Malaya
Journal ofMJM
an international journal of mathematical sciences with
computer applications...

www.malayajournal.org

Ulam-Hyers Stability of Quadratic Reciprocal Functional Equation in Intuitionistic Random Normed spaces: Various Methods

John M. Rassias,^{*a*} M. Arunkumar,^{*b*} and S. Karthikeyan^{*c*,*}

^aPedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens, Athens 15342, Greece.

^bDepartment of Mathematics, Government Arts College, Tiruvannamalai, TamilNadu, India-606 603.

^cDepartment of Mathematics, R.M.K. Engineering College, Kavarapettai, TamilNadu, India-601 206.

Abstract

In this paper, the authors investigated the intuitionistic random stability of a quadratic reciprocal functional equation

$$f(x+2y) + f(2x+y) = \frac{f(x)f(y)\left[5f(x) + 5f(y) + 8\sqrt{f(x)f(y)}\right]}{\left[2f(x) + 2f(y) + 5\sqrt{f(x) + f(y)}\right]^2}$$

using direct and fixed point methods.

Keywords: Quadratic reciprocal functional equation, generalized Ulam-Hyers stability, intuitionistic random normed space, fixed point.

```
2010 MSC: 39B52; 34K36; 46S50; 47S50.
```

©2016 MJM. All rights reserved.

1 Introduction

The study of stability problem for functional equations goes back to a question raised by Ulam [44] concerning the stability of group homomorphisms that affirmatively answered for Banach spaces by Hyers [24]. Hyers Theorem was generalized by Aoki [3] for additive mappings and by Th.M. Rassias [37] for linear mappings by considering an unbounded Cauchy difference. The paper by Rassias has provided a lot of influences in the development of what we now call the generalized Hyers-Ulam stability or Hyers- Ulam-Rassias stability of functional equations. J.M. Rassias [35] considered the Cauchy difference controlled by a product of different powers of norm. Afterwards, Găvruţa [21] generalized the Rassas's theorem by using a general control function. In 2008, a special case of Găvruţa's theorem for the unbounded Cauchy difference was obtained by Ravi et al. [38] by considering the summation of both the sum and the product of two p-norms in the sprit of Rassias approach. A large part of proofs in this topic used the direct method (of Hyers): the exact solution of the functional equation is explicitly constructed as a limit of a sequence, starting from the given approximate solution.

In 2003, V. Radu [11] proposed a new method, successively developed in [12–14], to obtaining the existence of the exact solutions and the error estimations, based on the fixed point alternative.

The theory of random normed spaces (RN-spaces) is important as a generalization of the deterministic result of linear normed spaces and also in the study of random operator equations. The RN-spaces may also

*Corresponding author.

E-mail addresses: jrassias@primedu.uoa.gr (John M. Rassias), annarun2002@yahoo.co.in (M. Arunkumar), karthik.sma204@yahoo.com (S. Karthikeyan)

provide us with the appropriate tools to study the geometry of nuclear physics and have important application in quantum particle physics. Recently, J.M. Rassias et al. [36] investigated the intuitionistic random stability of the quartic functional equation and C. Park et al. [33] presented the Hyers-Ulam stability of the additivequadratic functional equation in intuitionistic random normed space.

In 2014, M. Arunkumar and S. Karthikeyan [5] introduced and investigated Hyers-Ulam stability of *n*-dimensional reciprocal functional equation

$$f\left(\frac{2x}{n}\right) = \sum_{\ell=1}^{n} \left(\frac{f\left(x + \ell y_{\ell}\right) f\left(x - \ell y_{\ell}\right)}{f\left(x + \ell y_{\ell}\right) + f\left(x - \ell y_{\ell}\right)}\right)$$
(1.1)

which originates from *n*-consecutive terms of a harmonic progression in RN-space using direct and fixed point methods.

Recently, Abasalt Bodaghi and Sang Og Kim [1] introduced new 2-dimensional quadratic reciprocal functional equation

$$f(x+2y) + f(2x+y) = \frac{f(x)f(y)\left[5f(x) + 5f(y) + 8\sqrt{f(x)f(y)}\right]}{\left[2f(x) + 2f(y) + 5\sqrt{f(x) + f(y)}\right]^2}.$$
(1.2)

It is easily verified that the quadratic reciprocal function $f(x) = \frac{1}{x^2}$ is a solution of the functional equation (1.2).

In this paper, the authors establish intuitionistic random norm stability of a quadratic reciprocal functional equation (1.2) using direct and fixed point methods.

2 Preliminaries of Intuitionistic Random Normed Spaces

In this section, using the idea of intuitionistic random normed spaces introduced by Chang et al. [16], we define the notion of intuitionistic random normed spaces as in [15, 22, 29, 31, 40–42].

Definition 2.1. A measure distribution function is a function $\mu : \mathbb{R} \to [0, 1]$ which is left continuous, non-decreasing on \mathbb{R} , $inf_{t \in \mathbb{R}}\mu(t) = 0$ and $sup_{t \in \mathbb{R}}\mu(t) = 1$.

We will denote by D the family of all measure distribution functions and by H a special element of D defined by

$$H(t) = \begin{cases} 0, & \text{if } t \le 0, \\ 1, & \text{if } t > 0. \end{cases}$$
(2.1)

If *X* is a nonempty set, then μ : *X* \rightarrow *D* is called a probabilistic measure on *X* and $\mu(x)$ is denoted by μ_x .

Definition 2.2. A non-measure distribution function is a function $\nu : \mathbb{R} \to [0,1]$ which is right continuous, nondecreasing on \mathbb{R} , $inf_{t \in \mathbb{R}}\nu(t) = 0$ and $sup_{t \in \mathbb{R}}\nu(t) = 1$.

We will denote by *B* the family of all non-measure distribution functions and by *G* a special element of *B* defined by

$$G(t) = \begin{cases} 1, & if \ t \le 0, \\ 0, & if \ t > 0. \end{cases}$$
(2.2)

If *X* is a nonempty set, then $\nu : X \to B$ is called a probabilistic non-measure on *X* and $\nu(x)$ is denoted by ν_x .

