases} \frac{\overline{2|a_1 - 1|}'}{2|a_1 - a_1|}'\\ \frac{na_1\rho||x||^q}{2|a_1 - a_1^q|},\\ \frac{na_1\rho||x||^{nq}}{2|a_1 - a_1^{nq}|}, \end{cases}$$
(3.16)

for all $x \in A$.

Now, we will provide an example to illustrate that the functional equation (1.14) is not stable for q = 1 in condition (*ii*) of Corollary 3.1.

Example 3.1. Let ϑ : $\mathbb{R} \to \mathbb{R}$ be a function defined by

$$\vartheta(x) = \begin{cases} \mu x, & \text{if } |x| < 1\\ \mu, & \text{otherwise} \end{cases}$$

where $\mu > 0$ is a constant, and define a function $h : \mathbb{R}^n \to \mathbb{R}$ by

$$h(x, x..., x) = \sum_{n=0}^{\infty} \frac{\vartheta(2^n x)}{2^n}$$
 for all $x \in \mathbb{R}$.

Then h satisfies the functional inequality

$$|Dh(x_{11},\ldots,x_{1n},x_{21},\ldots,x_{2n},x_{n1},\ldots,x_{nn})| \le \frac{4 \,\mu \,a_1}{(a_1-1)}|x| \tag{3.17}$$

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in \mathbb{R}$. Then there do not exist a n-variable additive mapping $A : \mathbb{R}^n \to \mathbb{R}$ and a constant $\kappa > 0$ such that

$$|h(x,x...,x) - A(x,x,...x)| \le \kappa |x| \qquad for \ all \quad x \in \mathbb{R}.$$
(3.18)

Proof. Now

$$|h(x,x...,x)| \le \sum_{n=0}^{\infty} \frac{|\vartheta(a_1^n x)|}{|a_1^n|} = \sum_{n=0}^{\infty} \frac{\mu}{a_1^n} = \frac{a_1\mu}{a_1-1}.$$

Therefore, we see that h is bounded. We are going to prove that h satisfies (3.17).

If $x_{mi} = 0$, i = 1, 2, ..., n, m = 1, 2, ..., n then (3.17) is trivial. If $|x_{mi}| \ge \frac{1}{a_1}$ then the left hand side of

(3.17) is less than $\frac{4 \mu a_1}{a_1 - 1}$. Now suppose that $0 < |x_{mi}| < \frac{1}{a_1}$. Then there exists a positive integer *k* such that

$$\frac{1}{a_1^k} \le |x_{mi}| < \frac{1}{a_1^{k-1}},\tag{3.19}$$

so that $a_1^{k-1}x_{mi} < \frac{1}{a_1}$ and consequently

$$a_1^{k-1}(x_{mi}), a_1^{k-1}(-x_{mi}) \in (-1,1).$$

Therefore for each p = 0, 1, ..., k - 1, we have

$$a_1^p(x_{mi}), a_1^p(-x_{mi}) \in (-1, 1)$$

and

$$2\vartheta \left(a_{1}^{p}\sum_{i=1}^{n}a_{i} x_{1i}, a_{1}^{p}\sum_{i=1}^{n}a_{i} x_{2i}, \dots, a_{1}^{p}\sum_{i=1}^{n}a_{i} x_{ni}\right) - \left(\sum_{i=1}^{n}a_{i}\right)\vartheta \left(a_{1}^{p}\sum_{i=1}^{n}x_{1i}, a_{1}^{p}\sum_{i=1}^{n}x_{2i}, \dots, a_{1}^{p}\sum_{i=1}^{n}x_{ni}\right) - \left(a_{1}-\sum_{i=2}^{n}a_{i}\right)\vartheta \left(a_{1}^{p}x_{11}-a_{1}^{p}\sum_{i=2}^{n}x_{1i}, a_{1}^{p}x_{21}-a_{1}^{p}\sum_{i=2}^{n}x_{2i}, \dots, a_{1}^{p}x_{n1}-a_{1}^{p}\sum_{i=2}^{n}x_{ni}\right) = 0$$

