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Abstract

In this paper, the authors investigated the intuitionistic random stability of a quadratic reciprocal func-
tional equation

f (x + 2y) + f (2x + y) =
f (x) f (y)

[
5 f (x) + 5 f (y) + 8

√
f (x) f (y)

]
[
2 f (x) + 2 f (y) + 5

√
f (x) + f (y)

]2

using direct and fixed point methods.
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1 Introduction

The study of stability problem for functional equations goes back to a question raised by Ulam [44] concerning
the stability of group homomorphisms that affirmatively answered for Banach spaces by Hyers [24]. Hyers
Theorem was generalized by Aoki [3] for additive mappings and by Th.M. Rassias [37] for linear mappings
by considering an unbounded Cauchy difference. The paper by Rassias has provided a lot of influences in
the development of what we now call the generalized Hyers-Ulam stability or Hyers- Ulam-Rassias stability
of functional equations. J.M. Rassias [35] considered the Cauchy difference controlled by a product of differ-
ent powers of norm. Afterwards, Găvruţa [21] generalized the Rassas’s theorem by using a general control
function. In 2008, a special case of Găvruţa’s theorem for the unbounded Cauchy difference was obtained by
Ravi et al. [38] by considering the summation of both the sum and the product of two p-norms in the sprit of
Rassias approach. A large part of proofs in this topic used the direct method (of Hyers): the exact solution of
the functional equation is explicitly constructed as a limit of a sequence, starting from the given approximate
solution.

In 2003, V. Radu [11] proposed a new method, successively developed in [12–14], to obtaining the existence
of the exact solutions and the error estimations, based on the fixed point alternative.

The theory of random normed spaces (RN-spaces) is important as a generalization of the deterministic
result of linear normed spaces and also in the study of random operator equations. The RN-spaces may also
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provide us with the appropriate tools to study the geometry of nuclear physics and have important application
in quantum particle physics. Recently, J.M. Rassias et al. [36] investigated the intuitionistic random stability
of the quartic functional equation and C. Park et al. [33] presented the Hyers-Ulam stability of the additive-
quadratic functional equation in intuitionistic random normed space.

In 2014, M. Arunkumar and S. Karthikeyan [5] introduced and investigated Hyers-Ulam stability of n-
dimensional reciprocal functional equation

f
(

2x
n

)
=

n

∑
`=1

(
f (x + `y`) f (x− `y`)

f (x + `y`) + f (x− `y`)

)
(1.1)

which originates from n-consecutive terms of a harmonic progression in RN-space using direct and fixed point
methods.

Recently, Abasalt Bodaghi and Sang Og Kim [1] introduced new 2-dimensional quadratic reciprocal func-
tional equation

f (x + 2y) + f (2x + y) =
f (x) f (y)

[
5 f (x) + 5 f (y) + 8

√
f (x) f (y)

]
[
2 f (x) + 2 f (y) + 5

√
f (x) + f (y)

]2 . (1.2)

It is easily verified that the quadratic reciprocal function f (x) =
1
x2 is a solution of the functional equation

(1.2).
In this paper, the authors establish intuitionistic random norm stability of a quadratic reciprocal functional

equation (1.2) using direct and fixed point methods.

2 Preliminaries of Intuitionistic Random Normed Spaces

In this section, using the idea of intuitionistic random normed spaces introduced by Chang et al. [16], we
define the notion of intuitionistic random normed spaces as in [15, 22, 29, 31, 40–42].

Definition 2.1. A measure distribution function is a function µ : R→ [0, 1] which is left continuous, non-decreasing
on R, in ft∈Rµ(t) = 0 and supt∈Rµ(t) = 1.

We will denote by D the family of all measure distribution functions and by H a special element of D
defined by

H(t) =
{

0, i f t ≤ 0,
1, i f t > 0.

(2.1)

If X is a nonempty set, then µ : X → D is called a probabilistic measure on X and µ(x) is denoted by µx.

