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Abstract

We prove some fixed and common fixed point theorems for two weakly compatible self mappings in
complete b−metric spaces. Our results improve and generalize several known results from the current
literature and its extension.

Keywords: common fixed point, coincidence point, b-metric space, g − α−admissible mapping, α−regular,
triangular α−admissible, weakly compatible self mappings.

2010 MSC: 47H10, 54H25 c©2012 MJM. All rights reserved.

1 Introduction

It is well known that the Banach contraction principle has been improved in different directions at different
spaces by mathematicians over the years. In [9, 10], S. Czerwik introduced the notion of a b-metric space which
is a generalization of usual metric space and generalized the Banach contraction principle in the context of
complete b-metric spaces. In the sequel, several papers have been published on the fixed point theory in b-
metric spaces (see, e.g., [2–7, 12–14, 18, 26]). On the other hand, more recently, Samet et al. in [24] introduced
the concept of α−ψ-contractive type mappings and α-admissible mappings in metric spaces. Then, Karapinar
and Samet [16] introduced the concept of generalized α − ψ-contractive type, which was inspired by the
notion of α− ψ-contractive mappings. Furthermore, they [16] obtained various fixed point theorems for this
generalized class of contractive mappings. Also, It should be noted that the study of common fixed points
of mappings satisfying certain contractive conditions has been at the center of rigorous research activity (
see[1, 19–22]). In this paper, we prove coincidence fixed point and some common fixed point theorems for
two weakly compatible self mappings in complete b−metric spaces.

Definition 1.1. [9] Let X be a (nonempty) set and s ≥ 1 be a given real number. A function d : X× X −→ R+ is said
to be a b-metric space iff for all x, y, z ∈ X, the following conditions are satisfied:

(i) d(x, y) = 0 iff x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space with the parameter s.
It is obvious that a b−metric space with base s = 1 is a metric space. There are examples of b−metric spaces
which are not metric spaces (see, e.g., Singh and Prasad [26]).
The notions of a Cauchy sequence and a convergent sequence in b−metric spaces are defined by Boriceanu[8].
As usual, a b−metric space is said to be complete if and only if each Cauchy sequence in this space is
convergent. Note that a b−metric, in the general case, is not continuous [2].
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Definition 1.2. [15] Let X be a non-empty set and T, g : X → X are given self-mappings on X. The pair {T, g} is said
to be weakly compatible if Tgx = gTx, whenever Tx = gx for some x in X.

Samet et al. [24] defined the notion of α−admissible mappings as follows.

Definition 1.3. Let T : X → X be a map and α : X× X → R be a function. Then T is said to be α−admissible if

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Recently, Rosa et al. [23] introduced the following new notions of g− α−admissible mapping.

Definition 1.4. Let T, g : X → X and α : X × X → R. The mapping T is g− α−admissible if, for all x, y ∈ X such
that α(gx, gy) ≥ 1, we have α(Tx, Ty) ≥ 1. If g is the identity mapping, then T is called α−admissible.

Definition 1.5. [17] An α−admissible map T is said to be triangular α−admissible if

α(x, z) ≥ 1 and α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1.

2 Main Results

Let Φ denote the family of all real functions ϕ : R5
+ → R with the following conditions:

(1) ϕ is upper-semicontinuous and non-decreasing in each coordinate variable;

(2) max{ϕ(0, 0, t, t, 0), ϕ(t, 0, 0, t, t), ϕ(t, t, t, t, 0)} < t for each t > 0.

The above family Φ is considered by Ding [11]. It is motivated by Singh and Meade [25].
In this section, we prove some common fixed point results for two self-mappings.

Definition 2.6. Let (X, d) be a b-metric space, g : X → X and α : X × X → R. X is α−regular with respect to g, if
for every sequence {xn} ⊆ X such that α(gxn, gxn+1) ≥ 1 for all n ∈ N and gxn → gx ∈ gX as n → ∞, then there
exists a subsequence {gxn(k)} of {gxn} such that for all k ∈N, α(gxn(k), gx) ≥ 1. If g is the identity mapping, then T
is called α−regular.