for p = 0, 1, ..., k - 1. From the definition of *h* and (3.19), we obtain that

$$\begin{aligned} \left| 2h\left(\sum_{i=1}^{n} a_{i} x_{1i}, \sum_{i=1}^{n} a_{i} x_{2i}, \dots, \sum_{i=1}^{n} a_{i} x_{ni}\right) \\ &- \left(\sum_{i=1}^{n} a_{i}\right) h\left(\sum_{i=1}^{n} x_{1i}, \sum_{i=1}^{n} x_{2i}, \dots, \sum_{i=1}^{n} x_{ni}\right) \\ &- \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) h\left(x_{11} - \sum_{i=2}^{n} x_{1i}, x_{21} - \sum_{i=2}^{n} x_{2i}, \dots, x_{n1} - \sum_{i=2}^{n} x_{ni}\right) \right| \\ &\leq \sum_{p=0}^{\infty} \frac{1}{a_{1}^{n}} \left| 2\vartheta\left(a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{1i}, a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{ni} \right) \\ &- \left(\sum_{i=1}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} x_{1i}, a_{1}^{p} \sum_{i=1}^{n} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} x_{ni} \right) \\ &- \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} x_{11} - a_{1}^{p} \sum_{i=2}^{n} x_{1i}, a_{1}^{p} x_{21} - a_{1}^{p} \sum_{i=2}^{n} x_{2i}, \dots, a_{1}^{p} x_{n1} - a_{1}^{p} \sum_{i=2}^{n} x_{ni} \right) \right| \\ &\leq \sum_{p=k}^{\infty} \frac{1}{a_{1}^{p}} \left| 2\vartheta\left(a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{1i}, a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{ni} \right) \\ &- \left(\sum_{i=1}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{1i}, a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{ni} \right) \\ &- \left(\sum_{i=1}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} x_{1i}, a_{1}^{p} \sum_{i=1}^{n} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} x_{ni} \right) \\ &- \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} x_{ni} \right) \\ &- \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} x_{ni} \right) \\ &- \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} x_{ni} \right) \\ &- \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} x_{ni} \right) \\ &- \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} x_{ni} \right) \\ &- \left(a_{1} - \sum_{i=2}^{n} a_{i}\right) \vartheta\left(a_{1}^{p} \sum_{i=1}^{n} x_{2i}, \dots, a_{1}^{p} \sum_{i=1}^{n} x_{2i} \sum_{i=1}^{n} x_{ni} \right) \right) \\ &+ \left(a_{1} - \sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} a_{i} x_{ni} \right) \left(a_{1}^{p} \sum_{i=1}^{n} a_{i} x_{ni} \right) \left(a_{1}^{p} \sum_{i=1}^{n} x_{ni} x_{ni} \right) \right) \\ &+ \left(a_{1} - \sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} a_{i}$$

Thus *h* satisfies (3.17) for all $x_{mi} \in \mathbb{R}$ with $0 < |x_{mi}| < \frac{1}{a_1}$.

We claim that the additive functional equation (1.14) is not stable for q = 1 in condition (*ii*) Corollary 3.1. Indeed, assume the contrary that there exist a additive mapping $A : \mathbb{R}^n \to \mathbb{R}$ and a constant $\kappa > 0$ satisfying (3.18). Since *h* is bounded and continuous for all $x \in \mathbb{R}$, *A* is bounded on any open interval containing the origin and continuous at the origin. In view of Theorem 3.1, *A* must have the form A(x, x, ..., x) = cx for any *x* in \mathbb{R} . Thus, we obtain that

$$|h(x, x, \dots, x)| \le (\kappa + |c|) |x|.$$
(3.20)

But, choose a positive integer *i* with $i\mu > \kappa + |c|$.

If $x \in \left(0, \frac{1}{2^{i-1}}\right)$, then $2^p x \in (0, 1)$ for all $p = 0, 1, \dots, i-1$. For this x, we get

$$h(x, x, \dots, x) = \sum_{p=0}^{\infty} \frac{\vartheta(a_1^p x)}{a_1^p} \ge \sum_{p=0}^{i-1} \frac{\mu(2^p x)}{2^p} = i\mu x > (\kappa + |c|) x$$

which contradicts (3.20). Therefore the additive functional equation (1.14) is not stable in sense of Ulam, Hyers and Rassias if q = 1, assumed in the inequality condition (*ii*) of (3.16).