Definition 2.2. A non-measure distribution function is a function ν : R → [0, 1] which is right continuous, non-
decreasing on R, in ft∈Rν(t) = 0 and supt∈Rν(t) = 1.

We will denote by B the family of all non-measure distribution functions and by G a special element of B
defined by

G(t) =
{

1, i f t ≤ 0,
0, i f t > 0.

(2.2)

If X is a nonempty set, then ν : X → B is called a probabilistic non-measure on X and ν(x) is denoted by νx.

Lemma 2.1. [8, 20] Consider the set L∗ and operation ≤L∗ defined by:

L∗ =
{
(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1

}
,

(x1, x2) ≤L∗ (y1, y2)⇔ x1 ≤ y1, x2 ≥ y2, ∀ (x1, x2) , (y1, y2) ∈ L∗.

Then (L∗, ≤L∗) is a complete lattice.
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Definition 2.3. [8] An intuitionistic fuzzy set Aζ,η in a universal set U is an object

Aζ,η = {(ζA (u) , ηA (u)) |u ∈ U }

for all u ∈ U, ζA (u) ∈ [0, 1] and ηA (u) ∈ [0, 1] are called the membership degree and the non-membership degree,
respectively, of u in Aζ,η and, furthermore, they satisfy ζA (u) + ηA (u) ≤ 1.

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular norm ∗ = T on [0, 1] is
defined as an increasing, commutative, associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = 1 ∗ x = x
for all x ∈ [0, 1]. A triangular conorm S = ♦ is defined as an increasing, commutative, associative mapping
S : [0, 1]2 → [0, 1] satisfying S (0, x) = 0♦x = x for all x ∈ [0, 1].

Using the lattice (L∗, ≤L∗), these definitions can be straightforwardly extended.

Definition 2.4. [8] A triangular norm (t−norm) on L∗ is a mapping T : (L∗)2 → L∗ satisfying the following condi-
tions:

(i) (∀ ∈ L∗) (T (x, 1L∗) = x) (boundary condition);

(ii)
(
∀ (x, y) ∈ (L∗)2

)
(T (x, y) = T (y, x)) (commutativity);

(iii)
(
∀ (x, y, z) ∈ (L∗)3

)
(T (x, T (y, z)) = T (T (x, y) , z)) (associativity);

(iv)
(
∀ (x, x′, y, y′) ∈ (L∗)4

)
(x ≤L∗ x′ and y ≤L∗ y′ ⇒ T (x, y) ≤L∗ T (x′, y′))

(monotonicity).

If (L∗,≤L∗ , T) is an Abelian topological monoid with unit 1L∗ , then T is said to be a continuous t−norm.

Definition 2.5. [8] A continuous t−norms T on L∗ is said to be continuous t−representable if there exist a continuous
t−norm ∗ and a continuous t−conorm ♦ on [0, 1] such that, for all x = (x1, x2) , y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2♦y2) .

For example,
T (a, b) = (a1b1, min {a2 + b2, 1})

and
M (a, b) = (min {a1, b1} , max {a2, b2})

for all a = (a1, a2) , b = (b1, b2) ∈ L∗ are continuous t−representable.
Now, we define a sequence Tn recursively by T1 = T and

Tn
(

x(1), . . . , x(n+1)
)
= T

(
Tn−1

(
x(1), . . . , x(n)

)
, x(n+1)

)
, ∀n ≥ 2, x(i) ∈ L∗.

Definition 2.6. [43] A negator on L∗ is any decreasing mapping N : L∗ → L∗ satisfying N : (0L∗) = 1L∗ and
N (1L∗) = 0L∗ . If N (N (x)) = x for all x ∈ L∗, then N is called an involutive negator. A negator on [0, 1] is a
decreasing mapping N : [0, 1] → [0, 1] satisfying Pµ,ν (0) = 1 and Pµ,ν (1) = 0. Ns denotes the standard negator on
[0, 1] defined by

Ns (x) = 1− x, ∀x ∈ [0, 1] .