Our first result is the following.

Lemma 2.1. Let T, g : X → X and α : X × X → R. Suppose T be a g− α−admissible and triangular α−admissible.
Assume that there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1. Then

α(gxm, gxn) ≥ 1 f or all m, n ∈N with m < n,

where
gxn+1 = Txn.

Proof. Since there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1 and T is a g− α−admissible, we deduce that

α(gx0, gx1) = α(gx0, Tx0) ≥ 1 =⇒ α(gx1, gx2) = α(Tx0, Tx1) ≥ 1,

α(gx1, gx2) ≥ 1 =⇒ α(gx2, gx3) = α(Tx1, Tx2) ≥ 1.

By continuing this process, we get

α(gxn, gxn+1) ≥ 1, n = 0, 1, 2, · · · .

Suppose that m < n. Since α(gxm, gxm+1) ≥ 1, α(gxm+1, gxm+2) ≥ 1 and T is triangular α−admissible, we
have α(gxm, gxm+2) ≥ 1. Again, since α(gxm, gxm+2) ≥ 1 and α(gxm+2, gxm+3) ≥ 1, we have α(gxm, gxm+3) ≥
1. Continuing this process inductively, we obtain

α(gxm, gxn) ≥ 1.
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Theorem 2.1. Let (X, d) be a complete b-metric space, T, g : X → X be such that TX ⊆ gX and α : X × X → R.
Assume that gX is closed that the following condition holds:

α(x, y)s3d(Tx, Ty) ≤ ϕ(d(gx, gy), d(gx, Tx), d(gy, Ty),
1
2s

d(gx, Ty),
1
2s

d(gy, Tx)), (2.1)

for x, y ∈ X and ϕ ∈ Φ. Assume also that the following conditions hold:

(i) T is g− α−admissible and triangular α−admissible;

(ii) there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1;

(iii) X is α−regular with respect to g.

Then T and g have a coincidence point.
Moreover, if the following conditions hold:

(a) The pair {T, g} is weakly compatible;

(b) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = gu and Tv = gv.

Then T and g have a unique common fixed point.

Proof. Let x0 ∈ X be such that α(gx0, Tx0) ≥ 1 (using the condition (ii)). Since TX ⊆ gX we can choose a
point x1 ∈ X such that Tx0 = gx1. Also, there exists x2 ∈ X such that Tx1 = gx2, this can be done through the
reality TX ⊆ gX. Continuing this process having chosen x1, x2, ..., xn ∈ X, we have xn+1 ∈ X such that

gxn+1 = Txn, n = 0, 1, 2, · · · . (2.2)

By Lemma 2.1, we have

α(gxn, gxn+1) ≥ 1, n = 0, 1, 2, · · · . (2.3)

If Txn0 = Txn0+1 for some n0, then by (2.2), we get

gxn0 = Txn0+1 = Txn0 ,

that is, T and g have a coincidence point at x = xn0 , and so the proof is completed. So, we suppose that for all
n ∈N, Txn 6= Txn+1. Now, for all n ∈N by (2.1) and (2.3), we have

d(gxn, gxn+1) ≤ s3d(gxn, gxn+1) = s3d(Txn−1, Txn)

≤ α(gxn−1, gxn)s3d(Txn−1, Txn)

≤ ϕ(d(gxn−1, gxn), d(gxn−1, Txn−1), d(gxn, Txn),
1
2s

d(gxn−1, Txn),
1
2s

d(gxn, Txn−1))

= ϕ(d(gxn−1, gxn), d(gxn−1, gxn), d(gxn, gxn+1),
1
2s

d(gxn−1, gxn+1),
1
2s

d(gxn, gxn))

= ϕ(d(gxn−1, gxn), d(gxn−1, gxn), d(gxn, gxn+1),
1
2s

d(gxn−1, gxn+1), 0).

