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Abstract

In this paper, the authors investigated the general solution and generalized Ulam - Hyers stability of a;
type n— variable multi n— dimensional additive functional equation
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1 Introduction

During the last seven decades, the perturbation problems of several functional equations have been ex-
tensively investigated by number of authors [1} 3} 20} 21} 30, 31 34} [35]. The terminology generalized Ulam -
Hyers stability originates from these historical backgrounds. These terminologies are also applied to the case
of other functional equations. For more detailed definitions of such terminologies, one can refer to [8} 18, 22
24].

One of the most famous functional equations is the additive functional equation

flx+y) = f(x)+ fy). (1.1)

In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued functions. It is often called
an additive Cauchy functional equation in honor of Cauchy (see [24]). The additive function f(x) = cx is the
solution of the additive functional equation (1.T).

The solution and stability of various additive functional equations were discussed by D.O. Lee [19], K.
Ravi, M. Arunkumar [32], M. Arunkumar [4H6} (8, 9]. W.G. Park, ].H. Bae [16] 27] investigate the general
solution and the generalized Hyers-Ulam stability of the multi-additive functional equation and 2- variable
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quadratic functional equation of the forms

frtxn+yz+z)= Y, fay,z), (1.2)
1<ijk<2
fx+yz+w)+ f(x—y,z—w) =2f(x,z) + 2f (y, w). (1.3)

The stability of the functional equation (L.3) in fuzzy normed space was proved by M. Arunkumar et., al
[7]. Using the ideas in [7], the general solution and generalized Hyers-Ulam-Rassias stability of a 3- variable
quadratic functional equation

fx+yz+wu+o)+ f(x—y,z—w,u—ov) =2f(x,z,u) +2f(y,w,v). (1.4)
was discussed by K. Ravi and M. Arunkumar [33]. Its solution is of the form
f(x,y,2) = ax? + by* + cz* + dxy + eyz + fzx. (1.5)

Also, M. Arunkumar, S. Hema Latha established the general solution and generalized Ulam - Hyers stability
of a 2 - variable Additive Quadratic functional equation

fx+yuto)+ fx—yu—0v) =2f(x,u) + f(y,0) + f(—y, —0) (1.6)
having solutions
f(x,y) = ax + by 1.7)
and
f(x,y) = ax® + bxy + cy? (1.8)

in Banach and Non Archimedean Fuzzy spaces respectively. Infact, M. Arunkumar et. al., [11] introduced and
discussed a 2 - variable AC - mixed type functional equation

f2x+y2z+w) - f(2x —y, 2z —w) = 4[f(x +y, 2+ w) - fx —y,z—w)] = 6f(y,w) (19)
having solutions
flx,y) =ax+by (1.10)
and
f(x,y) = ax® + bx?y + cxy? + dy°. (1.11)

Recently, M. Arunkumar et.al., [12] introduced and established the general solution and generalized Ulam -
Hyers stability of a 2 - variable Associative functional equation

gxu)+g(y+zo+w)=g(x+yu+ov)+g(z,w) (1.12)
having solutions
g(x,y) =ax+by (1.13)

using Banach and Intuitionistic Fuzzy Normed spaces, respectively.
Inspired by the above results in this paper, the authors investigated the general solution generalized Ulam
- Hyers stability of a; type n— variable multi n— dimensional additive functional equation

n n n n
+ (ﬂl — Z {11'> h <X11 — Z X1i, X21 — Z XQiyeunnnn ;X1 — me'> (1.14)
i=2 i i=2 j

=2
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having solution
n
h(x1,x0,...,%y) = Zcixi (1.15)
i=1

where a;(i = 1,2,...n) are different integers greater than 1, using Hyers direct and Alternative fixed point
methods.
In particular, when n = 1,2 in (1.14), we arrive

2h (ﬂl X11,41 X21,...,01 an) = alh (xllerlr .. .,X;,,l) + ﬂ]h (xll,x21 .. .,an) . (116)
and

2h (aq x11 + ap X12,a1 X1 + a1 X2, ..., 41 Xy1 + a1 Xy2)
= (a1 +ap) h (x11 + x12, %21 + X220, . .., X1 + X2)

+ (a1 —ap) h(x11 — X12, %21 — X22, -+, X1 — Xp2) - (1.17)

2 General Solution

In this section, the general solution of the functional equation (1.14) is given. Through out this section let
as assume A and B be linear normed spaces.