Lemma 2.1. [8, 20] Consider the set L^* and operation \leq_{L^*} defined by:

$$L^* = \left\{ (x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1 \right\},$$
$$(x_1, x_2) \le_{L^*} (y_1, y_2) \Leftrightarrow x_1 \le y_1, x_2 \ge y_2, \quad \forall (x_1, x_2), (y_1, y_2) \in L^*.$$

Then (L^*, \leq_{L^*}) is a complete lattice.

Definition 2.3. [8] An intuitionistic fuzzy set $A_{\zeta,\eta}$ in a universal set U is an object

$$A_{\zeta,\eta} = \{(\zeta_A(u), \eta_A(u)) | u \in U\}$$

for all $u \in U$, $\zeta_A(u) \in [0,1]$ and $\eta_A(u) \in [0,1]$ are called the membership degree and the non-membership degree, respectively, of u in $A_{\zeta,\eta}$ and, furthermore, they satisfy $\zeta_A(u) + \eta_A(u) \leq 1$.

We denote its units by $0_{L^*} = (0,1)$ and $1_{L^*} = (1,0)$. Classically, a *triangular norm* * = T on [0,1] is defined as an increasing, commutative, associative mapping $T : [0,1]^2 \rightarrow [0,1]$ satisfying T(1,x) = 1 * x = x for all $x \in [0,1]$. A *triangular conorm* $S = \diamondsuit$ is defined as an increasing, commutative, associative mapping $S : [0,1]^2 \rightarrow [0,1]$ satisfying $S(0,x) = 0 \diamondsuit x = x$ for all $x \in [0,1]$.

Using the lattice (L^*, \leq_{L^*}) , these definitions can be straightforwardly extended.

Definition 2.4. [8] A triangular norm (t-norm) on L^* is a mapping $T: (L^*)^2 \to L^*$ satisfying the following conditions:

- (i) $(\forall \in L^*) (T(x, 1_{L^*}) = x)$ (boundary condition);
- (ii) $\left(\forall (x,y) \in (L^*)^2\right) (T(x,y) = T(y,x))$ (commutativity);
- (iii) $\left(\forall (x, y, z) \in (L^*)^3\right) (T(x, T(y, z)) = T(T(x, y), z))$ (associativity);
- (iv) $\left(\forall (x, x', y, y') \in (L^*)^4\right) (x \leq_{L^*} x' \text{ and } y \leq_{L^*} y' \Rightarrow T(x, y) \leq_{L^*} T(x', y'))$ (monotonicity).
 - If (L^*, \leq_{L^*}, T) is an Abelian topological monoid with unit 1_{L^*} , then *T* is said to be a *continuous* t-norm.

Definition 2.5. [8] A continuous t-norms T on L^* is said to be continuous t-representable if there exist a continuous t-norm * and a continuous t-conorm \diamondsuit on [0,1] such that, for all $x = (x_1, x_2)$, $y = (y_1, y_2) \in L^*$,

$$T(x,y) = (x_1 * y_1, x_2 \diamondsuit y_2).$$

For example,

$$T(a,b) = (a_1b_1, \min\{a_2 + b_2, 1\})$$

and

$$M(a,b) = (\min\{a_1,b_1\}, \max\{a_2,b_2\})$$

for all $a = (a_1, a_2)$, $b = (b_1, b_2) \in L^*$ are continuous *t*-representable.

Now, we define a sequence T^n recursively by $T^1 = T$ and

$$T^{n}\left(x^{(1)},\ldots,x^{(n+1)}\right) = T\left(T^{n-1}\left(x^{(1)},\ldots,x^{(n)}\right),x^{(n+1)}\right), \quad \forall n \geq 2, \ x^{(i)} \in L^{*}.$$

Definition 2.6. [43] A negator on L^* is any decreasing mapping $N : L^* \to L^*$ satisfying $N : (0_{L^*}) = 1_{L^*}$ and $N(1_{L^*}) = 0_{L^*}$. If N(N(x)) = x for all $x \in L^*$, then N is called an involutive negator. A negator on [0,1] is a decreasing mapping $N : [0,1] \to [0,1]$ satisfying $P_{\mu,\nu}(0) = 1$ and $P_{\mu,\nu}(1) = 0$. N_s denotes the standard negator on [0,1] defined by

$$N_{s}(x) = 1 - x, \quad \forall x \in [0, 1].$$

Definition 2.7. [43] Let μ and ν be measure and non-measure distribution functions from $X \times (0, +\infty)$ to [0, 1] such that $\mu_x(t) + \nu_x(t) \le 1$ for all $x \in X$ and all t > 0. The triple $(X, P_{\mu,\nu}, T)$ is said to be an intuitionistic random normed space (briefly IRN-space) if X is a vector space, T is a continuous t-representable and $P_{\mu,\nu}$ is a mapping $X \times (0, +\infty) \rightarrow L^*$ satisfying the following conditions: for all $x, y \in X$ and t, s > 0,

(*IRN1*) $P_{\mu,\nu}(x,0) = 0_{L^*};$

(*IRN2*) $P_{\mu,\nu}(x,t) = 1_{L^*}$ if and only if x = 0;

(IRN3)
$$P_{\mu,\nu}(\alpha x,t) = P_{\mu,\nu}\left(x,\frac{t}{|\alpha|}\right)$$
 for all $\alpha \neq 0$;

(IRN4) $P_{\mu,\nu}(x+y,t+s) \ge_{L^*} T(P_{\mu,\nu}(x,t),P_{\mu,\nu}(y,s)).$

In this case, $P_{\mu,\nu}$ is called an intuitionistic random norm. Here, $P_{\mu,\nu}(x,t) = (\mu_x(t), \nu_x(t))$.

Example 2.1. [43] Let $(X, \|\cdot\|)$ be a normed space. Let $T(a, b) = (a_1, b_1, \min(a_2 + b_2, 1))$ for all $a = (a_1, a_2)$, $b = (b_1, b_2) \in L^*$ and μ, ν be measure and non-measure distribution functions defined by

$$P_{\mu,v}(x,t) = (\mu_x(t), v_x(t)) = \left(\frac{t}{t+\|x\|}, \frac{\|x\|}{t+\|x\|}\right), \ \forall t \in \mathbb{R}^+.$$

Then $(X, P_{\mu,\nu}, T)$ is an IRN-sapce.