Now, we will provide an example to illustrate that the functional equation (1.14) is not stable for $q = \frac{1}{n}$ in condition (*iii*) of Corollary 3.1.

Example 3.2. Let $\vartheta : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$\vartheta(x) = \begin{cases} \mu x, & \text{if } |x| < \frac{1}{n} \\ \frac{\mu}{n}, & \text{otherwise} \end{cases}$$

where $\mu > 0$ is a constant, and define a function $h : \mathbb{R}^n \to \mathbb{R}$ by

$$h(x, x..., x) = \sum_{n=0}^{\infty} \frac{\vartheta(2^n x)}{2^n}$$
 for all $x \in \mathbb{R}$

Then h satisfies the functional inequality

$$|Dh(x_{11},\ldots,x_{1n},x_{21},\ldots,x_{2n},x_{n1},\ldots,x_{nn})| \le \frac{4\ \mu\ a_1}{n(a_1-1)}|x|$$
(3.21)

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in \mathbb{R}$. Then there do not exist a n-variable additive mapping $A : \mathbb{R}^n \to \mathbb{R}$ and a constant $\kappa > 0$ such that

$$|h(x, x..., x) - A(x, x, ... x)| \le \kappa |x| \qquad for \ all \quad x \in \mathbb{R}.$$
(3.22)

4 Stability Results: Banach Space: Alternative Fixed Point Method

In this section, we apply a fixed point method for achieving stability of the functional equation (1.14) is present.

Now, first we will recall the fundamental results in fixed point theory.

Theorem 4.2. (Banach's contraction principle) Let (X, d) be a complete metric space and consider a mapping $T : X \to X$ which is strictly contractive mapping, that is

- (A1) $d(Tx, Ty) \leq Ld(x, y)$ for some (Lipschitz constant) L < 1. Then, (i) The mapping T has one and only fixed point $x^* = T(x^*)$; (ii) The fixed point for each given element x^* is globally attractive, that is
- (A2) $\lim_{n\to\infty} T^n x = x^*$, for any starting point $x \in X$; (iii) One has the following estimation inequalities:
- (A3) $d(T^n x, x^*) \leq \frac{1}{1-L} d(T^n x, T^{n+1}x), \forall n \geq 0, \forall x \in X;$

(A4) $d(x, x^*) \leq \frac{1}{1-L} d(x, x^*), \forall x \in X.$

Theorem 4.3. [26] Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive mapping $T : \Omega \to \Omega$ with Lipschitz constant L. Then, for each given $x \in \Omega$, either

$$d(T^n x, T^{n+1} x) = \infty \quad \forall \quad n \ge 0,$$

or there exists a natural number n_0 such that

(FP1) $d(T^n x, T^{n+1}x) < \infty$ for all $n \ge n_0$; (FP2) The sequence $(T^n x)$ is convergent to a fixed to a fixed point y^* of T (FP3) y^* is the unique fixed point of T in the set $\Delta = \{y \in \Omega : d(T^{n_0}x, y) < \infty\}$; (FP4) $d(y^*, y) \le \frac{1}{1-L}d(y, Ty)$ for all $y \in \Delta$. In this section, we take let us consider \mathcal{E} and \mathcal{F} to be a normed space and a Banach space, respectively and define a mapping $Dh : \mathcal{E}^n \to \mathcal{F}$ by

$$Dh(x_{11}, \dots, x_{1n}, x_{21}, \dots, x_{2n}, x_{n1}, \dots, x_{nn})$$

$$= 2h\left(\sum_{i=1}^{n} a_i x_{1i}, \sum_{i=1}^{n} a_i x_{2i}, \dots, \sum_{i=1}^{n} a_i x_{ni}\right) - \left(\sum_{i=1}^{n} a_i\right) h\left(\sum_{i=1}^{n} x_{1i}, \sum_{i=1}^{n} x_{2i}, \dots, \sum_{i=1}^{n} x_{ni}\right)$$

$$- \left(a_1 - \sum_{i=2}^{n} a_i\right) h\left(x_{11} - \sum_{i=2}^{n} x_{1i}, x_{21} - \sum_{i=2}^{n} x_{2i}, \dots, x_{n1} - \sum_{i=2}^{n} x_{ni}\right)$$

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in \mathcal{E}$.