Definition 2.7. [43] Let µ and ν be measure and non-measure distribution functions from X × (0,+∞) to [0, 1] such
that µx (t) + νx (t) ≤ 1 for all x ∈ X and all t > 0 . The triple

(
X, Pµ,ν, T

)
is said to be an intuitionistic random

normed space (briefly IRN-space) if X is a vector space, T is a continuous t−representable and Pµ,ν is a mapping
X× (0,+∞)→ L∗ satisfying the following conditions: for all x, y ∈ X and t, s > 0,

(IRN1) Pµ,ν (x, 0) = 0L∗ ;

(IRN2) Pµ,ν (x, t) = 1L∗ if and only if x = 0;

(IRN3) Pµ,ν (αx, t) = Pµ,ν

(
x, t
|α|

)
for all α 6= 0;
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(IRN4) Pµ,ν (x + y, t + s) ≥L∗ T
(
Pµ,ν (x, t) , Pµ,ν (y, s)

)
.

In this case, Pµ,ν is called an intuitionistic random norm. Here, Pµ,ν (x, t) = (µx (t) , νx (t)) .

Example 2.1. [43] Let (X, ‖ · ‖) be a normed space. Let T (a, b) = (a1, b1, min (a2 + b2, 1)) for all a = (a1, a2) , b =

(b1, b2) ∈ L∗ and µ, ν be measure and non-measure distribution functions defined by

Pµ,v (x, t) = (µx (t) , vx (t)) =
(

t
t + ‖x‖ ,

‖x‖
t + ‖x‖

)
, ∀t ∈ R+.

Then
(
X, Pµ,ν, T

)
is an IRN-sapce.

Definition 2.8. [43] A sequence {xn} in an IRN-space
(
X, Pµ,ν, T

)
is called a Cauchy sequence if, for any ε > 0 and

t > 0, there exists n0 ∈N such that

Pµ,ν (xn − xm, t) > L∗ (Ns (ε) , ε) , ∀n, m ≥ n0,

where Ns is the standard negator.

Definition 2.9. [43] The sequence {xn} is said to be convergent to a point x ∈ X (denoted by xn
Pµ,ν−→ x) if

Pµ,ν (xn − x, t)→ 1L∗ as n→ ∞ for every t > 0.

Definition 2.10. [43] An IRN-space
(
X, Pµ,ν, T

)
is said to be complete if every Cauchy sequence in X is convergent to

a point x ∈ X.

Now, we use the following notation for a given mapping ∆ : X → Y

∆(x, y) = f (x + 2y) + f (2x + y)−
f (x) f (y)

[
5 f (x) + 5 f (y) + 8

√
f (x) f (y)

]
[
2 f (x) + 2 f (y) + 5

√
f (x) + f (y)

]2 .

3 Stability Results: Direct Method

In this section, the authors presented the generalized Ulam-Hyers stability of the functional equation (1.2) in
intuitionistic random normed spaces using direct method.

Theorem 3.1. Let X be a linear space and
(
Y, Pµ,ν, T

)
be a complete IRN-space. Let f : X → Y be a mapping

with f (0) = 0 for which there are ξ, ζ : X2 → D+, ξ(x, y) is denoted by ξx,y and ζ(x, y) is denoted by ζx,y,
furthur,

(
ξx,y(t), ζx,y(t)

)
is denoted by P′ξ,ζ (x, y, t) with the property:

Pµ,ν (∆(x, y), t) ≥L∗ P′ξ,ζ (x, y, t) (3.1)

for all x, y ∈ X and all t > 0. If
T∞

i=1P′ξ,ζ

( x
3i+n ,

x
3i+n , 3i−1+2nt

)
= 1L∗ (3.2)

and
limn→∞P′ξ,ζ

( x
3n ,

x
3n , 32nt

)
= 1L∗ (3.3)

for all x ∈ X and all t > 0, then there exists a unique quadratic reciprocal mapping R : X → Y satisfies the inequality

Pµ,ν ( f (x)− R(x), t) ≥L∗ T∞
i=1P′ξ,ζ

( x
3i ,

x
3i , 3i−1t

)
(3.4)

for all x ∈ X and all t > 0.