Definition 2.8. [43] A sequence $\{x_n\}$ in an IRN-space $(X, P_{\mu,\nu}, T)$ is called a Cauchy sequence if, for any $\varepsilon > 0$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that

$$P_{\mu,\nu}(x_n-x_m,t)>L^*(N_s(\varepsilon),\varepsilon), \quad \forall n, \ m\geq n_0,$$

where N_s is the standard negator.

Definition 2.9. [43] The sequence $\{x_n\}$ is said to be convergent to a point $x \in X$ (denoted by $x_n \xrightarrow{P_{\mu,\nu}} x$) if $P_{\mu,\nu}(x_n - x, t) \to 1_{L^*}$ as $n \to \infty$ for every t > 0.

Definition 2.10. [43] An IRN-space $(X, P_{\mu,\nu}, T)$ is said to be complete if every Cauchy sequence in X is convergent to a point $x \in X$.

Now, we use the following notation for a given mapping $\Delta : X \to Y$

$$\Delta(x,y) = f(x+2y) + f(2x+y) - \frac{f(x)f(y)\left[5f(x) + 5f(y) + 8\sqrt{f(x)f(y)}\right]}{\left[2f(x) + 2f(y) + 5\sqrt{f(x) + f(y)}\right]^2}.$$

3 Stability Results: Direct Method

In this section, the authors presented the generalized Ulam-Hyers stability of the functional equation (1.2) in intuitionistic random normed spaces using direct method.

Theorem 3.1. Let X be a linear space and $(Y, P_{\mu,\nu}, T)$ be a complete IRN-space. Let $f : X \to Y$ be a mapping with f(0) = 0 for which there are $\xi, \zeta : X^2 \to D^+$, $\xi(x, y)$ is denoted by $\xi_{x,y}$ and $\zeta(x, y)$ is denoted by $\zeta_{x,y}$, furthur, $(\xi_{x,y}(t), \zeta_{x,y}(t))$ is denoted by $P'_{\xi,\zeta}(x, y, t)$ with the property:

$$P_{\mu,\nu}\left(\Delta(x,y),t\right) \ge_{L^*} P'_{\xi,\zeta}\left(x,y,t\right) \tag{3.1}$$

for all $x, y \in X$ and all t > 0. If

$$T_{i=1}^{\infty} P'_{\xi,\zeta} \left(\frac{x}{3^{i+n}}, \frac{x}{3^{i+n}}, 3^{i-1+2n} t \right) = \mathbf{1}_{L^*}$$
(3.2)

and

$$\lim_{n \to \infty} P'_{\xi,\zeta} \left(\frac{x}{3^n}, \frac{x}{3^n}, 3^{2n}t \right) = \mathbb{1}_{L^*}$$
(3.3)

for all $x \in X$ and all t > 0, then there exists a unique quadratic reciprocal mapping $R : X \to Y$ satisfies the inequality

$$P_{\mu,\nu}(f(x) - R(x), t) \ge_{L^*} T^{\infty}_{i=1} P'_{\xi,\zeta}\left(\frac{x}{3^i}, \frac{x}{3^i}, 3^{i-1}t\right)$$
(3.4)

for all $x \in X$ and all t > 0.

Proof. Replacing (x, y) by (x, x) in (3.1), we get

$$P_{\mu,\nu}\left(f(3x) - \frac{f(x)}{3^2}, t\right) \ge_{L^*} P'_{\xi,\zeta}(x, x, t)$$
(3.5)

for all $x \in X$ and all t > 0. Replacing x by $\frac{x}{3}$ in (3.5), we obtain

$$P_{\mu,\nu}\left(f(x) - \frac{1}{3^2}f\left(\frac{x}{3}\right), t\right) \ge_{L^*} P'_{\xi,\zeta}\left(\frac{x}{3}, \frac{x}{3}, t\right)$$
(3.6)

for all $x \in X$ and all t > 0. Replacing x by $\frac{x}{3^n}$ in (3.5)and using (IRN3), we have

$$P_{\mu,\nu}\left(\frac{1}{3^{2n}}f\left(\frac{x}{3^n}\right) - \frac{1}{3^{2(n+1)}}f\left(\frac{x}{3^{n+1}}\right), \frac{t}{3^{2n}}\right) \ge_{L^*} P'_{\xi,\zeta}\left(\frac{x}{3^{n+1}}, \frac{x}{3^{n+1}}, t\right)$$
(3.7)

for all $x \in X$ and all t > 0. Using (*IRN*3) in (3.7), we arrive

$$P_{\mu,\nu}\left(\frac{1}{3^{2n}}f\left(\frac{x}{3^n}\right) - \frac{1}{3^{2(n+1)}}f\left(\frac{x}{3^{n+1}}\right), t\right) \ge_{L^*} P'_{\xi,\zeta}\left(\frac{x}{3^{n+1}}, \frac{x}{3^{n+1}}, 3^{2n}t\right)$$
(3.8)

that is,

$$P_{\mu,\nu}\left(\frac{1}{3^{2n}}f\left(\frac{x}{3^n}\right) - \frac{1}{3^{2(n+1)}}f\left(\frac{x}{3^{n+1}}\right), \frac{t}{3^n}\right) \ge_{L^*} P'_{\xi,\zeta}\left(\frac{x}{3^{n+1}}, \frac{x}{3^{n+1}}, 3^n t\right)$$
(3.9)

for all $n \in \mathbb{N}$ and all t > 0. As $3 > 1/3 + 1/3^2 + \ldots + 1/3^k$, by the triangle inequality it follows

$$P_{\mu,\nu}\left(f(x) - \frac{1}{3^{2k}}f\left(\frac{x}{3^{k}}\right), t\right) \ge_{L^{*}} T_{n=0}^{k-1}\left\{P_{\xi,\zeta}'\left(\frac{1}{3^{2n}}f\left(\frac{x}{3^{n}}\right) - \frac{1}{3^{2(n+1)}}f\left(\frac{x}{3^{n+1}}\right), \sum_{n=0}^{k-1}\frac{1}{3^{n}}t\right)\right\}$$
$$\ge_{L^{*}} T_{i=1}^{k}\left\{P_{\xi,\zeta}'\left(\frac{x}{3^{i}}, \frac{x}{3^{i}}, 3^{i-1}t\right)\right\}$$
(3.10)

