Malaya Journal of Matematik		
	$\mathcal{M} J \mathcal{M}$ an international journal of mathematical sciences with computer applications...	

On a new subclass of bi-univalent functions of Sakaguchi type satisfying subordinate conditions

Şahsene Altınkaya, ${ }^{a, *}$ Sibel Yalçın ${ }^{b}$
${ }^{a, b}$ Department of Mathematics, Uludag University, 16059, Bursa, Turkey.

Abstract

In this paper, we introduce and investigate a new subclass of the function class Σ of bi-univalent functions defined in the open unit disk. Furthermore, we find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this new subclass.

Keywords: Bi-univalent functions; Sakaguchi functions; coefficient bounds; subordination.
2010 MSC: 30C45, 30C50.
(C) 2012 MJM. All rights reserved.

1 Introduction and Definitions

Let A denote the class of analytic functions in the unit disc

$$
U=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Further, by S we shall denote the class of all functions in A which are univalent in U.
The Koebe one-quarter theorem [5] states that the image of U under every function f from S contains a disk of radius $\frac{1}{4}$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z, \quad(z \in U)
$$

and

$$
f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U.
If the functions f and g are analytic in U, then f is said to be subordinate to g, written as

$$
f(z) \prec g(z), \quad(z \in U)
$$

[^0]if there exists a Schwarz function $w(z)$, analytic in U, with
$$
w(0)=0 \text { and } \quad|w(z)|<1, \quad(z \in U)
$$
such that
$$
f(z)=g(w(z)) \quad(z \in U)
$$

Let Σ denote the class of bi-univalent functions defined in the unit disc U. For a brief history and interesting examples in the class Σ, (see [14]). The research into Σ was started by Lewin ([10]). It focused on problems connected with coefficients and obtained the bound for the second coefficient. Several authors have subsequently studied similar problems in this direction (see [4], [12]). Recently, Srivastava et al. [14] introduced and investigated subclasses of the bi-univalent functions and obtained bounds for the initial coefficients; it was followed by such works as those by Frasin and Aouf [6] and others (see, for example, [1], [3], [9], [11], [15]).

Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geq 4$. In the literature, there are only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions ([2], [7], [8]). The coefficient estimate problem for each of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \ldots\})$ is still an open problem.

Motivated by the earlier work of Sakaguchi [13] on the class of starlike functions with respect to symmetric points denoted by S_{S} consisting of functions $f \in A$ satisfy the condition $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right)>0,(z \in U)$, we introduce a new subclass of the function class Σ of bi-univalent functions, and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this new subclass.

2 Coefficient Estimates

In the following, let ϕ be an analytic function with positive real part in U, with $\phi(0)=1$ and $\phi^{\prime}(0)>0$. Also, let $\phi(U)$ be starlike with respect to 1 and symmetric with respect to the real axis. Thus, ϕ has the Taylor series expansion

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots \quad\left(B_{1}>0\right) \tag{2.2}
\end{equation*}
$$

Suppose that $u(z)$ and $v(w)$ are analytic in the unit disk U with $u(0)=v(0)=0,|u(z)|<1,|v(w)|<1$, and suppose that

$$
\begin{equation*}
u(z)=b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n}, v(w)=c_{1} w+\sum_{n=2}^{\infty} c_{n} w^{n} \quad(|z|<1,|w|<1) \tag{2.3}
\end{equation*}
$$

It is well known that

$$
\begin{equation*}
\left|b_{1}\right| \leq 1, \quad\left|b_{2}\right| \leq 1-\left|b_{1}\right|^{2},\left|c_{1}\right| \leq 1, \quad\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2} . \tag{2.4}
\end{equation*}
$$

Next, the equations (2.2) and (2.3) lead to

$$
\begin{equation*}
\phi(u(z))=1+B_{1} b_{1} z+\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right) z^{2}+\cdots,|z|<1 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(v(w))=1+B_{1} c_{1} w+\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) w^{2}+\cdots,|w|<1 \tag{2.6}
\end{equation*}
$$