Lemma 2.1. If a mapping h : A" — B satisfies the functional equation then h is additive.

Proof. Assume h : A" — B be a mapping satisfies the functional equation (I.14). Replacing

Xmi =0, i=12,..n, m=12,---n
in (1.14), we get
h(0,0,...,0) =0. (2.1)
Again replacing
Xmi =0, i=23...n, m=12,---n
in (1.14), we obtain

2h(arx11,a1%21, - -+, 81%p1) = (a1 + a2 + -+ -+ an)h(x11, %21, - - -, Xp1)
+(a1 —ay — - _an)h(xllllel"'/xnl) (22)

for all x19, 21, ..., X1 € A. If we substitute (x11,X21,...,X,1) by (x,x...,x) in (2.2), we reach

h(aix,a1x,...,a1x) = a; h(x,x,...,x) (2.3)
for all x € A. Putting
Xmi =0, 1=3,4...n, m=12,---n
in (1.14), we obtain
h(xlz,O,...,O) = —h(—xlz,O,...,O) (2.4)

for all x1, € A. So one can show that
h(a’{x,a’fx,. ..,a’fx) = a’{ h(x,x,...,x) (2.5)

forall x € Aand all k € N. O
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3 Stability Results: Banach Space: Hyers Method

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1.14).
In this section, let we consider A be a normed space and B be a Banach space and define a mapping
Dh: A" — Bby

Dh(xll/ e s X X215+ - X200, Xy - - -/xnn)

n n n n
- (ﬂl - Z%‘) h <x11 - lei/ X21 — Z X2jyeenens s Xn1 — Z xni)
i=2 j i=2 i=2

i=2
forall x11,..., X1, X21, -+ -, X2, X1, - - -, Xnn € A.
Theorem 3.1. Let ¢ = +1and 9,0 : A" — [0, 00) be a function such that

1 ¢ ¢ ¢ ¢ ¢ ¢
Slgngo ﬁﬁ (aﬁ X11,- -, 05 X1, 05 X21, - - -, 05 Xon, 5 Xp1,. .., 43 x,m) =0 3.1

forall x11, ..., X1, X21, -« -, X201, X1, - - -, X € A. Let h : A" — B be a function satisfying the inequality
n
||Dh(x11/ ey X1, X210 oo s X2, Xnnls e ey xnn) H S Z% 19] (le/ xj2/ ceey xjn) (32)
]:

forall x11,..., X1, X21, - -, X2, X1, - - -, Xun € A. Then there exists a unique n— variable additive mapping A : A" —

B which satisfies and

1 & O(atlx)

hix,x,...,x)—Alx,x,...,x)|| < — 1 3.3
A [P 63

where © (aﬁéx) and A(x,x, ..., x) are defined by

t 1 i t
O(ayx)==) 0 |ayx, 0,...,0 (3.4)
=1 ——
(n—1)—times
and

A(x,x,...,x) = lim ih(aigx, asgx,...,aﬁéx) (3.5)

5§—00 aii
forall x € A, respectively.