for all $x \in X$ and all t > 0. In order to prove the convergence of the sequence $\left\{\frac{1}{3^{2n}}f\left(\frac{x}{3^n}\right)\right\}$, replacing x by $\frac{x}{3^m}$ in (3.10), we obtain

$$P_{\mu,\nu}\left(\frac{1}{3^{2m}}f\left(\frac{x}{3^{m}}\right) - \frac{1}{3^{2(k+m)}}f\left(\frac{x}{3^{k+m}}\right), t\right) \ge_{L^*} T_{i=1}^k \left\{ P'_{\xi,\zeta}\left(\frac{x}{3^{i+m}}, \frac{x}{3^{i+m}}, 3^{i-1+2m}t\right) \right\}$$
(3.11)

for all $x \in X$ and all t > 0 and all $k, m \ge 0$. Since the right hand-side of the inequality tends to 1_{L^*} as m tends to infinity, the sequence $\left\{\frac{1}{3^{2n}}f\left(\frac{x}{3^n}\right)\right\}$ is a Cauchy sequence. Therefore, we may define $R(x) = \lim_{n \to \infty} \frac{1}{3^{2n}}f\left(\frac{x}{3^n}\right)$ for all $x \in X$.

Now, we prove that *R* satisfies (1.2). Replacing (x, y) by $(\frac{x}{3^n}, \frac{y}{3^n})$ in (3.1), we get

$$P_{\mu,\nu}\left(\frac{1}{3^{2n}}\Delta\left(\frac{x}{3^n},\frac{y}{3^n}\right),t\right) \ge_{L^*} P'_{\xi,\zeta}\left(\frac{x}{3^n},\frac{y}{3^n},3^{2n}t\right)$$
(3.12)

for all $x, y \in X$ and t > 0. Letting $n \to \infty$ in the above inequality and using the definition of R(x), we see that R satisfies (1.2) for all $x, y \in X$.

Finally, to prove the uniqueness of the quadratic reciprocal function R subject to (3.4), let us assume that there exists another quadratic reciprocal function S which satisfies (3.4). Obviously, we have $R\left(\frac{x}{3^n}\right) = 3^{2n}R(x)$ and $S\left(\frac{x}{3^n}\right) = 3^{2n}S(x)$ for all $x \in X$ and $n \in \mathbb{N}$. Hence, it follows from (3.4) that

$$\begin{split} P_{\mu,\nu}\left(R(x) - S(x), t\right) &\geq_{L^*} P_{\mu,\nu}\left(R\left(\frac{x}{3^n}\right) - S\left(\frac{x}{3^n}\right), 3^{2n}t\right) \\ &\geq_{L^*} T\left(P_{\mu,\nu}\left(R\left(\frac{x}{3^n}\right) - f\left(\frac{x}{3^n}\right), \frac{3^{2n}t}{2}\right), P_{\mu,\nu}\left(f\left(\frac{x}{3^n}\right) - S\left(\frac{x}{3^n}\right), \frac{3^{2n}t}{2}\right)\right) \\ &\geq_{L^*} T\left(T_{i=1}^{\infty}\left(P'_{\xi,\zeta}\left(\frac{x}{3^{i+m}}, \frac{x}{3^{i+m}}, \frac{3^{i-1+2m}t}{2}\right)\right), T_{i=1}^{\infty}\left(P'_{\xi,\zeta}\left(\frac{x}{3^{i+m}}, \frac{x}{3^{i+m}}, \frac{3^{i-1+2m}t}{2}\right)\right)\right) \end{split}$$

for all $x \in X$ and t > 0. By letting $n \to \infty$ in (3.4), we prove the uniqueness of R. This completes the proof. \Box

From Theorem 3.1, we obtain the following corollary concerning the Hyers-Ulam-Rassias and JMRassias stabilities for the functional equation (1.2).

Corollary 3.1. Suppose that a function $f : X \to Y$ satisfies the inequality

$$P_{\mu,\nu}(\Delta(x,y),t) \geq_{L^{*}} \begin{cases} P_{\xi,\zeta}'(\epsilon,t); \\ P_{\xi,\zeta}'(\epsilon(||x||^{s}+||y||^{s}),t); \\ P_{\xi,\zeta}'(\epsilon(||x||^{s}||y||^{s},t); \\ P_{\xi,\zeta}'(\epsilon(||x||^{s}||y||^{s}+||x||^{2s}+||y||^{2s}),t); \end{cases}$$
(3.13)

for all $x, y \in X$ and t > 0, where ϵ , s are constants with $\epsilon > 0$. Then there exists a unique quadratic reciprocal mapping $R : X \to Y$ such that

$$P_{\mu,\nu}\left(f(x) - R(x), t\right) \geq_{L^{*}} \begin{cases} P_{\xi,\zeta}'\left(\left|\frac{9}{8}\right|\epsilon, t\right); \\ P_{\xi,\zeta}'\left(\frac{18\epsilon}{|3^{s+2}-1|}||x||^{s}, t\right), & s < -2 \text{ or } s > -2; \\ P_{\xi,\zeta}'\left(\frac{9\epsilon}{|3^{2s+2}-1|}||x||^{2s}, t\right), & s < -1 \text{ or } s > -1; \\ P_{\xi,\zeta}'\left(\frac{27\epsilon}{|3^{2s+2}-1|}||x||^{2s}, t\right), & s < -1 \text{ or } s > -1; \end{cases}$$
(3.14)

for all $x \in X$ and all t > 0.

4 Stability Results: Fixed Point Method

In this section, the authors proved the generalized Ulam-Hyers stability of the functional equation (1.2) in intuitionistic random normed spaces using fixed point method.

Now, we will recall the fundamental results in fixed point theory.