Proof. Replacing (x, y) by (x, x) in (3.1), we get

Pµ,ν

(
f (3x)− f (x)

32 , t
)
≥L∗ P′ξ,ζ (x, x, t) (3.5)

for all x ∈ X and all t > 0. Replacing x by x
3 in (3.5), we obtain

Pµ,ν

(
f (x)− 1

32 f
( x

3

)
, t
)
≥L∗ P′ξ,ζ

( x
3

,
x
3

, t
)

(3.6)
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for all x ∈ X and all t > 0. Replacing x by x
3n in (3.5)and using (IRN3), we have

Pµ,ν

(
1

32n f
( x

3n

)
− 1

32(n+1)
f
( x

3n+1

)
,

t
32n

)
≥L∗ P′ξ,ζ

( x
3n+1 ,

x
3n+1 , t

)
(3.7)

for all x ∈ X and all t > 0. Using (IRN3) in (3.7), we arrive

Pµ,ν

(
1

32n f
( x

3n

)
− 1

32(n+1)
f
( x

3n+1

)
, t
)
≥L∗ P′ξ,ζ

( x
3n+1 ,

x
3n+1 , 32nt

)
(3.8)

that is,

Pµ,ν

(
1

32n f
( x

3n

)
− 1

32(n+1)
f
( x

3n+1

)
,

t
3n

)
≥L∗ P′ξ,ζ

( x
3n+1 ,

x
3n+1 , 3nt

)
(3.9)

for all n ∈N and all t > 0. As 3 > 1/3 + 1/32 + . . . + 1/3k, by the triangle inequality it follows

Pµ,ν

(
f (x)− 1

32k f
( x

3k

)
, t
)
≥L∗ Tk−1

n=0

{
P′ξ,ζ

(
1

32n f
( x

3n

)
− 1

32(n+1)
f
( x

3n+1

)
,

k−1

∑
n=0

1
3n t

)}
≥L∗ Tk

i=1

{
P′ξ,ζ

( x
3i ,

x
3i , 3i−1t

)}
(3.10)

for all x ∈ X and all t > 0. In order to prove the convergence of the sequence
{

1
32n f

( x
3n

)}
, replacing x by

x
3m in (3.10), we obtain

Pµ,ν

(
1

32m f
( x

3m

)
− 1

32(k+m)
f
( x

3k+m

)
, t
)
≥L∗ Tk

i=1

{
P′ξ,ζ

( x
3i+m ,

x
3i+m , 3i−1+2mt

)}
(3.11)

for all x ∈ X and all t > 0 and all k, m ≥ 0. Since the right hand-side of the inequality tends to 1L∗ as m tends to

infinity, the sequence
{

1
32n f

( x
3n

)}
is a Cauchy sequence. Therefore, we may define R(x) = limn→∞

1
32n f

( x
3n

)
for all x ∈ X.

Now, we prove that R satisfies (1.2). Replacing (x, y) by
( x

3n , y
3n

)
in (3.1), we get

Pµ,ν

(
1

32n ∆
( x

3n ,
y
3n

)
, t
)
≥L∗ P′ξ,ζ

( x
3n ,

y
3n , 32nt

)
(3.12)

for all x, y ∈ X and t > 0. Letting n→ ∞ in the above inequality and using the definition of R(x), we see that
R satisfies (1.2) for all x, y ∈ X.