(2.4)

If d(gxn−1, gxn) ≤ d(gxn, gxn+1), from (2.4),

d(gxn−1, gxn+1)

2s
≤ d(gxn−1, gxn) + d(gxn, gxn+1)

2
,

and using the properties of the function ϕ, we get

d(gxn, gxn+1) ≤ ϕ(d(gxn−1, gxn), d(gxn−1, gxn), d(gxn, gxn+1),
d(gxn−1, gxn) + d(gxn, gxn+1)

2
, 0)

≤ ϕ(d(gxn, gxn+1), d(gxn, gxn+1), d(gxn, gxn+1), d(gxn, gxn+1), 0)

< d(gxn, gxn+1),
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which is a contradiction. So d(gxn, gxn+1) < d(gxn−1, gxn) for all n ∈ N, that is, the sequence of nonnegative
numbers {d(gxn, gxn+1)} is decreasing. Hence, it converges to a nonnegative number, say δ ≥ 0. If δ > 0,
then letting n→ ∞ in (2.4) and since ϕ is continuous, then we obtain

δ ≤ ϕ(δ, δ, δ, δ, 0) < δ,

which is a contraction. Therefore

lim
n→∞

d(gxn, gxn+1) = 0. (2.5)

Now, we claim that
lim

n,m−→∞
d(gxn, gxm) = 0. (2.6)

Assume on the contrary that there exists ε > 0 and subsequences {gxm(k)}, {gxn(k)} of {gxn} with n(k) >

m(k) ≥ k such that
d(gxm(k), gxn(k)) ≥ ε. (2.7)

Additionally, corresponding to m(k), we may choose n(k) such that it is the smallest integer satisfying (2.7)
and n(k) > m(k) ≥ k. Thus,

d(gxm(k), gxn(k)−1) < ε. (2.8)

Using the triangle inequality in b−metric space and (2.7) and (2.8) we obtain that

ε ≤ d(gxn(k), gxm(k)) ≤ sd(gxn(k), gxn(k)−1) + sd(gxn(k)−1, gxm(k))

< sd(gxn(k), gxn(k)−1) + sε.

Taking the the upper limit as k −→ ∞ and using (2.5) we obtain

ε ≤ lim sup
k−→∞

d(gxm(k), gxn(k)) ≤ sε. (2.9)

Also
ε ≤ d(gxm(k), gxn(k)) ≤ sd(gxm(k), gxn(k)+1) + sd(gxn(k)+1, gxn(k))

≤ s2d(gxm(k), gxn(k)) + s2d(gxn(k), gxn(k)+1) + sd(gxn(k)+1, gxn(k))

≤ s2d(gxm(k), gxn(k)) + (s2 + s)d(gxn(k), gxn(k)+1).

So from (2.5) and (2.9), we have

ε

s
≤ lim sup

k−→∞
d(gxm(k), gxn(k)+1) ≤ s2ε. (2.10)

Also
ε ≤ d(gxn(k), gxm(k)) ≤ sd(gxn(k), gxm(k)+1) + sd(gxm(k)+1, gxm(k))

≤ s2d(gxn(k), gxm(k)) + s2d(gxm(k), gxm(k)+1) + d(gxm(k)+1, gxm(k))

≤ s2d(gxn(k), gxm(k)) + (s2 + s)d(gxm(k), gxm(k)+1).

So from (2.5) and (2.9), we get

ε

s
≤ lim sup

k−→∞
d(gxn(k), gxm(k)+1) ≤ s2ε. (2.11)

Also
d(gxm(k)+1, gxn(k)) ≤ sd(gxm(k)+1, gxn(k)+1) + sd(gxn(k)+1, gxn(k)),

so from (2.5) and (2.11), we have

ε

s2 ≤ lim sup
k−→∞

d(gxn(k)+1, gxm(k)+1). (2.12)
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Now using inequality (2.1) and Lemma 2.1, we have

s3d(gxm(k)+1, gxn(k)+1) = s3d(gxm(k)+1, gxn(k)+1) = s3 d(Txm(k), Txn(k))

≤ α(gxm(k), gxn(k))s
3 d(Txm(k), Txn(k))

≤ ϕ(d(gxm(k), gxn(k)), d(gxm(k), gxm(k)+1), d(gxn(k)+1, gxn(k)),

1
2s

d(gxm(k), gxn(k)+1),
1
2s

d(gxn(k), gxm(k)+1)).

