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Abstract

The finite spherical Hankel transformation is extended to generalized functions by using orthonormal series expansion

of generalized functions. A complete orthonormal family of spherical Bessel functions is derived and certain spaces of

testing functions and generalized functions are defined. The inversion and uniqueness theorems are obtained. The

operational transform formula is derived and is applied to solve the problem of the propagation of heat released from a

spherically symmetric point heat source.
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1 Introduction

Several authors treated the problem of expanding the elements of a distribution space using different or-
thonormal systems. Zemanian [2], [5] constructed the testing function space A for suitable complete orthonor-
mal system {Ψn} of eigenfunctions of the differential operator η. The elements of the dual space A′ are
generalized functions, each of which can be expanded into a series of eigenfunctions Ψn. As a special case of his
general theory he defined the finite Fourier, Hermite, Jacobi and finite Hankel transformations of generalized
functions where the inverse transformations are obtained by using orthonormal series expansions of generalized
functions.

Bhosale and More[3] and Panchal and More[4] extended certain finite integral transformations to generalized
functions by using the method of Zemanian. In this paper the variant of finite spherical Hankel transformation
introduced by Chen I.I.H.[1] is extended it to certain space of generalized functions whose inverse is obtained
in terms of Fourier-spherical Bessel series.

2 Preliminary Results, Notations and Terminology

Let I={x/0 ≤ x ≤ a < ∞} and N0 = N ∪{0}, where N is the set of natural numbers. Consider the self
adjoint differential operator

L0 = (x−1Dxx
2Dxx

−1)

denoting the conventional or generalized partial differential operators, where Dx = ∂
∂x . Let J 1

2
(x) and j0(x)

be the Bessel function of the first kind of order 1/2, and spherical Bessel function of order zero respectively.
Consider the eigenfunction system {ψn(x)}∞n=1 corresponding to the differential operator L0 where ψn(x) =
Cnxj0(λnx), Cn = 2

a[J
′
1
2
(λna)]

√λn

π , and the corresponding eigenvalues λn, n = 1, 2, 3, ... are the positive roots

of j0(λz) = 0 arranged in ascending order of magnitude.We see that,

 L0ψn(x) = −λ2
nψn(x). (2.1)
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Let L2(I) be the linear space of functions that are absolutely square integrable on I and < f, g > denote
the inner product defined by,

< f, g >= (f, g) =
∫

I

f(x)g(x)dx. (2.2)

Thus,

||f ||22 =< f, f >= (f, f) =
∫

I

|f(x)|2dx (2.3)

is the norm on L2(I). Hence

(ψm(x), ψn(x)) =

{
1 m=n

0 otherwise
(2.4)

and
∫

I
|ψn(x)|2dx = 1 implies that ψn(x) ∈ L2(I) for every n ∈ N0.

We define the finite spherical Hankel transform of f(x) ∈ L2(I) denoted by
SH[f(x)](n) = FSH(n) as,

FSH(n) = (f(x), ψn(x)) =
∫

I

f(x)ψn(x)dx. (2.5)

The following theorem provides the inversion of the transformation defined in (2.5).

Theorem 2.1. Every f(x) ∈ L2(I) admits the Fourier-spherical Bessel series expansion

f(x) =
∞∑

n=1

(f(x), ψn(x))ψn(x) (2.6)

where the series converges point-wise on I.

3 Testing Function Space S −H(I)

For n ∈ N0 we denote by S −H(I) the space all complex valued smooth functions φ(x) defined on I such
that for each non negative integers n and k.
i)

ηk(φ) = η0(Lk
0φ) =

{∫
I

[Lk
0φ(x)]2dx

} 1
2

<∞ (3.1)

ii)
(Lk

0φ, ψn(x)) = (φ,Lk
0ψn(x)) (3.2)

Obviously L2(I) ⊂ S − H(I). The space S − H(I) is a linear space and ηk is a seminorm on S − H(I).
Moreover η0 is a norm on S −H(I). Thus ηk, k ∈ N0 is a countable multi-norm on S −H(I). Also S −H(I)
is complete and hence a Frechet space. Thus S −H(I) turns out to be a testing function space.

Lemma 3.1. Every ψn(x) is a member of S −H(I).

Proof. For each k ∈ N0, from equations (2.1) and (3.1) we have

|ηk[ψn(x)]|2 ≤
∫

I

|Lk
0ψn(x)|2dx

≤ |λn|2k

∫
I

|ψn(x)|2dx

= |λn|2k <∞.

Next since λn are real then for m 6= n, we have

(Lk
0ψn(x), ψm(x)) = λk

n(ψn(x), ψm(x))

= 0 = λk
m(ψn(x), ψm(x)) = (ψn(x), λk

mψm(x))

= (ψn(x), Lk
0ψm(x))

and for m = n

(Lk
0ψn(x), ψn(x)) = (λk

nψn(x), ψn(x)) = (ψn(x), λk
nψn(x)) = (ψn(x), Lk

0ψn(x)).