Theorem 4.2. (Banach's contraction principle) Let (X, d) be a complete metric space and consider a mapping $\Gamma : X \to X$ which is strictly contractive mapping, that is

- (A1) $d(\Gamma x, \Gamma y) \leq Ld(x, y)$ for some (Lipschitz constant) L < 1. Then, (i) The mapping Γ has one and only fixed point $x^* = \Gamma(x^*)$; (ii) The fixed point for each given element x^* is globally attractive, that is
- (A2) $\lim_{n\to\infty} \Gamma^n x = x^*$, for any starting point $x \in X$; (iii) One has the following estimation inequalities:
- (A3) $d(\Gamma^n x, x^*) \leq \frac{1}{1-L} d(\Gamma^n x, \Gamma^{n+1} x), \forall n \geq 0, \forall x \in X;$
- (A4) $d(x, x^*) \leq \frac{1}{1-L} d(x, x^*), \forall x \in X.$

Theorem 4.3. [30](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $\Gamma : X \to X$ with Lipschitz constant L. Then, for each given element $x \in X$, either (B1) $d(\Gamma^n x, \Gamma^{n+1} x) = \infty \quad \forall n \ge 0$, or

(B2) there exists a natural number n_0 such that:

(*i*) $d(\Gamma^n x, \Gamma^{n+1} x) < \infty$ for all $n \ge n_0$;

(*ii*)*The sequence* $(\Gamma^n x)$ *is convergent to a fixed point* y^* *of* Γ

(iii) y^* is the unique fixed point of Γ in the set $Y = \{y \in X : d(\Gamma^{n_0}x, y) < \infty\};$

 $(iv) d(y^*, y) \leq \frac{1}{1-L} d(y, \Gamma y)$ for all $y \in Y$.

Using above fixed point theorems to prove the stability results, we define the following: δ_i is a constant such that

$$\delta_i = \left\{ \begin{array}{ll} 3 & if \quad i=0; \\ \frac{1}{3} & if \quad i=1; \end{array} \right.$$

and Ω is the set such that

$$\Omega = \{g \mid g : X \to Y, g(0) = 0\}.$$

Theorem 4.4. Let X be a linear space and $(Y, P_{\mu,\nu}, T)$ be a complete IRN-space. Let $f : X \to Y$ be a mapping for which there exist a function $\xi, \zeta : X^2 \to D^+$ with the condition

$$T_{i=1}^{\infty} P'_{\xi,\zeta} \left(\frac{x}{3^{i+n}}, \frac{x}{3^{i+n}}, 3^{i-1+2n} t \right) = 1_{L^*}$$
(4.1)

$$lim_{n\to\infty}P'_{\xi,\zeta}\left(\frac{x}{3^n},\frac{x}{3^n},3^{2n}t\right) = 1_{L^*},$$
(4.2)

298

and

and satisfying the functional inequality

$$P_{\mu,\nu}\left(\Delta(x,y),t\right) \ge_{L^*} P'_{\xi,\zeta}\left(x,y,t\right), \,\forall \, x,y \in X, t > 0.$$

$$(4.3)$$

If there exists L such that the function

$$x \to \beta(x) = \frac{x}{3}, \frac{x}{3} \tag{4.4}$$

has the property

$$P'_{\xi,\zeta}\left(L\delta_i^2\beta(\delta_i x),r\right) = P'_{\xi,\zeta}\left(\beta(x),t\right), \ \forall \ x \in X, t > 0.$$

$$(4.5)$$

Then there exists a unique quadratic reciprocal function $R : X \rightarrow Y$ *satisfying the functional equation (1.2) and*

$$P_{\mu,\nu}(f(x) - R(x), t) \ge_{L^*} P'_{\xi,\zeta}\left(\frac{L^{1-i}}{1-L}\beta(x), t\right), \, \forall \, x \in X, t > 0.$$
(4.6)

Proof. Let *d* be a general metric on Ω , such that

$$d(g,h) = \inf \left\{ K \in (0,\infty) | P_{\mu,\nu} \left(g(x) - h(x), r \right) \ge_{L^*} P'_{\xi,\zeta} \left(K\beta(x), t \right), x \in X, t > 0 \right\}.$$

It is easy to see that (Ω, d) is complete. Define $\Gamma : \Omega \to \Omega$ by $\Gamma g(x) = \delta_i^2 g(\delta_i x)$, for all $x \in X$. For $g, h \in \Omega$, we have $d(g, h) \leq K$

$$\Rightarrow \qquad P_{\mu,\nu}\left(g(x) - h(x), t\right) \geq_{L^{*}} P'_{\xi,\zeta}\left(K\beta(x), t\right)$$

$$\Rightarrow \qquad P_{\mu,\nu}\left(\delta_{i}^{2}g(\delta_{i}x) - \delta_{i}^{2}h(\delta_{i}x), t\right) \geq_{L^{*}} P'_{\xi,\zeta}\left(K\beta(\delta_{i}x), \frac{t}{\delta_{i}^{2}}\right)$$

$$\Rightarrow \qquad P_{\mu,\nu}\left(\Gamma g(x) - \Gamma h(x), t\right) \geq_{L^{*}} P'_{\xi,\zeta}\left(KL\beta(x), t\right)$$

$$\Rightarrow \qquad d\left(\Gamma g(x), \Gamma h(x)\right) \leq KL$$

$$\Rightarrow \qquad d\left(\Gamma g, \Gamma h\right) \leq Ld(g, h)$$

$$(4.7)$$

for all $g, h \in \Omega$. Therefore, Γ is strictly contractive mapping on Ω with Lipschitz constant *L*. Replacing (x, y) by (x, x) in (4.3), we get

$$P_{\mu,\nu}\left(f(3x) - \frac{f(x)}{9}, t\right) \ge_{L^*} P'_{\xi,\zeta}(x, x, t)$$
(4.8)

for all $x \in X$, t > 0. Using (IRN3) in (4.8), we arrive

$$P_{\mu,\nu}\left(9f(3x) - f(x), t\right) \ge_{L^*} P'_{\xi,\zeta}\left(x, x, \frac{t}{9}\right)$$
(4.9)

for all $x \in X$, t > 0, with the help of (4.5) when i = 0, it follows from (4.8), we get

$$\Rightarrow P_{\mu,\nu} \left(9f(3x) - f(x), t\right) \ge_{L^*} P'_{\xi,\zeta} \left(L\beta(x), t\right)$$

$$\Rightarrow d(\Gamma f, f) \le L = L^1 = L^{1-i}.$$
(4.10)