Proof. Given h : A" — B be a function satisfying the inequality (3.2) for all x11,..., X1, ..., Xp1, ..., Xun € A.
To establish this theorem, we have to show that

(i) {als h(aix,aix, ..., aﬁx)} is a Cauchy sequence for every x € A;
1
(if) 1f
A(x,x,...,x) = lim lh(aﬁx,aﬁx,...,aﬁx)

S—00 [11

then A is additive on A;

(iii) Further A satisfies (3.3), for all x € A;

(iv) A is unique.
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Replacing

xm1:0/ i:2,3...n, m:]-/z/“'n
in (3.2), we get

HZh(ulxll/ale]/ .. -/alxnl) - (ﬂl + a + -+ an)h(xll/x21/' . '/xnl)

n
—(a1—az—---—an)h(xn,x21,...,xn1)|| S Zﬁ] le, O,...,O (3.6)
= ——

(n—1)—times
for all xq1, x21,...,x,1 € A. If we substitute

Xl = X, m=1,2,...n

in (3.7), we arrive

n
12k (a1x, a1, ..., a1x) — 21 h(x,x,..., %) < Y % [x O,...,0 (3.7)

for all x € A. Hence from (3.7), we reach

1 1 n
a h 4x,ax,. .., 01X —h XX, gzxalgﬁj x, 0,...,0 (3.8)
n—times n—times = (n—1)—times
for all x € A. It follows from that
1 1
— h|mx,a1x,...,ex | —h|x,x,...,x < —0(x) (3.9)
a1 —_— ~—~ a1
n—times n—times
where
1 n
®(x):§;19j X, &...,0
= (n—1)—times
for all x € A. Now replacing x by a;x and dividing by a; in (3.9), we get
1 1 1
‘ E h (a%x,a%x,...,a%x) - ah (a1x,mx, ..., 01x)|| < a—%(@(alx) (3.10)
for all x € A. From (3.8) and (3.10), we obtain
1 2 2 2 ]. @(ﬂlx)
— - — - < — .
a% h (alx,alx, ,alx) hx,x,...,x)|| < o [@(x) + o (3.11)

for all x € A. Proceeding further and using induction on a positive integer s, we get

‘ 1

s
a

h(ajx,aix,...,a5x) —h(x,x,...,x) (3.12)

for all x € A. In order to prove the convergence of the sequence

1
{IZS h(ajx,ajx,...,aix) ¢,

1
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replace x by a}x and dividing by 4] in (3.12), for any r,s > 0, we deduce

1 1
r+s r+s r+s r r T
|r+s h(aix,a™x, ..., "x) — = h(ajx,aix,..., a}x)
a a
1 1
1 1 r S r S r S r r r
= a—sh (a7 -ajx,ay-ajx,...,ay -ajx) —h(ajx,ayx, ..., a1x)
1 114
1 ] @(a7'+sx)
< — Z rlJrs
MmiZo M

—0 asr— o

1
for all x € A. Hence the sequence {as h(ajx,aix,..., aﬁx)} is a Cauchy sequence. Since 3 is complete, there

1
exists a mapping A : A" — B such that

A(x,x,...x) = lim lh(aix,aix,...,aﬁx), vV xe A

s—00 ai
Letting s — oo in (3.12), we see that (3.3) holds for all x € A. To prove that A satisfies (1.14), replacing
Xpi = a5 X, i=1,23...n, m=12,---n

and dividing by 4} in (3.2), we obtain

— ||[Dh(aix11,...,a1%10, 43X21, - - -, A1 X2, A1 X1, - - -, A7 X ) |
1

1
< —
— S

l

n
2 i (afxjr, aixjp, ... a5%j,)

for all x11, ..., X1, %21, « -, X2u, X1, - - -, Xun € A. Letting s — oo in the above inequality and using the defini-
tion of A(x,x,...,x), we see that

DA(xlll e X1, X210 - s X200, X0y - - rxnn) =0.

Hence A satisfies (1.14) for all x11,..., X1, X21, - -+, X211, X1, - - -, Xnn € A To prove that A(x, x,...x) is unique,
let B(x, x,...x) be another n— Varlable addltlve mapping sat1sfy1ng 1.14) and (3.3), then

|A(x,x,...x) — B(x,x,...x)||
1
== |A(ajx,ajx,...aix) — B(ajx,ajx,...ajx)||
1
1
7 {||A(aix,ajx,...aix) —h(ajx, aix,...ajx)||
+ ||h(ajx, aix,...ajx) — B(ajx,aix,...ajx)||}
22 2 > @( t+s )
- (t+s)
=
—0 as s — o

for all x € A. Thus A is unique. Hence for ¢ = 1 the Theorem holds.
Now, replacing x by 7~ in (3.7), we reach