Definition 2.1. A function $f \in \Sigma$ is said to be in the class $S_{\Sigma}(\phi, s, t)$, if the following subordination hold

$$
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)} \prec \phi(z)
$$

and

$$
\frac{(s-t) w g^{\prime}(w)}{g(s w)-g(t w)} \prec \phi(w)
$$

where $g(w)=f^{-1}(w), s, t \in \mathbb{C}$ with $s \neq t,|t| \leq 1$.
Theorem 2.1. Let f given by 1.1 be in the class $\mathrm{S}_{\Sigma}(\phi, s, t)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|(3-2 s-2 t+s t) B_{1}^{2}-(2-s-t)^{2} B_{2}\right|+|2-s-t|^{2} B_{1}}} \tag{2.7}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
\frac{B_{1}}{\left|3-s^{2}-t^{2}-s t\right|^{2}} ; \quad \text { if } B_{1} \leq \frac{|2-s-t|^{2}}{\left|3-s^{2}-t^{2}-s t\right|} \tag{2.8}\\
\frac{\left|(3-2 s-2 t+s t) B_{1}^{2}-(2-s-t)^{2} B_{2}\right| B_{1}+\left|3-s^{2}-t^{2}-s t\right| B_{1}^{3}}{\left|3-s^{2}-t^{2}-s t\right|\left[\left|(3-2 s-2 t+s t) B_{1}^{2}-(2-s-t)^{2} B_{2}\right|+|2-s-t|^{2} B_{1}\right]} ; \\
\text { if } B_{1}>\frac{|2-s-t|^{2}}{\left|3-s^{2}-t^{2}-s t\right|}
\end{array}\right.
$$

Proof. Let $f \in S_{\Sigma}(\phi, s, t)$. Then, there are analytic functions $u, v: U \rightarrow U$ given by 2.3 such that

$$
\begin{equation*}
\frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}=\phi(u(z)) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(s-t) w g^{\prime}(w)}{g(s w)-g(t w)}=\phi(v(w)) \tag{2.10}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$. Since

$$
\begin{aligned}
& \frac{(s-t) z f^{\prime}(z)}{f(s z)-f(t z)}= \\
& 1+(2-s-t) a_{2} z+\left[\left(3-s^{2}-t^{2}-s t\right) a_{3}-\left(2 s+2 t-s^{2}-t^{2}-2 s t\right) a_{2}^{2}\right] z^{2}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{(s-t) w g^{\prime}(w)}{g(s w)-g(t w)}= \\
& 1-(2-s-t) a_{2} w+\left[\left(6-s^{2}-t^{2}-2 s-2 t\right) a_{2}^{2}-\left(3-s^{2}-t^{2}-s t\right) a_{3}\right] w^{2}+\cdots
\end{aligned}
$$

it follows from (2.5), 2.6, (2.9) and (2.10) that

$$
\begin{gather*}
(2-s-t) a_{2}=B_{1} b_{1} \tag{2.11}\\
\left(3-s^{2}-t^{2}-s t\right) a_{3}-\left(2 s+2 t-s^{2}-t^{2}-2 s t\right) a_{2}^{2}=B_{1} b_{2}+B_{2} b_{1}^{2} \tag{2.12}
\end{gather*}
$$

and

$$
\begin{gather*}
-(2-s-t) a_{2}=B_{1} c_{1} \tag{2.13}\\
\left(6-s^{2}-t^{2}-2 s-2 t\right) a_{2}^{2}-\left(3-s^{2}-t^{2}-s t\right) a_{3}=B_{1} c_{2}+B_{2} c_{1}^{2} \tag{2.14}
\end{gather*}
$$

From (2.11) and (2.13) we obtain

$$
\begin{equation*}
c_{1}=-b_{1} \tag{2.15}
\end{equation*}
$$

By adding 2.14 to 2.12 , further computations using 2.11 to 2.15 lead to

$$
\begin{equation*}
\left[2(3-2 s-2 t+s t) B_{1}^{2}-2(2-s-t)^{2} B_{2}\right] a_{2}^{2}=B_{1}^{3}\left(b_{2}+c_{2}\right) \tag{2.16}
\end{equation*}
$$

2.15 and 2.16 , together with 2.4 , we find that

$$
\begin{equation*}
\left|(3-2 s-2 t+s t) B_{1}^{2}-(2-s-t)^{2} B_{2}\right|\left|a_{2}\right|^{2} \leq B_{1}^{3}\left(1-\left|b_{1}\right|^{2}\right) \tag{2.17}
\end{equation*}
$$

which gives us the desired estimate on $\left|a_{2}\right|$ as asserted in (2.7).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting 2.14 from 2.12 , we obtain

$$
\begin{equation*}
2\left(3-s^{2}-t^{2}-s t\right) a_{3}-2\left(3-s^{2}-t^{2}-s t\right) a_{2}^{2}=B_{1}\left(b_{2}-c_{2}\right)+B_{2}\left(b_{1}^{2}-c_{1}^{2}\right) \tag{2.18}
\end{equation*}
$$

Then, in view of 2.4 and 2.15) we have

$$
\left|3-s^{2}-t^{2}-s t\right| B_{1}\left|a_{3}\right| \leq\left[\left|3-s^{2}-t^{2}-s t\right| B_{1}-|2-s-t|\right]\left|a_{2}\right|^{2}+B_{1}^{2}
$$

Notice that (2.7), we get the desired estimate on $\left|a_{3}\right|$ as asserted in 2.8 .