Replacing *x* by $\frac{x}{3}$ in (4.8) and using (IRN3), we obtain

$$P_{\mu,\nu}\left(f(x) - \frac{1}{9}f\left(\frac{x}{3}\right), t\right) \ge_{L^*} P'_{\xi,\zeta}\left(\frac{x}{3}, \frac{x}{3}, t\right)$$

$$(4.11)$$

for all $x \in X$, t > 0, with the help of (4.5) when i = 1, it follows from (4.11) we get

$$P_{\mu,\nu}\left(f(x) - \frac{1}{9}f\left(\frac{x}{3}\right), t\right) \ge_{L^*} P'_{\xi,\zeta}\left(\beta(x), t\right)$$

$$\Rightarrow \quad d(f,\Gamma f) \le 1 = L^0 = L^{1-i}$$
(4.12)

for all $x \in X$, t > 0. Then, from (4.10) and (4.12) we can conclude,

$$d(f,\Gamma f) \le L^{1-i} < \infty.$$

Now, from the fixed point alternative in both cases, it follows that there exists a fixed point *R* of Γ in Ω such that

$$\lim_{n \to \infty} P_{\mu,\nu} \left(\delta_i^{2n} f\left(\delta_i^n x \right) - R(x), t \right) \to 1_{L^*}, \qquad \forall x \in X, t > 0.$$
(4.13)

Replacing (x, y) by $(\delta_i x, \delta_i y)$ in (4.3), we arrive

$$P_{\mu,\nu}\left(\delta_i^{2n}\Delta(\delta_i x, \delta_i y), t\right) \ge_{L^*} P'_{\xi,\zeta}\left(\delta_i x, \delta_i y, \frac{t}{\delta_i^{2n}}\right)$$
(4.14)

for all $x, y \in X$ and t > 0.

By proceeding the same procedure as in the Theorem 3.1, we can prove the function, $R : X \to Y$ satisfies the functional equation (1.2).

By fixed point alternative, since *R* is unique fixed point of Γ in the set

$$\nabla = \{ f \in \Omega | d(f, Q) < \infty \}$$

therefore, R is a unique function such that

$$P_{\mu,\nu}(f(x) - R(x), t) \ge_{L^*} P'_{\xi,\zeta}(K\beta(x), t)$$
(4.15)

for all $x \in X$, t > 0 and K > 0. Again using the fixed point alternative, we obtain

$$d(f, R) \leq \frac{1}{1 - L} d(f, \Gamma f)$$

$$\Rightarrow \quad d(f, R) \leq \frac{L^{1 - i}}{1 - L}$$

$$\Rightarrow \quad P_{\mu,\nu} \left(f(x) - R(x), t \right) \geq_{L^*} P'_{\xi, \zeta} \left(\frac{L^{1 - i}}{1 - L} \beta(x), t \right)$$

$$(4.16)$$

for all $x \in X$ and t > 0. This completes the proof.

From Theorem 4.4, we obtain the following corollary concerning the stability for the functional equation (1.2).

Corollary 4.2. Suppose that a function $f : X \to Y$ satisfies the inequality

$$P_{\mu,\nu}(\Delta(x,y),t) \geq_{L^{*}} \begin{cases} P'_{\xi,\zeta}(\epsilon,t); \\ P'_{\xi,\zeta}(\epsilon(||x||^{s}+||y||^{s}),t); \\ P'_{\xi,\zeta}(\epsilon||x||^{s}||y||^{s},t); \\ P'_{\xi,\zeta}(\epsilon(||x||^{s}||y||^{s}+||x||^{2s}+||y||^{2s}),t); \end{cases}$$
(4.17)

for all $x, y \in X$ and t > 0, where ϵ , s are constants with $\epsilon > 0$. Then there exists a unique quadratic reciprocal mapping $R : X \to Y$ such that

$$P_{\mu,\nu}\left(f(x) - R(x), t\right) \geq_{L^{*}} \begin{cases} P_{\xi,\zeta}\left(\left|\frac{9}{8}\right|\epsilon, t\right); \\ P_{\xi,\zeta}\left(\frac{18\epsilon}{|3^{s+2}-1|}||x||^{s}, t\right), & s < -2 \text{ or } s > -2; \\ P_{\xi,\zeta}\left(\frac{9\epsilon}{|3^{2s+2}-1|}||x||^{2s}, t\right), & s < -1 \text{ or } s > -1; \\ P_{\xi,\zeta}\left(\frac{27\epsilon}{|3^{2s+2}-1|}||x||^{2s}, t\right), & s < -1 \text{ or } s > -1; \end{cases}$$

$$(4.18)$$

for all $x \in X$ and all t > 0.

Proof. Setting

$$P'_{\xi,\zeta}(x,y,t) = \begin{cases} P'_{\xi,\zeta}(\epsilon,t); \\ P'_{\xi,\zeta}(\epsilon(||x||^{s} + ||y||^{s}),t); \\ P'_{\xi,\zeta}(\epsilon(||x||^{s}||y||^{s},t); \\ P'_{\xi,\zeta}(\epsilon(||x||^{s}||y||^{s} + ||x||^{2s} + ||y||^{2s}),t); \end{cases}$$

for all $x, y \in X$ and t > 0. Then,

$$\begin{split} P'_{\xi,\zeta}\left(\delta_i^k x, \delta_i^k y, \frac{t}{\delta_i^{2k}}\right) &= \begin{cases} P'_{\xi,\zeta}\left(\epsilon, \frac{t}{\delta_i^{2k}}\right); \\ P'_{\xi,\zeta}\left(\epsilon\left(||\delta_i^k x||^s + ||\delta_i^k y||^s\right), \frac{t}{\delta_i^{2k}}\right); \\ P'_{\xi,\zeta}\left(\epsilon\left(||\delta_i^k x||^s||\delta_i^k y||^s + ||\delta_i^k x||^{2s} + ||\delta_i^k y||^{2s}\right), \frac{t}{\delta_i^{2k}}\right); \\ P'_{\xi,\zeta}\left(\epsilon\left(||x||^s + ||y||^s\right), \delta_i^{-(2+s)k}t\right); \\ P'_{\xi,\zeta}\left(\epsilon(||x||^s||y||^s, \delta_i^{-(2+2s)k}t\right); \\ P'_{\xi,\zeta}\left(\epsilon\left(||x||^s||y||^s + ||x||^{2s} + ||y||^{2s}\right), \delta_i^{-(2+2s)k}t\right); \\ P_{\xi,\zeta}\left(\epsilon\left(||x||^s||y||^s + ||x||^{2s} + ||y||^{2s}\right), \delta_i^{-(2+2s)k}t\right); \\ &= \begin{cases} \rightarrow 1_{L^*} \text{ as } k \to \infty; \\ \rightarrow 1_{L^*} \text{ as } k \to \infty; \\ \rightarrow 1_{L^*} \text{ as } k \to \infty. \end{cases} \end{split}$$