X X X
2h(x,x,. 2a1h .. 0 P 0,...,0 3.13
e R T o S 1 = 2 0.0 6.1
(n—1)—times

for all x € A. Dividing the above inequality by 2, we obtain

Hh(x,x,. .., x) —arh <x, x,...,xx) H <0 <x) (3.14)
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where
X 1 x
= (n—1)—times
for all x € A. The rest of the proof is similar to that of ¢ = 1. Hence for £ = —1 also the Theorem holds. This
completes the proof of the theorem. O

The following Corollary is an immediate consequence of Theorem [3.1| concerning the Ulam-Hyers [21],
Ulam-TRassias [31]] and Ulam-JMRassias [30] stabilities of (1.14).

Corollary 3.1. Let p and q be nonnegative real numbers. Let h : A" — B be a function satisfying the inequality

0,
; §1||xmz“q q#1

{ﬁfﬁuWW+zz:Wm"q} n#1;

|DR(X11, s X190, X215 - - - X2, X1y -+ X)) || < (3.15)

i=1m=1

forall X119, ..., X1, X201, -+, X2, X1, - - -, Xun € A. Then there exists a unique n— variable additive function A : A —

B such that
nayp

2|611 — 1|,
nayp||x[|7
<3 2ay—dl|’ (3.16)
nayp||x[["
2|aq _a1q|
forallx € A.

Now, we will provide an example to illustrate that the functional equation (1.14) is not stable for 4 = 1 in
condition (ii) of Corollary[3.1]

Example 3.1. Let & : R — R be a function defined by

o) = { 1 <

U,  otherwise

where y > 0 is a constant, and define a function h : R* — R by

= (2"
h(x,x...,x)=Y (an) forall xeR.
n=0
Then h satisfies the functional inequality
4dua
|Dh(x11/~-;xlnrx21/-'-1x2n/xn1/-~;xnn)| < ot |X| (317)
(1 —1)

forall x11,..., X1, %21, - -, X2, X1, - - -, Xnn € R. Then there do not exist a n— variable additive mapping A : R" —
R and a constant x > 0 such that

|h(x,x...,x) — A(x,x,...x)| <x|x| forall x €. (3.18)
Proof. Now
= [B(ain)| o mp
h(x,x...,x)| <Y ——=) &= .
| ( )‘ n=0 |a}11‘ n=0 QT ay -1

Therefore, we see that /1 is bounded. We are going to prove that / satisfies (3.17).

1
Ifx,;, =0, i=12...,n,m=1,2,...,nthen (3.17) is trivial. If |x,,;| > . then the left hand side of
1

4
3.17)) is less than p d ai . Now suppose that 0 < |x,,;| < P Then there exists a positive integer k such that
1 1
1 1
x S |xmi| < k—1" (319)
M M
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1
so that a’l‘*lxmi < o and consequently
1

ali 1(xmi)/a11(_1(_xmi) € (_Ll)-

Therefore foreach p = 0,1, ...,k — 1, we have

aij(xmi)/ af(_xmi) € (_1/1)

and

n n n n
- (Z a,«) 9 (af lei,af Zin, ...... ,a’f me)

i=1 i=1 i=1

n n
14 14 —
( 2 al> <a1 X11 — 44 Z X1i, 111 X21 — a4 Z XDjyeeennn 701 Xn1 — A Z xnl-) =0

i=2 i=2

forp =0,1,...,k — 1. From the definition of / and (3.19), we obtain that

n n n n
—|m— Z%’) h <x11 =) X X1 — Y Xpipeenn P me) ‘

i=2 i=2 i=2

n n n
14 P P
al Y aixy,aly aixg, ... ... ,ah Y a xm)
i=1 i=1

1:1 i=1

n n n n
p
- (ﬂl — 2 Cll'> 9 (afxu — ﬂf Z X1, afxﬂ — E XDjyevnnnn ,afxnl — ﬂf 2 xm-) |