Since ϕ is upper-semicontinuous, by (2.5),(2.10),(2.11) and (2.12)

sε = s3.
ε

s2 ≤ s3 lim sup
k→∞

d(gxm(k)+1, gxn(k)+1)

≤ ϕ(sε, 0, 0,
sε

2
,

sε

2
)

≤ ϕ(sε, 0, 0, sε, sε)

< sε.

which is a contradiction. So, we conclude that {gxn} is a Cauchy sequence in (X, d). By virtue of (2.2) we get
{Txn} = {gxn+1} ⊆ gX and gX is closed, there exists x ∈ X such that

lim
n→∞

gxn = gx. (2.13)

Now, we claim that x is a coincidence point of T and g. On the contrary, assume that d(Tx, gx) > 0. Since X is
α−regular with respect to g and (2.13), we have

α(gxn(k)+1, gx) ≥ 1 f or all k ∈N. (2.14)

Also by the use of triangle inequality in b−metric space, we have

d(gx, Tx) ≤ sd(gx, gxn(k)+1) + sd(gxn(k)+1, Tx)

= sd(gx, gxn(k)+1) + sd(Txn(k), Tx).

In the above inequality, if k tends to infinity, then, we have

d(gx, Tx) ≤ lim
k→∞

sd(Txn(k), Tx). (2.15)

By property of ϕ, (2.14) and (2.15), we have

s2d(gx, Tx) ≤ lim
k→∞

s3d(Txn(k), Tx) ≤ lim
k→∞

α(gxn(k)+1, gx)s3d(Txn(k), Tx)

≤ lim
k→∞

[ϕ(d(gxn(k), gx), d(gxn(k), Txn(k)), d(gx, Tx),
1
2s

d(gxn(k), Tx),
1
2s

d(gx, Txn(k))]

= lim
k→∞

[ϕ(d(gxn(k), gx), d(gxn(k), gxn(k)+1), d(gx, Tx),
1
2s

d(gxn(k), Tx),
1
2s

d(gx, gxn(k)+1)]

≤ ϕ(0, 0, d(gx, Tx),
1
2s

d(gx, Tx), 0)

≤ ϕ(0, 0, d(gx, Tx), d(gx, Tx), 0)

< d(gx, Tx),

which is a contradiction. Hence, d(gx, Tx) = 0, that is, gx = Tx and x is a coincidence point of T and g. We
claim that, if Tu = gu and Tv = gv, then gu = gv. By hypotheses, α(u, v) ≥ 1 or α(v, u) ≥ 1. Suppose that
α(u, v) ≥ 1, then

s3d(gu, gv) = s3d(Tu, Tv) ≤ α(u, v)s3d(Tu, Tv)

≤ ϕ(d(gu, gv), d(gu, Tu), d(gv, Tv),
1
2s

d(gu, Tv),
1
2s

d(gv, Tu))

= ϕ(d(gu, gv), d(gu, gu), d(gv, gv),
1
2s

d(gu, gv),
1
2s

d(gv, gu))

≤ ϕ(d(gu, gv), 0, 0, d(gu, gv), d(gv, gu))

< d(gu, gv),
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which is a contradiction. Thus we deduce that gu = gv. Similarly, if α(v, u) ≥ 1 we can prove that gu = gv.
Now, we show that T and g have a common fixed point. Indeed, if w = Tu = gu, owing to the weakly
compatible of T and g, we get Tw = T(gu) = g(Tu) = gw. Thus w is a coincidence point of T and g, then
gu = gw = w = Tw. Therefore, w is a common fixed point of T and g. The uniqueness of common fixed point
of T and g is a consequence of the conditions (2.1) and (b), and so we omit the details.