Corollary 1. If we let

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\ldots \quad(0<\alpha \leq 1)
$$

then inequalities (2.7) and (2.8) become

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\left|2(3-2 s-2 t+s t)-(2-s-t)^{2}\right| \alpha+|2-s-t|^{2}}}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
\frac{2 \alpha}{\left|3-s^{2}-t^{2}-s t\right|} ; \quad \text { if } 0<\alpha \leq \frac{|2-s-t|^{2}}{2\left|3-s^{2}-t^{2}-s t\right|} \\
\frac{2\left[\left|2(3-2 s-2 t+s t)-(2-s-t)^{2}\right|+2\left|3-s^{2}-t^{2}-s t\right|\right] \alpha^{2}}{\left|3-s^{2}-t^{2}-s t\right|\left[\left|2(3-2 s-2 t+s t)-(2-s-t)^{2}\right| \alpha+|2-s-t|^{2}\right]} ; \\
\text { if } \frac{|2-s-t|^{2}}{2\left|3-s^{2}-t^{2}-s t\right|}<\alpha \leq 1 .
\end{array} .\right.
$$

Corollary 2. If we let

$$
\phi(z)=\frac{1+(1-2 \alpha) z}{1-z}=1+2(1-\alpha) z+2(1-\alpha) z^{2}+\cdots \quad(0 \leq \alpha<1)
$$

then inequalities 2.7) and 2.8 become

$$
\left|a_{2}\right| \leq \frac{2(1-\alpha)}{\sqrt{\left|2(3-2 s-2 t+s t)(1-\alpha)-(2-s-t)^{2}\right|+|2-s-t|^{2}}}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cc}
\frac{2(1-\alpha)}{\left|3-s^{2}-t^{2}-s t\right|} ; & \text { if } \frac{2\left|3-s^{2}-t^{2}-s t\right|-|2-s-t|^{2}}{2\left|3-s^{2}-t^{2}-s t\right|} \leq \alpha<1 \\
\frac{2\left[\left|2(3-2 s-2 t+s t)(1-\alpha)-(2-s-t)^{2}\right|+2\left|3-s^{2}-t^{2}-s t\right|(1-\alpha)\right](1-\alpha)}{\left|3-s^{2}-t^{2}-s t\right|\left[\left|2(3-2 s-2 t+s t)(1-\alpha)-(2-s-t)^{2}\right|+|2-s-t|^{2}\right]} ; \\
\text { if } 0 \leq \alpha<\frac{2\left|3-s^{2}-t^{2}-s t\right|-|2-s-t|^{2}}{2\left|3-s^{2}-t^{2}-s t\right|}
\end{array}\right.
$$

References

[1] Ş. Altınkaya and S. Yalçın, Initial coefficient bounds for a general class of bi-univalent functions, International Journal of Analysis, Article ID 867871, (2014), 4 pages.
[2] Ş. Altınkaya and S. Yalçın, Coefficient bounds for a subclass of bi-univalent functions, TWMS Journal of Pure and Applied Mathematics, 6(2)(2015), 180-185.
[3] Ş. Altınkaya and S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, Journal of Function Spaces, Article ID 145242, (2015), 5 pages.
[4] D.A. Brannan and J.G. Clunie, Aspects of comtemporary complex analysis, (Proceedings of the NATO Advanced Study Instute Held at University of Durham:July 1-20, 1979), New York: Academic Press, (1980).
[5] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 259 (1983).
[6] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters, 24(2011), 1569-1573.
[7] S.G. Hamidi and J.M. Jahangiri,Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 352(1)(2014), 17-20.
[8] J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., Article ID 190560, (2013), 4 pages.
[9] B. Srutha Keerthi and Bhuvaneswari Raja, Coefficient inequality for certain new subclasses of analytic biunivalent functions, Theoretical Mathematics and Applications, 3(1)(2013), 1-10.
[10] M. Lewin, On a coefficient problem for bi-univalent functions, Proceeding of the American Mathematical Society, 18(1967), 63-68.
[11] N. Magesh and J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, International Mathematical Forum, 8(27)(2013), 1337-1344.
[12] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis, 32(1969), 100-112.
[13] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1)(1959), 72-75.
[14] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23(2010), 1188-1192.
[15] Q.-H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters, 25(2012), 990-994.

Received: October 10, 2014; Accepted: May 23, 2015

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: * Corresponding author.

 E-mail address: sahsene@uludag.edu.tr (Şahsene Altınkaya), syalcin@uludag.edu.tr (Sibel Yalçın)