i=2 i—2 i—2 i—
<) 1 p n p n p n
< z a7 209 a Zﬂl‘ X1i, 9 Zai XDjyeeennn ;4 2 a; Xyi
p=k "1 i=1 i=1 i=1
n n
—( Yoai | o(al Y xydf Z X9iyevnnn. ,al Y xy
i=1 i=1 i=1
n n n
—(m =Y a |0 alxin—al Y xqpalxn —al Y xoi, . ,alxy — al me
> 1 m 4pa
< 4 =4 x - Ix].
ok al (1 —1)ak (a1 —1)

1
Thus & satisfies (3.17) for all x,,,; € R with 0 < |x,,;| < —
1

We claim that the additive functional equation is not stable for g = 1 in condition (i) Corollary 3.1}
Indeed, assume the contrary that there exist a additive mapping A : R” — R and a constant x > 0 satisfying
(3.18). Since & is bounded and continuous for all x € R, A is bounded on any open interval containing the
origin and continuous at the origin. In view of Theorem A must have the form A(x, x,...,x) = cx for any
x in R. Thus, we obtain that

|h(x,x,...,x)| < (x4 |c|)|x]. (3.20)
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But, choose a positive integer i with iy > x + |c|.
Ifxe (0,2,%1) ,then2Px € (0,1) forallp =0,1,...,i — 1. For this x, we get

® 9(afx) _ i urx) .
hx .2 = ) == > ) BSE = > (4 fel) »
p=0 1 p=0
which contradicts (3.20). Therefore the additive functional equation (1.14) is not stable in sense of Ulam, Hyers
and Rassias if 4 = 1, assumed in the inequality condition (i) of (3.16). O

Now, we will provide an example to illustrate that the functional equation 1| is not stable for g = % in
condition (iii) of Corollary 3.1}

Example 3.2. Let ¢ : R — R be a function defined by

_ [ i <5
0(x) = { E,  otherwise

where > 0 is a constant, and define a function h : R* — R by

0 2n
h(x,x...,x) =) 19(2nx) forall x€R.
n=0
Then h satisfies the functional inequality
4ua
[DR(X11, « ) X100, X215« - s X200, X1y -« s X )| < ﬁw (3.21)

forall x11,...,X10, %21, - -+, X20, X1, - - - » Xnn € R. Then there do not exist a n— variable additive mapping A : R" —
R and a constant k > 0 such that

|h(x,x...,x) — A(x,x,...x)| <x|x| forall xeRR. (3.22)

4 Stability Results: Banach Space: Alternative Fixed Point Method

In this section, we apply a fixed point method for achieving stability of the functional equation (1.14) is
present.
Now, first we will recall the fundamental results in fixed point theory.

Theorem 4.2. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping T : X —
X which is strictly contractive mapping, that is

(A1) d(Tx, Ty) < Ld(x,y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping T has one and only fixed point x* = T(x*);
(ii)The fixed point for each given element x* is globally attractive, that is

(A2) limy—eoT"x = x*, for any starting point x € X;
(iii) One has the following estimation inequalities:

(A3) d(T"x,x*) < ﬁ d(T"x, T"1x),¥V n>0,¥Y x € X;

(A4) d(x,x*) < 117 d(x,x*),V x € X.

Theorem 4.3. [26|] Suppose that for a complete generalized metric space (Q),6) and a strictly contractive mapping
T : OO — Q with Lipschitz constant L. Then, for each given x € (), either

d(T"x, T" " 'x) =0 ¥V n2>0,

or there exists a natural number ng such that

(FP1) d(T"x, T"'x) < oo forall n > ny ;

(FP2) The sequence (T"x) is convergent to a fixed to a fixed point y* of T

(FP3) y* is the unique fixed point of T in the set A = {y € Q : d(T™x,y) < oo};
(FP4) d(y*,y) < tird(y, Ty) forall y € A.
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In this section, we take let us consider £ and F to be a normed space and a Banach space, respectively and
define a mapping Dh : £" — F by

Dh(xlll e X1 X210 o X200 X0 e - - /xnn)

n n n n
- (ﬂl - 2“:‘) h <x11 =) X1 X1 = ) Xajpeenee Sl — ) xni)
i—2 j i—2 '

=2
forall x11,..., X140, %21, -+, X2, X1, - -, Xun € E.