Hence ψn(x) ∈ S-H(I) for all n ∈ N0.
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Lemma 3.2. Every φ(x) ∈ S −H(I) can be expanded into the series

φ(x) =
∞∑

n=0

(φ(x), ψn(x))ψn(x) (3.3)

where the series converges in S −H(I).

Proof. Let φ(x) ∈ S −H(I) , then Lk
0φ(x) ∈ L2(I) and from theorem (2.1), we have

 Lk
0φ(x) =

∞∑
n=0

(Lk
0φ(x), ψn(x))ψn(x)

=
∞∑

n=0

(φ,Lk
0ψn(x))ψn(x)

=
∞∑

n=0

(φ, ψn(x))λk
nψn(x)

=
∞∑

n=0

(φ, ψn(x))Lk
0ψn(x)

which implies that ηk[φ(x)−
∑N

n=0(φ(x), ψn(x))ψn(x)] → 0 as N →∞ independently. Thus the series in (3.3)
converges to φ(x) in S −H(I).

4 The Generalized Function Space S −H ′(I)

The space of all continuous linear functions on S−H(I), denoted by S−H ′(I) is called the dual of S−H(I)
and members of S−H ′(I) are called generalized functions on I. The number that f ∈ S−H ′(I) assigns to φ ∈
S−H(I) is denoted by < f, φ >. Since the testing function space S−H(I) is complete, so also is S−H ′(I)[5].
Let f(x) be a real valued continuous function locally integrable on I such that∫

I

|f(x)|2dx <∞,

then f generates a member of S −H ′(I) through the definition

< f, φ >=
∫

I

f(x)φ(x)dx. (4.1)

Clearly (4.1) defines a linear function f on S−H(I) and the continuity of f can be verified by using Schwarz’s
inequality. Such members of S−H ′(I) are called regular generalized functions in S−H ′(I). All other generalized
functions in S−H ′(I) are called singular generalized functions. Now we define a generalized differential operator
L0 on S −H ′(I) through the relationship

(f, L0φ) =< f,L0φ >=< L0
′
f, φ >= (L0

′
f, φ) (4.2)

where L0
′

is obtained from L0 by reversing the order in which the differentiation and multiplication by smooth
functions occurring in L0, replacing each Dx by −Dx and then taking the complex conjugate of the result.
But this is precisely the same expression for L0 [[5], sec 9.2, eq 4]. Thus L0 = L0

′
is defined as the generalized

differential operator on S −H ′(I) through the equation

< L0f, φ >=< f,L0φ >, (4.3)

where f ∈ S −H ′(I), φ ∈ S −H(I).
Some properties of S −H(I) and S −H ′(I)

I) D(I) ⊂ S−H(I) ⊂ E (I) and since D(I) is dense in E (I), S−H(I) is also dense in E (I). It follows E ′(I)
is a subspace of S −H ′(I). The convergence of a sequence in D(I) implies its convergence in S −H(I).
The restriction of any f ∈ S −H ′(I) to D(I) is in D ′(I). Moreover the convergence in S −H ′(I) implies
convergence in D ′(I).
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II) For each f ∈ S −H ′(I) there exists a non negative integer r and a positive constant C such that

| < f, φ > | ≤ C max
0≤k≤r

ηk(φ)

for every φ ∈ S −H(I). Here r and C depends on f but not on φ.

III) The mapping φ → L0φ is continuous linear mapping of S −H(I) into itself. It follows that f → L0f is
also a continuous linear mapping of S −H ′(I) whenever f is a regular generalized function in S −H ′(I).

5 Finite Spherical Hankel transformation of generalized functions

We define the finite spherical Hankel transform of generalized function f ∈ L−H ′(I), denoted by SH[f ] =
FSH(n) as,

SH[f(x)](n) = FSH(n) = (f(x), ψn(x)) (5.1)

where ψn(x) ∈ S −H(I) for n ∈ N0. We see that SH is a linear and continuous mapping on S-H’(I), which
maps f ∈ S −H ′(I) into a function FSH(n) defined on N0. The following theorem provides the inversion of
the transformation defined in (5.1).

Theorem 5.1. Let f ∈ S-H’(I), then the series

∞∑
n=0

(f(x), ψn(x))ψn(x) (5.2)

converges to f in S −H ′(I).

Proof. From lemma 3.2 we have for every φ ∈ S − H(I), the series
∑∞

n=0(φ, ψn(x))ψn(x) converges to φ in
S −H(I), then for f ∈ S −H ′(I), we write

(f, φ) = (f,
∞∑

n=0

(φ, ψn(x)), ψn(x))

=
∞∑

n=0

(φ, ψn(x))(f, ψn(x))

=
∞∑

n=0

(f, ψn(x))(ψn(x), φ(x))

=
∞∑

n=0

((f, ψn(x))ψn(x), φ(x))

=

( ∞∑
n=0

(f, ψn(x))ψn(x), φ(x)

)
.