Theorem 4.4. Let $h : \mathcal{E}^n \to \mathcal{F}$ be a mapping for which there exists a function $\zeta : \mathcal{E}^n \to [0, \infty)$ with the condition

$$\lim_{k \to \infty} \frac{1}{\tau_i^k} \zeta(\tau_i^k x) = 0 \tag{4.1}$$

where

$$\tau_i = \begin{cases} a_1 & if \quad i = 0; \\ \frac{1}{a_1} & if \quad i = 1, \end{cases}$$
(4.2)

such that the functional inequality

$$\|Dh(x_{11},\ldots,x_{1n},x_{21},\ldots,x_{2n},x_{n1},\ldots,x_{nn})\| \le \sum_{j=1}^{n} \vartheta_j \left(x_{j1},x_{j2},\ldots,x_{jn} \right)$$
(4.3)

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in \mathcal{E}$. If there exists L = L(i) < 1 such that the function

$$x \to \Theta(x) = \frac{1}{2} \sum_{j=1}^{n} \vartheta_j \left(\frac{x}{a_1}, \underbrace{0, \dots, 0}_{(n-1)-times} \right),$$

has the property

$$\frac{1}{\tau_i}\Theta(\tau_i x) = L \Theta(x).$$
(4.4)

for all $x \in \mathcal{E}$. Then there exists a unique additive mapping $A : \mathcal{E} \to \mathcal{F}$ satisfying the functional equation (1.14) and

$$\|h(x, x, \dots, x) - A(x, x, \dots, x)\| \le \frac{L^{1-i}}{1-L}\Theta(x)$$
 (4.5)

for all $x \in \mathcal{E}$.

Proof. Consider the set

$$\Gamma = \{ f/f : \mathcal{E}^n \to \mathcal{F}, f(0) = 0 \}$$

and introduce the generalized metric on Γ ,

$$d(f,g) = \inf\{K \in (0,\infty) : \| f(x,x,...,x) - g(x,x,...,x) \| \le K\Theta(x), x \in \mathcal{E}\}$$

It is easy to see that (Γ, d) is complete.

Define $Y : \Gamma \to \Gamma$ by

$$Yf(x, x, \ldots, x) = \frac{1}{\tau_i} f(\tau_i x, \tau_i x, \ldots, \tau_i x).$$

for all $x \in \mathcal{E}$. Now $f, g \in \Gamma$,

$$\begin{split} d(f,g) &\leq K \Rightarrow \parallel f(x,x,\ldots,x) - g(x,x,\ldots,x) \parallel \leq K\Theta(x), x \in \mathcal{E}. \\ &\Rightarrow \left\| \frac{1}{\tau_i} f(\tau_i x, \tau_i x, \ldots, \tau_i x) - \frac{1}{\tau_i} g(\tau_i x, \tau_i x, \ldots, \tau_i x) \right\| \leq \frac{1}{\tau_i} K\Theta(\tau_i x), x \in \mathcal{E}, \\ &\Rightarrow \left\| \frac{1}{\tau_i} f(\tau_i x, \tau_i x, \ldots, \tau_i x) - \frac{1}{\tau_i} g(\tau_i x, \tau_i x, \ldots, \tau_i x) \right\| \leq L K\Theta(x), x \in \mathcal{E}, \\ &\Rightarrow \parallel Y f(x, x, \ldots, x) - Y g(x, x, \ldots, x) \parallel \leq L K\Theta(x), x \in \mathcal{E}, \\ &\Rightarrow d(Yf, Yg) \leq L K. \end{split}$$

This implies $d(Yf, Yg) \leq Ld(f, g)$, for all $f, g \in \Gamma$. i.e., *T* is a strictly contractive mapping on Γ with Lipschitz constant L.