Finally, to prove the uniqueness of the quadratic reciprocal function R subject to (3.4), let us assume

that there exists another quadratic reciprocal function S which satisfies (3.4). Obviously, we have R
( x

3n

)
=

32nR(x) and S
( x

3n

)
= 32nS(x) for all x ∈ X and n ∈N. Hence, it follows from (3.4) that

Pµ,ν (R(x)− S(x), t) ≥L∗ Pµ,ν

(
R
( x

3n

)
− S

( x
3n

)
, 32nt

)
≥L∗ T

(
Pµ,ν

(
R
( x

3n

)
− f

( x
3n

)
,

32nt
2

)
, Pµ,ν

(
f
( x

3n

)
− S

( x
3n

)
,

32nt
2

))
≥L∗ T

(
T∞

i=1

(
P′ξ,ζ

(
x

3i+m ,
x

3i+m ,
3i−1+2mt

2

))
, T∞

i=1

(
P′ξ,ζ

(
x

3i+m ,
x

3i+m ,
3i−1+2mt

2

)))
for all x ∈ X and t > 0. By letting n→ ∞ in (3.4), we prove the uniqueness of R. This completes the proof.

From Theorem 3.1, we obtain the following corollary concerning the Hyers-Ulam-Rassias and JMRassias
stabilities for the functional equation (1.2).

Corollary 3.1. Suppose that a function f : X → Y satisfies the inequality

Pµ,ν (∆(x, y), t) ≥L∗


P′ξ,ζ (ε, t) ;
P′ξ,ζ (ε (||x||s + ||y||s) , t) ;
P′ξ,ζ (ε||x||s||y||s, t) ;
P′ξ,ζ

(
ε
(
||x||s||y||s + ||x||2s + ||y||2s) , t

)
;

(3.13)
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for all x, y ∈ X and t > 0, where ε, s are constants with ε > 0. Then there exists a unique quadratic reciprocal mapping
R : X → Y such that

Pµ,ν ( f (x)− R(x), t) ≥L∗



P′ξ,ζ
(∣∣ 9

8

∣∣ ε, t
)

;

P′ξ,ζ

(
18ε

|3s+2−1| ||x||
s, t
)

, s < −2 or s > −2;

P′ξ,ζ

(
9ε

|32s+2−1| ||x||
2s, t
)

, s < −1 or s > −1;

P′ξ,ζ

(
27ε

|32s+2−1| ||x||
2s, t
)

, s < −1 or s > −1;

(3.14)

for all x ∈ X and all t > 0.

4 Stability Results: Fixed Point Method

In this section, the authors proved the generalized Ulam-Hyers stability of the functional equation (1.2) in
intuitionistic random normed spaces using fixed point method.

Now, we will recall the fundamental results in fixed point theory.

Theorem 4.2. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping Γ : X →
X which is strictly contractive mapping, that is

(A1) d(Γx, Γy) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping Γ has one and only fixed point x∗ = Γ(x∗);
(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) limn→∞Γnx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(Γnx, x∗) ≤ 1
1−L d(Γnx, Γn+1x), ∀ n ≥ 0, ∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 4.3. [30](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a
strictly contractive mapping Γ : X → X with Lipschitz constant L. Then, for each given element x ∈ X, either
(B1) d(Γnx, Γn+1x) = ∞ ∀ n ≥ 0,
or
(B2) there exists a natural number n0 such that:
(i) d(Γnx, Γn+1x) < ∞ for all n ≥ n0 ;
(ii)The sequence (Γnx) is convergent to a fixed point y∗ of Γ
(iii) y∗ is the unique fixed point of Γ in the set Y = {y ∈ X : d(Γn0 x, y) < ∞};
(iv) d(y∗, y) ≤ 1

1−L d(y, Γy) for all y ∈ Y.

Using above fixed point theorems to prove the stability results, we define the following:
δi is a constant such that

δi =

{
3 i f i = 0;
1
3 i f i = 1;

and Ω is the set such that
Ω = {g | g : X → Y, g(0) = 0} .