Example 2.1. Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1

0 |x(t)| < ∞. Define d : X ×
X −→ [0, ∞) by

d(x, y) =
( ∫ 1

0
|x(t)− y(t)|dt

)2
.

Then d is a b-metric on X, with s = 2.
The operator T : X −→ X defined by

Tx(t) =
1√
8

ln
(
|x(t)|+ 1

)
,

and the operator g : X −→ X defined by
gx(t) = e

√
8|x(t)| − 1.

Now, we prove that T and g have a unique common fixed point. For all x, y ∈ X, we have

23d(Tx, Ty) = 23
( ∫ 1

0
|Tx(t)− Ty(t)|dt

)2
≤ 8

( ∫ 1

0
| 1√

8
ln(|x(t)|+ 1)− 1√

8
ln(|y(t)|+ 1)|dt

)2

≤
( ∫ 1

0
|(ln(|x(t)|+ 1)− ln(|y(t)|+ 1))|dt

)2
≤
( ∫ 1

0
ln(
|x(t)|+ 1
|y(t)|+ 1

)dt
)2

≤
( ∫ 1

0
ln(1 +

|x(t)− y(t)|
|y(t)|+ 1

)dt
)2
≤
(

ln(1 +
∫ 1

0
|x(t)− y(t)|dt)

)2

≤
(

ln(1 +
∫ 1

0
|e

4√
2
|x(t)|
− e

4√
2
|y(t)|
|dt)

)2
≤
(

ln(1 +

√√√√
(
∫ 1

0
|e

4√
2
|x(t)|
− e

4√
2
|y(t)|
|dt)2)

)2

≤
(

ln(1 +
√

d(gx, gy))
)2

≤ ϕ(d(gx, gy), d(gx, Tx), d(gy, Ty),
1
2s

d(gx, Ty),
1
2s

d(gy, Tx)).

Now, if we define x0 = 0, α(x, y) = 1 and ϕ(t) = ln2(1 +
√

t) for all t1, t2, t3, t4, t5 ∈ R2, where
t = max{t1, t2, t3, t4, t5}. Thus, by using Theorem 2.1 we obtain that T and g have a unique common fixed point.

From Theorem 2.1, if we choose g = IX the identity mapping on X, we deduce the following corollary.

Corollary 2.1. Let (X, d) be a complete b-metric space and T : X → X be a self-mapping on X. If there exist
α : X× X → R and ϕ ∈ Φ such that for all x, y ∈ X,

α(x, y)s3d(Tx, Ty) ≤ ϕ(d(x, y), d(x, Tx), d(y, Ty),
1
2s

d(x, Ty),
1
2s

d(y, Tx)).

Also that the following conditions hold:

(i) T is α−admissible and triangular α−admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) X is α−regular;

(iv) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = u and Tv = v.

Then T has a unique fixed point.

Example 2.2. Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1

0 |x(t)| < ∞. Define d : X ×
X −→ [0, ∞) by

d(x, y) =
( ∫ 1

0
|x(t)− y(t)|dt

)2
.
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Then d is a b-metric on X, with s = 2.
The operator T : X −→ X defined by

Tx(t) =
1√
8

ln
(
|x(t)|+ 1

)
.

Now, we prove that Thas a unique fixed point. For all x, y ∈ X, we have

23d(Tx, Ty) = 23
( ∫ 1

0
|Tx(t)− Ty(t)|dt

)2
≤ 8

( ∫ 1

0
| 1√

8
ln(|x(t)|+ 1)− 1√

8
ln(|y(t)|+ 1)|dt

)2

≤
( ∫ 1

0
|(ln(|x(t)|+ 1)− ln(|y(t)|+ 1))|dt

)2
≤
( ∫ 1

0
ln(
|x(t)|+ 1
|y(t)|+ 1

)dt
)2

≤
( ∫ 1

0
ln(1 +

|x(t)− y(t)|
|y(t)|+ 1

)dt
)2
≤
(

ln(1 +
∫ 1

0
|x(t)− y(t)|dt)

)2

≤
(

ln(1 +

√
(
∫ 1

0
|x(t)− y(t)|dt)2)

)2

≤
(

ln(1 +
√

d(x, y))
)2

≤ ϕ(d(x, y), d(x, Tx), d(y, Ty),
1
2s

d(x, Ty),
1
2s

d(y, Tx)).