It follows from, (3.9) that

$$\|2h(a_1x, a_1x, \dots, a_1x) - 2a_1h(x, x, \dots, x)\| \le \sum_{j=1}^n \vartheta_j \left(x, \underbrace{0, \dots, 0}_{(n-1)-times}\right)$$
(4.6)

for all $x \in \mathcal{E}$. Now, from (4.6), we get

$$\left\|\frac{1}{a_1} h(a_1x, a_1x, \dots, a_1x) - h(x, x, \dots, x)\right\| \le \frac{1}{2a_1}\Theta(x)$$
(4.7)

for all $x \in \mathcal{E}$. Using (4.4) for the case i = 0 it reduces to

$$\left\|\frac{1}{a_1} h(a_1x, a_1x, \dots, a_1x) - h(x, x, \dots, x)\right\| \le L\Theta(x)$$

for all $x \in \mathcal{E}$,

i.e.,
$$d(Yh,h) \le L \Rightarrow d(Yh,h) \le L = L^1 < \infty.$$
 (4.8)

Again replacing $x = \frac{x}{a_i}$ in (4.6), we get

$$\left\|h(x,x,\ldots,x)-a_1h\left(\frac{x}{a_i},\frac{x}{a_i},\ldots,\frac{x}{a_i}\right)\right\| \leq \frac{1}{2}\sum_{j=1}^n \vartheta_j\left(\frac{x}{a_1},\underbrace{0,\ldots,0}_{(n-1)-times}\right)$$
(4.9)

for all $x \in \mathcal{E}$. Using (4.4) for the case i = 1 it reduces to

$$\left\| h(x, x, \dots, x) - a_1 h\left(\frac{x}{a_i}, \frac{x}{a_i}, \dots, \frac{x}{a_i}\right) \right\| \le \Theta(x)$$

i.e., $d(h, Yh) \le 1 \Rightarrow d(h, Yh) \le 1 = L^0 < \infty.$ (4.10)

for all $x \in \mathcal{E}$,

i.e.,
$$d(h, Yh) \le 1 \Rightarrow d(h, Yh) \le 1 = L^0 < \infty.$$
 (4.10)

From (4.8) and (4.10), we arrive

 $d(h, Yh) \le L^{1-i}.$

Therefore (FP1) holds.

By (FP2), it follows that there exists a fixed point *A* of Y in Γ such that

$$A(x, x, \dots, x) = \lim_{k \to \infty} \frac{h(\tau_i^k x, \tau_i^k x, \dots, \tau_i^k x)}{\tau_i^k}, \quad \forall \ x \in \mathcal{E}.$$
(4.11)

To order to prove $A : \mathcal{E} \to \mathcal{F}$ satisfies (1.14), replacing

$$x_{mi} = \tau_i^k x_{mi}, \qquad i = 1, 2, 3 \dots n, \qquad m = 1, 2, \dots n$$

in (4.3) and dividing by τ_i^k , it follows from (4.1) that

$$\frac{1}{\tau_i^k} \left\| Dh(\tau_i^k x_{11}, \dots, \tau_i^k x_{1n}, \tau_i^k x_{21}, \dots, \tau_i^k x_{2n}, \tau_i^k x_{n1}, \dots, \tau_i^k x_{nn}) \right\| \\
\leq \frac{1}{\tau_i^k} \sum_{j=1}^n \vartheta_j \left(\tau_i^k x_{j1}, \tau_i^k x_{j2}, \dots, \tau_i^k x_{jn} \right) \| \\$$

for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in \mathcal{E}$. Letting $k \to \infty$ in the above inequality and using the definition of $A(x, x, \ldots, x)$, we see that

$$DA(x_{11},\ldots,x_{1n},x_{21},\ldots,x_{2n},x_{n1},\ldots,x_{nn})=0.$$

Hence *A* satisfies (1.14) for all $x_{11}, ..., x_{1n}, x_{21}, ..., x_{2n}, x_{n1}, ..., x_{nn} \in A$.