Theorem 4.4. Let h : E" — F be a mapping for which there exists a function { : E" — [0, 00) with the condition

1
lim —{(tfx) =0 4.1)
k—o0 Ti
where
ap if i=0;
T = 1 . . (42)
! { ar if i=1,
such that the functional inequality
n
IDR(x11, -+, X190, X215+ - X201, Xy« -+ X)) || < 219]' (Xj1, X2, - Xjn) (4.3)
=1

forall x11,..., X120, X21, - - -, X2, X1, - - -, Xnn € E. If there exists L = L(i) < 1 such that the function

1& x
x%@(x)—izlﬁ] a, O,...,O 7
= (n—1)—times
has the property
%@)(w) —LO(x). (4.4)
1
or all x € €. Then there exists a unigue additive mapping A : £ — F satisfying the functional equation (1.14) and
q ppmng g q
1—i
h(x, %, ..., x) — A(x,x, ..., x)|| < 1L_ -0 (x) 45)

forallx € €.

Proof. Consider the set
r={f/f:&"—F, f(0)=0}
and introduce the generalized metricon T,

d(f,g) =inf{K € (0,00) ;| f(x,x,...,x) —g(x,x,...,x) [|[< KO(x),x € £}

It is easy to see that (T, d) is complete.
DefineY : I' — I by

Yf(x,x,...,x) = if(Tix,Tix,...,Tix),
forallx € £. Now f,g €T,
d(f,g) <K= f(x,x,...,x) —g(x,x,...,x) [<KO(x),x € £.

1
< fK®(‘qx),x e,

i ‘
T

1 1
—f(Tx,ix,...,Tx) — —g(Tix, X, ..., T;X)
T T

1 1
—f(Tx,Tix, ..., Tix) — —g(Tix, X, ..., T;X)
T T

= ’ < LKO(x),x € €&,

= Yf(x,x,...,x) = Yg(x,x,...,x) |< LKO(x),x € &,
=d(Yf,Yg) < LK.
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This implies d(Yf,Yg) < Ld(f,g), forall f,g € T. i.e., T is a strictly contractive mapping on I with Lipschitz
constant L.
It follows from, that

n
2h(a1x,a1x,...,a1x) —2a1h(x,x,...,x)|| < % 1x, 0,...,0 4.6
12 (a1x, a1 1X) 1h( i Z fi 9. (4.6)

(n—1)—times

for all x € £. Now, from (#.6), we get

1 1
‘ — h(mx,mx,...,01x) —h(x,x,...,x)|| < =—0(x) 4.7)
ay 2&1
forall x € £. Using for the case i = 0 it reduces to
‘ al h(ax,mx,...,a1x) —h(x,x,...,x)|| < LO(x)
1
forallx € £,
ie, d(Yhh)<L=d(Yhh) <L=L!<oco. (4.8)
Again replacing x = = 1n mi we get
h(x,x x) —arh X X <1i19- ) 0 4.9)
7 VA 1 ai/ai/"'/ai —2]:1 ] al’ \/_‘"I .
(n—1)—times
forall x € £. Using for the case i = 1 it reduces to
X ox x
h —ah(—,—,...,— ||| <
H (i o®) i (ﬂi' ;" 111’) H = 8()
forallx € £,
ie, d(hYh) <1=d(hYh) <1=L°< co. (4.10)