Thus, (4.1) is holds. But we have $\beta(x) = \left(\frac{x}{3}, \frac{x}{3}\right)$ has the property

$$P'_{\xi,\zeta}\left(\delta_i^2\beta(\delta_i x),t\right) \geq_{L^*} P'_{\xi,\zeta}\left(\beta(x),t\right), \,\forall \, x \in X, t > 0.$$

Hence,

$$\begin{split} P'_{\xi,\zeta}\left(\beta(x),t\right) &= P'_{\xi,\zeta}\left(\frac{x}{3},\frac{x}{3},t\right) = \begin{cases} P'_{\xi,\zeta}\left(\epsilon,t\right);\\ P'_{\xi,\zeta}\left(\epsilon\left(\left\|\frac{x}{3}\right\|^{s}+\left\|\frac{x}{3}\right\|^{s}\right),t\right);\\ P'_{\xi,\zeta}\left(\epsilon\left(\left\|\frac{x}{3}\right\|^{s}\left\|\frac{x}{3}\right\|^{s},t\right);\\ P'_{\xi,\zeta}\left(\epsilon\left(\left\|\frac{x}{3}\right\|^{s}\right\|\frac{x}{3}\right\|^{s}+\left\|\frac{x}{3}\right\|^{2s}+\left\|\frac{x}{3}\right\|^{2s}\right),t\right);\\ \end{cases} \\ &= \begin{cases} P'_{\xi,\zeta}\left(\epsilon,t\right);\\ P'_{\xi,\zeta}\left(\frac{2\epsilon}{3^{s}}||x||^{s},t\right);\\ P'_{\xi,\zeta}\left(\frac{2\epsilon}{3^{2s}}||x||^{2s},t\right);\\ P'_{\xi,\zeta}\left(\frac{3\epsilon}{3^{2s}}||x||^{2s},t\right); \end{cases} \end{split}$$

for all $x \in X$ and t > 0. Now,

$$P_{\xi,\zeta}^{\prime}\left(\delta_{i}^{2}\beta(\delta_{i}x),t\right) = \begin{cases} P_{\xi,\zeta}^{\prime}\left(\delta_{i}^{2}\epsilon,t\right); \\ P_{\xi,\zeta}^{\prime}\left(\frac{2\epsilon}{3^{s}}\delta_{i}^{2}||\delta_{i}x||^{s},t\right); \\ P_{\xi,\zeta}^{\prime}\left(\frac{\epsilon}{3^{2s}}\delta_{i}^{2}||\delta_{i}x||^{2s},t\right); \\ P_{\xi,\zeta}^{\prime}\left(\frac{3\epsilon}{3^{2s}}\delta_{i}^{2}||\delta_{i}x||^{2s},t\right); \\ P_{\xi,\zeta}^{\prime}\left(\frac{3\epsilon}{3^{2s}}\delta_{i}^{2+2s}||x||^{2s},t\right); \\ P_{\xi,\zeta}^{\prime}\left(\frac{3\epsilon}{3^{2s}}\delta_{i}^{2+2s}||x||^{2s},t\right); \\ P_{\xi,\zeta}^{\prime}\left(\frac{\delta_{i}^{2}\beta(x),t\right); \\ P_{\xi,\zeta}^{\prime}\left(\delta_{i}^{2}\beta(x),t\right); \\ P_{\xi,\zeta}^{\prime}\left(\delta_{i}^{2+2s}\beta(x),t\right); \\ P_{\xi,\zeta}^{\prime}\left(\delta_{i}^{2+2s}\beta(x),t\right); \\ P_{\xi,\zeta}^{\prime}\left(\delta_{i}^{2+2s}\beta(x),t\right); \\ \end{cases}$$

for all $x \in X$ and t > 0. Now, from (4.6), we prove the following cases: **Case:1** $L = 3^2$ if i = 0;

$$P_{\mu,\nu}\left(f(x)-R(x),r\right)\geq_{L^*}P'_{\xi,\zeta}\left(\frac{L}{1-L}\beta(x),t\right)=P'_{\xi,\zeta}\left(\frac{-9}{8}\epsilon,t\right).$$

Case:2 $L = 3^{-2}$ if i = 1;

$$P_{\mu,\nu}\left(f(x)-R(x),r\right)\geq_{L^*}P'_{\xi,\zeta}\left(\frac{1}{1-L}\beta(x),2t\right)=P'_{\xi,\zeta}\left(\frac{9}{8}\epsilon,t\right).$$

Case:3 $L = 3^{s+2}$ for s < -2 if i = 0;

$$P_{\mu,\nu}(f(x) - R(x), t) \ge_{L^*} P'_{\xi,\zeta}\left(\frac{3^{s+2}\epsilon}{1 - 3^{s+2}}\beta(x)||x||^s, t\right) = P'_{\xi,\zeta}\left(\frac{18\epsilon}{1 - 3^{s+2}}||x||^s, t\right).$$

Case:4 $L = 3^{-s-2}$ for s > -2 if i = 1;

$$P_{\mu,\nu}\left(f(x)-R(x),t\right)\geq_{L^*}P'_{\xi,\zeta}\left(\left(\frac{\epsilon}{1-3^{-s-2}}\right)\beta(x)||x||^s,t\right)=P'_{\xi,\zeta}\left(\frac{18\epsilon}{3^{s+2}-1}||x||^s,t\right).$$

Case:5 $L = 3^{2s+2}$ for s < -1 if i = 0;

$$P_{\mu,\nu}\left(f(x) - R(x), t\right) \ge_{L^*} P'_{\xi,\zeta}\left(\left(\frac{3^{2s+2}\epsilon}{1-3^{2s+2}}\right)\beta(x)||x||^{2s}, t\right) = P'_{\xi,\zeta}\left(\frac{9\epsilon}{1-3^{2s+2}}||x||^{2s}, t\right).$$

Case:6 $L = 3^{-2s-2}$ for s > -1 if i = 1;

$$P_{\mu,\nu}(f(x) - R(x), t) \ge_{L^*} P'_{\xi,\zeta}\left(\left(\frac{\epsilon}{1 - 3^{-2s-2}}\right)\beta(x)||x||^{2s}, t\right) = P'_{\xi,\zeta}\left(\frac{9\epsilon}{3^{2s+2} - 1}||x||^{2s}, t\right).$$

Hence complete the proof.