By (FP3), *A* is the unique fixed point of Y in the set

$$\Delta = \{A \in \Gamma : d(h, A) < \infty\}$$

such that

$$\|h(x,x,\ldots,x)-A(x,x,\ldots,x)\|\leq K\Theta(x)$$

for all $x \in \mathcal{E}$ and K > 0. Finally by (FP4), we obtain

$$d(h,A) \le \frac{1}{1-L}d(h,Yh)$$

this implies

$$d(h,A) \le \frac{L^{1-i}}{1-L}$$

which yields

$$\|h(x,x,\ldots,x)-A(x,x,\ldots,x)\|\leq \frac{L^{1-i}}{1-L}\Theta(x)$$

this completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 4.4 concerning the stability of (1.14). **Corollary 4.2.** Let $h : \mathcal{E} \to \mathcal{F}$ be a mapping and exists real numbers ρ and r such that

$$\|Dh(x_{11},\ldots,x_{1n},x_{21},\ldots,x_{2n},x_{n1},\ldots,x_{nn})\| \leq \begin{cases} \rho,\\ \rho\sum_{i=1}^{n}\sum_{m=1}^{n}||x_{mi}||^{q}, & q \neq 1; \\ \rho\left\{\prod_{i=1}^{n}\prod_{m=1}^{n}||x_{mi}||^{q}+\sum_{i=1}^{n}\sum_{m=1}^{n}||x_{mi}||^{nq},\right\}, & nq \neq 1; \end{cases}$$
(4.12)

for all for all $x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, x_{n1}, \ldots, x_{nn} \in \mathcal{E}$. Then there exists a unique additive function $A : \mathcal{E} \to \mathcal{F}$ such that

$$\|h(x, x..., x) - A(x, x, ... x)\| \le \begin{cases} \frac{n\rho}{2|a_1 - 1|'} \\ \frac{n\rho||x||^q}{2|a_1 - a_1^q|'} \\ \frac{n\rho||x||^{nq}}{2|a_1 - a_1^{nq}|'} \end{cases}$$
(4.13)

for all $x \in \mathcal{E}$.

Proof. Setting

$$\vartheta(x) = \begin{cases} \rho, \\ \rho \sum_{i=1}^{n} \sum_{m=1}^{n} ||x_{mi}||^{q}, \\ \rho \begin{cases} \prod_{i=1}^{n} \prod_{m=1}^{n} ||x_{mi}||^{q} + \sum_{i=1}^{n} \sum_{m=1}^{n} ||x_{mi}||^{nq}, \end{cases} \end{cases}$$

for all $x \in \mathcal{E}$. Now,

$$\frac{1}{\tau_i^k} \vartheta(\tau_i^k x) = \begin{cases} \frac{\rho}{\tau_i^k}, \\ \frac{\rho}{\tau_i^k} \sum_{i=1}^n \sum_{m=1}^n ||\tau_i^k x_i||^q, \\ \frac{\rho}{\tau_i^k} \left\{ \prod_{i=1}^n \prod_{m=1}^n ||\tau_i^k x_{mi}||^q + \sum_{i=1}^n \sum_{m=1}^n ||\tau_i^k x_{mi}||^{nq}, \right\}, \\ = \begin{cases} \to 0 \text{ as } k \to \infty, \\ \to 0 \text{ as } k \to \infty, \\ \to 0 \text{ as } k \to \infty. \end{cases}$$

Thus, (4.1) is holds. We, already have

$$\Theta(x) = \frac{1}{2} \sum_{j=1}^{n} \vartheta_j \left(\frac{x}{a_1}, \underbrace{0, \dots, 0}_{(n-1)-times} \right),$$

with the property

$$\frac{1}{\tau_i}\Theta(\tau_i x) = L\,\Theta\left(x\right)$$

for all $x \in \mathcal{E}$. Hence

$$\Theta(x) = \frac{1}{2} \sum_{j=1}^{n} \vartheta_j \left(\frac{x}{a_1}, \underbrace{0, \dots, 0}_{(n-1)-times} \right) = \begin{cases} \frac{n\rho}{2} \\ \frac{n\rho}{2 \cdot a_1^q} ||x||^q \\ \frac{n\rho}{2 \cdot a_1^{nq}} ||x||^{nq}. \end{cases}$$