Thus the series
∑∞

n=0(f, ψn(x))ψn(x) converges weakly to f in S-H’(I).

The above theorem lead to define the inverse of the finite spherical Hankel transformation of f ∈ S −H ′(I),
denoted by SH−1FSH(n) = f(x), as

SH−1FSH(n) = f(x) =
∞∑

n=0

FSH(n)ψn(x)

=
∞∑

n=0

(f(x), ψn(x))ψn(x).

(5.3)

Theorem 5.2. (Uniqueness Theorem): Let f, g ∈ S-H’(I) are such that
SH[f ](n) = FSH(n) = GSH(n) = SH[g](n) for every n ∈ N0, then f = g in the sense of equality in S −H ′(I).
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Proof. Let φ ∈ S −H(I), and f, g ∈ S −H ′(I) then

< f, φ > − < g, φ > =<
∞∑

n=0

(f, ψn(x))ψn(x), φ(x) >

− <
∞∑

n=0

(g, ψn(x))ψn(x), φ(x) >

=<
∞∑

n=0

FSH(n)ψn(x), φ(x) >

− <
∞∑

n=0

GSH(n)ψn(x), φ(x) >

=<
∞∑

n=0

[FSH(n)− GSH(n)]ψn(x), φ(x) >

= 0

for all n ∈ N0. Hence f = g in S −H ′(I).

6 An Operational Calculus

Let f(x) ∈ S−H ′(I), ψn(x) ∈ S−H(I) and since the differential operator L0 is a continuous linear mapping
of S −H ′(I) into itself, then from equation (4.3), we have

SH[Lk
0f ](n) =< Lk

0f, ψn(x) > =< f,Lk
0ψn(x) >

=< f,−λ2k
n ψn(x) >

= −λ2k
n < f, ψn(x) >

= −λ2k
n SH[f ](n)

= −λ2k
n FSH(n).

(6.1)

We can use this fact to solve the distributional differential equations of the form

P (L0)u = g (6.2)

where P is a polynomial and the given g and unknown u are the generalized functions in S-H’(I). Applying the
finite spherical Hankel transformation defined in (5.1) to the differential equation (6.2), we get

P (−λ2
n)SH[u](n) = SH[g](n), n ∈ N0. (6.3)

If P (−λ2
n) 6= 0 for all n ∈ N0, we divide (6.3) by P (−λ2

n) and apply inverse finite spherical Hankel transform
defined in (5.3), and get

u(x) =
∞∑

n=0

SH[g](n)
P (−λ2

n)
ψn(x) (6.4)

where the series converges in S − H ′(I). In view of Theorem (5.1) and (5.2) the solution u(x) in S − H ′(I)
exists and is unique.

7 Application of finite spherical Hankel transform

The propagation of heat released from a spherically symmetric point heat source is governed by the heat
conduction equation of the form

x−1 ∂
2(xu)
∂x2

= k−1 ∂u

∂t
(7.1)
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where k = K/ρCν is the thermal diffusivity for conductivity K, ρ is density, and Cν is the heat capacity,
respectively. We consider the folllowing initial and boundary conditions:

u(x, t) = f(x) when t = 0 at x = 0;

u(x, t) = 0 at x = a, t > 0.

(7.2)

We now find the generalized solution u(x, t) of this problem in the space S−H ′(I). Multiplying equation (7.1)
by x2, substituting u = x−1v(x, t) and then multiplying by x−1 we get

x−1(x2 ∂
2

∂x2
+ 2x

∂

∂t
)(x−1v) = (1/k)

∂v

∂t
(7.3)

Now applying the finite spherical Hankel transform defined in (5.1) to (7.3) we get

dVSH

dt
+ λ2

nkVSH = 0, (7.4)

where VSH is a finite spherical Hankel transform of v(x, t). The solution of this equation is given by

VSH(λn, t) = Cexp(−λ2
nkt) (7.5)

where the constant C can determined from the inial and boundary conditions given in (7.2) . Hence we have

VSH(λn, t) = FSH(n)exp(−λ2
nkt) (7.6)

where FSH(n) is the finite spherical Hankel transform of f(t). Applying inverse finite spherical Hankel transform
defined in (5.3), we get

v(x) =
∞∑

n=0

FSH(n)exp(−λ2
nkt)ψn(x) (7.7)

where the series converges in S − H ′(I). In view of Theorem (5.1) and (5.2) the solution v(x) in S − H ′(I)
exists and is unique. Thus u(x, t) = x−1v(x, t) is the required solution.
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