Now, if we define x0 = 0, α(x, y) = 1 and ϕ(t) = ln2(1 +
√

t) for all t1, t2, t3, t4, t5 ∈ R2, where
t = max{t1, t2, t3, t4, t5}. Thus, by using Corollary 2.1 we obtain that T has a unique fixed point.

From Theorem 2.1, if the function α : X × X → R is such that α(x, y) = 1 for all x, y ∈ X, we deduce the
following theorem.

Theorem 2.2. Let (X, d) be a complete b-metric space, T, g : X → X be such that TX ⊆ gX. Assume that gX is closed
such that for all x, y ∈ X,

s3d(Tx, Ty) ≤ ϕ(d(gx, gy), d(gx, Tx), d(gy, Ty),
1
2s

d(gx, Ty),
1
2s

d(gy, Tx)),

where ϕ ∈ Φ. Then T and g have a coincidence point. Moreover, if T and g are weakly compatible, then T and g have a
unique common fixed point.

In Theorem 2.1, if we put
ϕ(t1, t2, t3, t4, t5) = k max{t1, t2, t3, t4 + t5}

for all ti ∈ R+(i = 1, 2, 3, 4, 5), we deduce the following theorem.

Theorem 2.3. Let (X, d) be a complete b-metric space, T, g : X → X be such that TX ⊆ gX. Assume that gX is closed
and there exist α : X× X → R and 0 < k < 1

2 such that for all x, y ∈ X,

α(x, y)s3d(Tx, Ty) ≤ k max{d(gx, gy), d(gx, Tx), d(gy, Ty),
d(gx, Ty) + d(gy, Tx)

2s
}.

Assume also that the following conditions hold:

(i) T is g− α−admissible and triangular α−admissible;

(ii) there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1;

(iii) X is α−regular with respect to g.

Then T and g have a coincidence point.
Moreover, if the following conditions hold:

(a) The pair {T, g} is weakly compatible;

(b) either α(u, v) ≥ 1 or α(v, u) ≥ 1 whenever Tu = gu and Tv = gv.

Then T and g have a unique common fixed point.
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Example 2.3. Let X = [0, ∞) be endowed with b-metric d(x, y) = (|x − y|)2 = (x − y)2, where s = 2. Define
T, g : X −→ X by

T(x) =


1
8 x, 0 ≤ x ≤ 4

3 ,

x− 2
3

, x > 4
3 .

and
g(x) =

3
4

x ∀x ∈ X.

Now, we define the mapping α : X× X → R+ by

α(x, y) =


1, if (x, y) ∈ [0, 1],

0, otherwise.

It is easily seen that the pair {T, g} is weakly compatible, T(X) ⊂ g(X) and g(X) is closed. For all x, y ∈ X, we have

α(x, y)s3d(Tx, Ty) = 1.8.|1
8

x− 1
8

y|2 =
2
9
|3
4

x− 3
4

y|2

=
2
9

d(gx, gy)

≤ 1
3

max{d(gx, gy), d(gx, Tx), d(gy, Ty),
d(gx, Ty) + d(gy, Tx)

2s
}.