Also,

$$\frac{1}{\tau_i}\Theta(\tau_i x) = \begin{cases} \frac{n\rho}{2\tau_i} & \\ \frac{n\rho}{2\tau_i} ||\tau_i x||^q & = \begin{cases} \tau_i^{-1} \frac{n\rho}{2}, & \\ \tau_i^{q-1} n \frac{n\rho}{2} ||x||^q \\ \tau_i^{nq-1} n \frac{n\rho}{2} ||x||^{nq} & \end{cases} = \begin{cases} \tau_i^{-1} \Theta(x), & \\ \tau_i^{q-1} \Theta(x) \\ \tau_i^{nq-1} \Theta(x) \\ \tau_i^{nq-1} \Theta(x). \end{cases}$$

Hence the inequality (4.4) holds either, $L = a_1^{-1}$ if i = 0 and $L = \frac{1}{a_1^{-1}}$ if i = 1. Now from (4.5), we prove the following cases for condition (*i*). **Case:1** $L = a_1^{-1}$ if i = 0

$$||h(x) - A(x)|| \le \frac{\left(a_1^{-1}\right)^{1-0}}{1 - a_1^{-1}}\Theta(x) = \frac{n\rho}{2(a_1 - 1)}.$$

Case:2 $L = \frac{1}{a_1^{-1}}$ or if i = 1

$$||h(x) - A(x)|| \le \frac{\left(\frac{1}{a_1^{-1}}\right)^{1-1}}{1 - \frac{1}{a_1^{-1}}}\Theta(x) = \frac{n\rho}{2(1 - a_1)}.$$

Also the inequality (4.4) holds either, $L = a_1^{q-1}$ for q < 1 if i = 0 and $L = \frac{1}{a_1^{q-1}}$ for q > 1 if i = 1. Now from (4.5), we prove the following cases for condition (*ii*). **Case:3** $L = a_1^{q-1}$ for q < 1 if i = 0

$$\|h(x) - A(x)\| \le \frac{\left(a_1^{(q-1)}\right)^{1-0}}{1 - a_1^{(q-1)}}\Theta(x) = \frac{n\rho||x||^q}{2(a_1 - a_1^q)}$$

Case:4 $L = \frac{1}{a_1^{q-1}}$ for q > 1 if i = 1

$$\|h(x) - A(x)\| \le \frac{\left(\frac{1}{a_1^{(q-1)}}\right)^{1-1}}{1 - \frac{1}{a_1^{(q-1)}}} \Theta(x) = \frac{n\rho||x||^q}{2(a_1^q - a_1)}.$$

The proof of condition (*iii*) is similar to that of condition (*ii*). Hence the proof is complete.

References

- [1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
- [2] M. Acikgöz, A review on 2-normed structures, Int. J. Math. Anal., 1, No. 4 (2007), 187–191.