Theorem 4.4. Let X be a linear space and
(
Y, Pµ,ν, T

)
be a complete IRN-space. Let f : X → Y be a mapping for which

there exist a function ξ, ζ : X2 → D+ with the condition

T∞
i=1P′ξ,ζ

( x
3i+n ,

x
3i+n , 3i−1+2nt

)
= 1L∗ (4.1)

and
limn→∞P′ξ,ζ

( x
3n ,

x
3n , 32nt

)
= 1L∗ , (4.2)
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and satisfying the functional inequality

Pµ,ν (∆(x, y), t) ≥L∗ P′ξ,ζ (x, y, t) , ∀ x, y ∈ X, t > 0. (4.3)

If there exists L such that the function
x → β(x) =

x
3

,
x
3

(4.4)

has the property
P′ξ,ζ

(
Lδ2

i β(δix), r
)
= P′ξ,ζ (β(x), t) , ∀ x ∈ X, t > 0. (4.5)

Then there exists a unique quadratic reciprocal function R : X → Y satisfying the functional equation (1.2) and

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

(
L1−i

1− L
β(x), t

)
, ∀ x ∈ X, t > 0. (4.6)

Proof. Let d be a general metric on Ω, such that

d(g, h) = in f
{

K ∈ (0, ∞)|Pµ,ν (g(x)− h(x), r) ≥L∗ P′ξ,ζ (Kβ(x), t) , x ∈ X, t > 0
}

.

It is easy to see that (Ω, d) is complete. Define Γ : Ω→ Ω by Γg(x) = δ2
i g(δix), for all x ∈ X. For g, h ∈ Ω, we

have d(g, h) ≤ K

⇒ Pµ,ν (g(x)− h(x), t) ≥L∗ P′ξ,ζ (Kβ(x), t)

⇒ Pµ,ν

(
δ2

i g(δix)− δ2
i h(δix), t

)
≥L∗ P′ξ,ζ

(
Kβ(δix),

t
δ2

i

)
⇒ Pµ,ν (Γg(x)− Γh(x), t) ≥L∗ P′ξ,ζ (KLβ(x), t)

⇒ d (Γg(x), Γh(x)) ≤ KL

⇒ d (Γg, Γh) ≤ Ld(g, h) (4.7)

for all g, h ∈ Ω. Therefore, Γ is strictly contractive mapping on Ω with Lipschitz constant L. Replacing (x, y)
by (x, x) in (4.3), we get

Pµ,ν

(
f (3x)− f (x)

9
, t
)
≥L∗ P′ξ,ζ (x, x, t) (4.8)

for all x ∈ X, t > 0. Using (IRN3) in (4.8), we arrive

Pµ,ν (9 f (3x)− f (x), t) ≥L∗ P′ξ,ζ

(
x, x,

t
9

)
(4.9)

for all x ∈ X, t > 0, with the help of (4.5) when i = 0, it follows from (4.8), we get

⇒ Pµ,ν (9 f (3x)− f (x), t) ≥L∗ P′ξ,ζ (Lβ(x), t)

⇒ d(Γ f , f ) ≤ L = L1 = L1−i. (4.10)

Replacing x by x
3 in (4.8) and using (IRN3), we obtain

Pµ,ν

(
f (x)− 1

9
f
( x

3

)
, t
)
≥L∗ P′ξ,ζ

( x
3

,
x
3

, t
)

(4.11)

for all x ∈ X, t > 0, with the help of (4.5) when i = 1, it follows from (4.11) we get

Pµ,ν

(
f (x)− 1

9
f
( x

3

)
, t
)
≥L∗ P′ξ,ζ (β(x), t)

⇒ d( f , Γ f ) ≤ 1 = L0 = L1−i (4.12)

for all x ∈ X, t > 0. Then, from (4.10) and (4.12) we can conclude,

d( f , Γ f ) ≤ L1−i < ∞.
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Now, from the fixed point alternative in both cases, it follows that there exists a fixed point R of Γ in Ω such
that

lim
n→∞

Pµ,ν

(
δ2n

i f (δn
i x)− R(x), t

)
→ 1L∗ , ∀x ∈ X, t > 0. (4.13)