From (4.8) and (4.10), we arrive '
d(h,Yh) < L'~

Therefore (FP1) holds.
By (FP2), it follows that there exists a fixed point A of Y in I" such that
h(thx, tcx ..., *x
A(x,x,...,x) = lim (rx lxk L ), VvV xef. (4.11)
k—o0 T
To order to prove A : £ — F satisfies (1.14), replacing
xm,-:rikxm,-, 1=1,2,3...n, m=1,2,---n

n (4.3) and dividing by 7, it follows from that

n
k
Z (T x]l/T x]Z/ T xjn)

1 k k k k k k
? HDh(Ti X110 G X0, G X210+ o, T X20, T Xy oo+ G Xnn)
1
7
forall x11,..., %1, %21, - ., X2n, X1, - - ., Xun € E. Letting k — oo in the above inequality and using the definition
of A(x,x,...,x), we see that
DA('xll/ o X1 X210 s X200, X0 - - - /xnn) =0.

Hence A satisfies (1.14) for all x11, ..., X1, X21, -+ -, X2, X1, - - -, Xnn € A.
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By (FP3), A is the unique fixed point of Y in the set
A={AecT:d(h A) < oo},

such that
|h(x,x,...,x) — A(x,x,...,x)|| < KO(x)

for all x € £ and K > 0. Finally by (FP4), we obtain
1
< —
d(h,A) < T Ld(h,Yh)

this implies
Ll —i

d(h,A) <
which yields
Ih(x,x,...,x) —A(x,x,...,x)|| <

this completes the proof of the theorem. O
The following corollary is an immediate consequence of Theorem [4.4| concerning the stability of (1.14).
Corollary 4.2. Let h: £ — F be a mapping and exists real numbers p and r such that
o
n
IDR(x11, -+ X1, X215 -+« s X210, X+« - Xmn) || < = E [l 17, 971

{ﬁf_l ol + £ £l ng £1

i=1m=1

(4.12)

forall forall x11, ..., X1, %21, -+ -, X211, X1, - - -, Xnn € E. Then there exists a unique additive function A : £ — F such
that
np
2|ﬂ1 - 1| !
np||x|[?

=\ 2m =] (419

np||x|[™
2[ay — ‘11q|
forallx € E.

Proof. Setting

p{n f 94+ £ £zl }
i=1m=1 i=1m=1

for all x € £. Now,

—0as k — oo,
n

g k
Yo ) gl
i=1

m=1

n n
Tk{ H |T xml||q+22|"rxml||nq } — 0as k—)oo.
i i=lm=

1 i=lm=

—0as k — oo,

1 X
O@x) =5 ) 9 o 00 ]
=1 (n—1)—times
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with the property

for all x € £. Hence

np
Lo, [ 2 "y 2]}
= (n—1)—times 7p|‘x||nq_
2.4
.al
Also,
np L17p 7 '0(x),
27; L !
1 n _1 npllx||q _
E@(Tix) — %HTI'xHq Tiq np|%H — qu 1®(x)
n nq ng—1_np||x|["
|| |™. : SEHA B

Hence the inequality 1i holds either, L = a;’ lifi=0and L = u%l if i = 1. Now from l) we prove the
1

following cases for condition (7).
Case:l L = al_l ifi=0

)
1 _np
[h(x) — A(x)|| < ﬁ(@(x) = 2a—1)

Case:2 L = a%lorifizl
1

1-1
I . no
[h(x) — A(x)]| < ﬁ@)(x) =3 —ay)

4

Also the inequality (4.4) holds either, L = aTl forg <lifi=0and L = % for g > 1ifi = 1. Now from
M

(4.5), we prove the following cases for condition (ii).
Case:3 L =al ' forg <1ifi=0

(-)\'70
a q
|h(x) — A(x)[| < <1(>_1)@ x) = M
1 *ﬂlq 2({11 _al)

Case:4 L:uq%]forq>lifi:1
1

1-1
1
Ih(x) = A(x)|| < W@(x) _ _nplll”

1 - H(q%l) 2(&‘{ - Ll1) '
1
The proof of condition (i) is similar to that of condition (ii). Hence the proof is complete. O
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