- [3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- [4] M. Arunkumar, Solution and stability of Arun-additive functional equations, International Journal Mathematical Sciences and Engineering Applications, Vol 4, No. 3, August 2010, 33-46.
- [5] M. Arunkumar, G. Ganapathy, S. Murthy, S. Karthikeyan, Stability of the generalized Arun-additive functional equation in Instutionistic fuzzy normed spaces, International Journal Mathematical Sciences and Engineering Applications Vol.4, No. V, December 2010, 135-146.
- [6] M. Arunkumar, C. Leela Sabari, Solution and stability of a functional equation originating from a chemical equation, International Journal Mathematical Sciences and Engineering Applications Vol. 5 No. II (March, 2011), 1-8.
- [7] M. Arunkumar, V. Arasu, N. Balaji, Fuzzy Stability of a 2- Variable Quadratic Functional Equation, International Journal Mathematical Sciences and Engineering Applications, Vol. 5 No. IV (July, 2011), 331-341.
- [8] M. Arunkumar, S. Hema latha, C. Devi Shaymala Mary, Functional equation originating from arithmetic Mean of consecutive terms of an arithmetic Progression are stable in banach space: Direct and fixed point method, JP Journal of Mathematical Sciences, Volume 3, Issue 1, 2012, Pages 27-43.
- [9] M. Arunkumar, G. Vijayanandhraj, S. Karthikeyan, Solution and Stability of a Functional Equation Originating From n Consecutive Terms of an Arithmetic Progression, Universal Journal of Mathematics and Mathematical Sciences, Volume 2, No. 2, (2012), 161-171.
- [10] M. Arunkumar, S. Hemalatha, 2-Variable AQ-Functional Equation, International Journal of Physical, Chemical and Mathematical Sciences (IJPCMS) - ISSN 2278 - 683X, Vol. 1; No. 2, (2012), 99 - 126.
- [11] M. Arunkumar, Matina J. Rassias, Yanhui Zhang, Ulam Hyers stability of a 2- variable AC mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier (JMMF), 1 (3), 2012, 10-26.
- [12] M. Arunkumar, N. Maheshkumar, Ulam Hyers, Ulam TRassias, Ulam JRassias stabilities of an additive functional equation in Generalized 2- Normed Spaces: Direct and Fixed Point Approach, Global Journal of Mathematical Sciences: Theory and Practical, Volume 5, Number 2 (2013), pp. 131-144.
- [13] M. Arunkumar, Functional equation originating from sum of First natural numbers is stable in Cone Banach Spaces: Direct and Fixed Point Methods, International Journal of Information Science and Intelligent System (IJISIS ISSN:2307-9142), Vol. 2 No. 4 (2013), 89 - 104.
- [14] M. Arunkumar, Perturbation of n Dimensional AQ mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences (IJAMS), Vol. 2 (1), 2014, 34-56.
- [15] M. Arunkumar, C. Vijayalakshmi, G. Vijayanandhraj, 2 Variable Associative functional equation, Proceedings of the International Conference on Mathematical Methods and Computation, February 2014.
- [16] J.H. Bae and W.G. Park, A functional equation orginating from quadratic forms, J. Math. Anal. Appl. 326 (2007), 1142-1148.
- [17] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57, (1951), 223-237.
- [18] **S. Czerwik**, *Functional Equations and Inequalities in Several Variables*, World Scientific, River Edge, NJ, 2002.
- [19] D.O. Lee, Hyers-Ulam stability of an additive type functional equation, J. Appl. Math. and Computing, 13 (2003) no.1-2, 471-477.
- [20] **P. Gavruta**, *A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings*, J. Math. Anal. Appl., 184 (1994), 431-436.

- [21] D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci., U.S.A., 27 (1941) 222-224.
- [22] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.
- [23] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- [24] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
- [25] S. Murthy, M. Arunkumar, G. Ganapathy, Fuzzy Stability Of A 3-D Additive Functional Equation: Hyers Direct And Fixed Point Method, Proceedings of National conference on Recent Trends in Mathematics and Computing (NCRTMC-2013), 69-79, ISBN 978-93-82338-68-0.
- [26] B.Margoils and J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 74 (1968), 305-309.
- [27] W.G.Park, J.H.Bae, On the solution of a multi-additive functional equation and its stability, J. Appl. Math. and Computing, Vol. 22 No. 1 2, (2006), 517 522
- [28] **V.Radu**, *The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory Cluj-Napoca,* Vol. IV, 2003, in press.
- [29] Matina J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol. 14 No. 1-2, (2014), 22 - 46.
- [30] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
- [31] **Th.M. Rassias**, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
- [32] K. Ravi, M. Arunkumar, On a n-dimensional additive Functional Equation with fixed point Alternative, Proceedings of ICMS 2007,314-330.
- [33] **K.Ravi and M.Arunkumar**, *Stability of a 3- variable Quadratic Functional Equation*, Journal of Quality Measurement and Analysis, July 4 (1), 2008, 97-107.
- [34] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
- [35] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

Received: April 13, 2016; Accepted: November 12, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/