Replacing (x, y) by (δix, δiy) in (4.3), we arrive

Pµ,ν

(
δ2n

i ∆(δix, δiy), t
)
≥L∗ P′ξ,ζ

(
δix, δiy,

t
δ2n

i

)
(4.14)

for all x, y ∈ X and t > 0.
By proceeding the same procedure as in the Theorem 3.1, we can prove the function, R : X → Y satisfies

the functional equation (1.2).
By fixed point alternative, since R is unique fixed point of Γ in the set

∇ = { f ∈ Ω|d( f , Q) < ∞} ,

therefore, R is a uniqe function such that

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ (Kβ(x), t) (4.15)

for all x ∈ X, t > 0 and K > 0. Again using the fixed point alternative, we obtain

d( f , R) ≤ 1
1− L

d( f , Γ f )

⇒ d( f , R) ≤ L1−i

1− L

⇒ Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

(
L1−i

1− L
β(x), t

)
(4.16)

for all x ∈ X and t > 0. This completes the proof.

From Theorem 4.4, we obtain the following corollary concerning the stability for the functional equation
(1.2).

Corollary 4.2. Suppose that a function f : X → Y satisfies the inequality

Pµ,ν (∆(x, y), t) ≥L∗


P′ξ,ζ (ε, t) ;
P′ξ,ζ (ε (||x||s + ||y||s) , t) ;
P′ξ,ζ (ε||x||s||y||s, t) ;
P′ξ,ζ

(
ε
(
||x||s||y||s + ||x||2s + ||y||2s) , t

)
;

(4.17)

for all x, y ∈ X and t > 0, where ε, s are constants with ε > 0. Then there exists a unique quadratic reciprocal mapping
R : X → Y such that

Pµ,ν ( f (x)− R(x), t) ≥L∗



P′ξ,ζ
(∣∣ 9

8

∣∣ ε, t
)

;

P′ξ,ζ

(
18ε

|3s+2−1| ||x||
s, t
)

, s < −2 or s > −2;

P′ξ,ζ

(
9ε

|32s+2−1| ||x||
2s, t
)

, s < −1 or s > −1;

P′ξ,ζ

(
27ε

|32s+2−1| ||x||
2s, t
)

, s < −1 or s > −1;

(4.18)

for all x ∈ X and all t > 0.

Proof. Setting

P′ξ,ζ(x, y, t) =


P′ξ,ζ (ε, t) ;
P′ξ,ζ (ε (||x||s + ||y||s) , t) ;
P′ξ,ζ (ε||x||s||y||s, t) ;
P′ξ,ζ

(
ε
(
||x||s||y||s + ||x||2s + ||y||2s) , t

)
;
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for all x, y ∈ X and t > 0. Then,

P′ξ,ζ

(
δk

i x, δk
i y,

t
δ2k

i

)
=



P′ξ,ζ

(
ε, t

δ2k
i

)
;

P′ξ,ζ

(
ε
(
||δk

i x||s + ||δk
i y||s

)
, t

δ2k
i

)
;

P′ξ,ζ

(
ε||δk

i x||s||δk
i y||s, t

δ2k
i

)
;

P′ξ,ζ

(
ε
(
||δk

i x||s||δk
i y||s + ||δk

i x||2s + ||δk
i y||2s

)
, t

δ2k
i

)
;

=



P′ξ,ζ

(
ε, δ−2k

i t
)

;

P′ξ,ζ

(
ε (||x||s + ||y||s) , δ

−(2+s)k
i t

)
;

P′ξ,ζ

(
ε||x||s||y||s, δ

−(2+2s)k
i t

)
;

P′ξ,ζ

(
ε
(
||x||s||y||s + ||x||2s + ||y||2s) , δ

−(2+2s)k
i t

)
;

=



→ 1L∗ as k→ ∞;

→ 1L∗ as k→ ∞;

→ 1L∗ as k→ ∞;

→ 1L∗ as k→ ∞.

Thus, (4.1) is holds. But we have β(x) =
( x

3
,

x
3

)
has the property

P′ξ,ζ

(
δ2

i β(δix), t
)
≥L∗ P′ξ,ζ (β(x), t) , ∀ x ∈ X, t > 0.