References

- [1] Abasalt Bodaghi and Sang Og Kim, Approximation on the quadratic reciprocal functional equation, *Journal of Function Spaces*, http://dx.doi.org/10.1155/2014/532463.
- [2] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
- [3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- [4] M. Arunkumar and S. Karthikeyan, Solution and Intuitionistic Fuzzy Stability of n-Dimensional Quadratic Functional Equation: Direct and Fixed Point Methods, Int. J. of Advanced Mathematical Sciences, 2 (1) (2014), 21–33.
- [5] M. Arunkumar and S. Karthikeyan, Solution and stability of a reciprocal functional equaton originating from *n*-consecutive terms of a harmonic progression: Direct and fixed Point methods, *Int. J. of Information Science and Intelligent System*, 3(1) (2014), 151-168.
- [6] M. Arunkumar, S. Karthikeyan and S. Ramamoorthi, Generalized Ulam-Hyers stability of ndimensional cubic functional equation in FNS and RNS: various methods, *Middle-East J of Scientific Research*, 24 (S2) (2016), 386-404.
- [7] M. Arunkumar, John M. Rassias and S. Karthikeyan, Stability of a Leibniz type additive and quadratic functional equation in intuitionistic fuzzy normed spaces, *Advances in theoretical and applied mathematics*, 11 (2016), No.2, 145-169.
- [8] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [9] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003) 687-705.

- [10] T. Bag and S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005) 513-547.
- [11] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, *J. Inequal. Pure Appl. Math.*, 4 (2003), no. 1, Article 4, 7 pp. (electronic).
- [12] L. Cădariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, *Fixed Point Theory and Applications*, 2008, Article ID 749392, (2008), 15 pages.
- [13] L.Cădariu V. Radu, A generalized point method for the stability of Cauchy functional equation, *In Functional Equations in Mathematical Analysis*, Th. M. Rassias, J. Brzdek (Eds.), Series Springer Optimization and Its Applications, 52, 2011.
- [14] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, in Iteration theory (ECIT '02), 43–52, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz.
- [15] S.S. Chang, Y. Cho, Y. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers Inc., New York (2001)
- [16] S.S. Chang, J.M. Rassias, R. Saadati, The stability of the cubic functional equation in intuitionistic random normed spaces, *Appl Math Mech.* 31, 2126 (2010). doi:10.1007/s10483-010-0103-6.
- [17] S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429-436.
- [18] S.Czerwik, On the stability of the quadratic mappings in normed spaces, *Abh.Math.Sem.Univ Hamburg.*, 62 (1992), 59-64.
- [19] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
- [20] G. Deschrijver and E.E. Kerre, On the relationship between some extensions of fuzzy set theory, *Fuzzy Sets and Systems*, 23 (2003), 227-235.
- [21] P. Găvruța, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, *J. Math. Anal. Appl.*, 184 (1994), 431-436.
- [22] O. Hadžic, E. Pap, Fixed Point Theory in PM-Spaces, Kluwer Academic, Dordrecht (2001).
- [23] K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen, *Jahres Deutsch Math Verein*. , 6 (1897), 83-88.
- [24] D.H. Hyers, On the stability of the linear functional equation, *Proc.Nat. Acad.Sci.,U.S.A.*, 27 (1941) 222-224.
- [25] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- [26] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
- [27] A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-154.
- [28] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, *Kybernetica*, 11 (1975), 326-334.
- [29] S. Kutukcu, A. Tuna, A.T. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations, *Appl Math Mech.*, 28 (2007), 799-809. doi:10.1007/s10483-007-0610-z.
- [30] B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, *Bull. Amer. Math. Soc.*, Vol.126 (1968), no.74, 305-309.
- [31] D. Miheţ, V. Radu On the stability of the additive Cauchy functional equation in random normed spaces, *J Math Anal Appl.*, 343 (2008), 567-572.

- [32] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, *Fuzzy Sets and Systems*, Vol. 159 (2008), no.6, 720-729.
- [33] C. Park, Madjid Eshaghi Gordji, M. Ghanifard and H. Khodaei, Intuitionistic random almost additivequadratic mappings, *Advances in Difference Equations*, 2012, 2012:152.
- [34] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004),1039-1046.
- [35] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. 46, (1982) 126-130.
- [36] J.M. Rassias, R. Saadati, G. Sadeghi and J. Vahidi, On nonlinear stability in various random normed spaces, *J. of inequalities and applications*, 2011, 2011:62.
- [37] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, *Proc.Amer.Math. Soc.*, 72 (1978), 297-300.
- [38] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, *Int. J. of Mathematical Sciences*, Autumn 2008 Vol.3, No. 08, 36-47.
- [39] K. Ravi, J.M. Rassias, Abasalt Bodaghi and B.V. Senthil Kumar, Intuitionistic Fuzzy Stability of a Reciprocal-Quadratic Functional Equation, *Int. J. of Applied Science and Mathematics*, Volume 1, No. 1, 2014, 9-14.
- [40] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, *Chaos, Solitons and Fractals*, 27 (2006), 331-344.
- [41] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983.
- [42] A.N. Šerstnev, On the notion of a random normed space, Dokl Akad Nauk SSSR, 149 (1963), 280283.
- [43] S.Shakeri, Intuitionstic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appli. Vol.2 No. 2 (2009), 105-112.
- [44] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964 (Chapter VI, Some Questions in Analysis: 1, Stability).

Received: October 29, 2016; Accepted: December 14, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/