Hence,

P′ξ,ζ (β(x), t) = P′ξ,ζ

( x
3

,
x
3

, t
)
=



P′ξ,ζ (ε, t) ;

P′ξ,ζ

(
ε
(∥∥∥ x

3

∥∥∥s
+
∥∥∥ x

3

∥∥∥s)
, t
)

;

P′ξ,ζ

(
ε
∥∥∥ x

3

∥∥∥s ∥∥∥ x
3

∥∥∥s
, t
)

;

P′ξ,ζ

(
ε

(∥∥∥ x
3

∥∥∥s ∥∥∥ x
3

∥∥∥s
+
∥∥∥ x

3

∥∥∥2s
+
∥∥∥ x

3

∥∥∥2s
)

, t
)

;

=



P′ξ,ζ (ε, t) ;

P′ξ,ζ

(
2ε

3s ||x||
s, t
)

;

P′ξ,ζ

( ε

32s ||x||
2s, t
)

;

P′ξ,ζ

(
3ε

32s ||x||
2s, t
)

.

for all x ∈ X and t > 0. Now,

P′ξ,ζ

(
δ2

i β(δix), t
)
=



P′ξ,ζ

(
δ2

i ε, t
)

;

P′ξ,ζ

(
2ε

3s δ2
i ||δix||s, t

)
;

P′ξ,ζ

( ε

32s δ2
i ||δix||2s, t

)
;

P′ξ,ζ

(
3ε

32s δ2
i ||δix||2s, t

)
;

=



P′ξ,ζ

(
δ2

i ε, t
)

;

P′ξ,ζ

(
2ε

3s δ2+s
i ||x||s, t

)
;

P′ξ,ζ

( ε

32s δ2+2s
i ||x||2s, t

)
;

P′ξ,ζ

(
3ε

32s δ2+2s
i ||x||2s, t

)
;

=



P′ξ,ζ

(
δ2

i β(x), t
)

;

P′ξ,ζ

(
δ2+s

i β(x), t
)

;

P′ξ,ζ

(
δ2+2s

i β(x), t
)

;

P′ξ,ζ

(
δ2+2s

i β(x), t
)

,
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for all x ∈ X and t > 0. Now, from (4.6), we prove the following cases:
Case:1 L = 32 if i = 0;

Pµ,ν ( f (x)− R(x), r) ≥L∗ P′ξ,ζ

(
L

1− L
β(x), t

)
= P′ξ,ζ

(
−9
8

ε, t
)

.

Case:2 L = 3−2 if i = 1;

Pµ,ν ( f (x)− R(x), r) ≥L∗ P′ξ,ζ

(
1

1− L
β(x), 2t

)
= P′ξ,ζ

(
9
8

ε, t
)

.

Case:3 L = 3s+2 for s < −2 if i = 0;

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

(
3s+2ε

1− 3s+2 β(x)||x||s, t
)
= P′ξ,ζ

(
18ε

1− 3s+2 ||x||
s, t
)

.

Case:4 L = 3−s−2 for s > −2 if i = 1;

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

((
ε

1− 3−s−2

)
β(x)||x||s, t

)
= P′ξ,ζ

(
18ε

3s+2 − 1
||x||s, t

)
.

Case:5 L = 32s+2 for s < −1 if i = 0;

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

((
32s+2ε

1− 32s+2

)
β(x)||x||2s, t

)
= P′ξ,ζ

(
9ε

1− 32s+2 ||x||
2s, t
)

.

Case:6 L = 3−2s−2 for s > −1 if i = 1;

Pµ,ν ( f (x)− R(x), t) ≥L∗ P′ξ,ζ

((
ε

1− 3−2s−2

)
β(x)||x||2s, t

)
= P′ξ,ζ

(
9ε

32s+2 − 1
||x||2s, t

)
.

Hence complete the proof.
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