Moreover, there exists x0 ∈ X such that α(gx0, Tx0) ≥ 1. Indeed, for x0 = 1, we have α(g(1), T(1)) = α( 3
4 , 1

8 ) = 1.
Let x, y ∈ X such that α(gx, gy) ≥ 1, that is, gx, gy ∈ [0, 1] and by the definition of g, we have x, y ∈ [0, 4

3 ].
So, by definition of T and α, we have T(x) = 1

8 x ∈ [0, 1], T(y) = 1
8 y ∈ [0, 1] and α(Tx, Ty) = 1. Thus, T is

g− α−admissible and hence (i) is satisfied.
Finally, it remains to show that X is α−regular with respect to g. In so doing, let {xn} ⊆ X such that α(gxn, gxn+1) ≥
1 for all n ∈ N and gxn → gx ∈ gX as n → ∞. Since α(gxn, gxn+1) ≥ 1 for all n ∈ N, by the definition of α, we
have gxn ∈ [0, 1] for all n ∈ N and gx ∈ [0, 1]. Then, α(gxn, gx) ≥ 1. Now, all the hypotheses of Theorem 2.3 are
satisfied. Consequently, 0 is the unique common fixed point of T and g.

Remark 2.1. Since a b−metric space is a metric space when s = 1, so our results can be viewed as the generalization
an the extension of several comparable results.

References

[1] Agarwal, RP, El-Gebeily, MA, ORegan, D: Generalized contractions in partially ordered metric spaces.
Appl Anal. 87,18 (2008). doi:10.1080/00036810701714164

[2] Aghajani, A, Abbas, M, Roshan, JR: Common fixed point of generalized weak contractive mappings in
partially ordered b-metric spaces. Math. Slovaca (in press)

[3] Aghajani, A, Arab, R: Fixed points of (ψ, ϕ, θ)−contractive mappings in partially ordered b−metric
spaces and application to quadratic integral equations,Fixed Point Theory and Applications 2013,
2013:245.

[4] Akkouchi, M: Common fixed point theorems for two selfmappings of a b-metric space under an implicit
relation. Hacet. J. Math. Stat. 40(6), 805-810 (2011).

[5] Allahyari, R, Arab, R, Shole Haghighi, A:A generalization on weak contractions in partially ordered b-
metric spaces and its application to quadratic integral equations, Journal of Inequalities and Applications,
December 2014, 2014:355

[6] Arab, R, Zare ,K: New fixed point results for rational type contraction in partially ordered bmetric spaces,
International Journal of Analysis and Applications, Int. J. Anal. Appl., 10 (2) (2016), 64-70.



336 R. Arab / Common fixed point theorem for two weakly compatible self mappings in b−metric spaces

[7] Boriceanu, M, Bota, M, Petrusel, A: Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367-
377 (2010).

[8] Boriceanu, M: Strict fixed point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math.
4(3), 285-301 (2009).

[9] Czerwik, S: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ.
Modena 46(2), 263-276 (1998).

[10] Czerwik, S: Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1, 5-11 (1993).

[11] Ding, X. P. : Some common fixed point theorems of commuting mappings II, Math. Sem. Notes Kobe
Univ., 11 (1983), 301-305.

[12] Hussain, N, ori’c, D, Kadelburg, Z, Radenovi ’c, S: Suzuki-type fixed point results in metric type spaces.
Fixed Point Theory Appl. 2012, 126 (2012).

[13] Hussain, N, Shah, MH: KKM mappings in cone b-metric spaces. Comput. Math. Appl. 62, 1677-1684
(2011)

[14] Jovanovi’c, M, Kadelburg, Z, Radenovi’c, S: Common fixed point results in metric-type spaces. Fixed
Point Theory Appl. 2010, Article ID 978121 (2010). doi:10.1155/2010/978121

[15] Jungck, G, Rhoades, B,E: Fixed points for set valued functions without continiuty, Indian. J. Pur. Appl.
Math. 29 (1998) 227-238.

[16] Karapinar, E., Samet, B.:Generalized α − ψ-contractive type mappings and related fixed point
theorems with applications, Abstract and Applied Analysis 2012 Article ID 793486, 17 pages
doi:10.1155/2012/793486.

[17] Karapinar, E, Kumam, P, Salimi, P: On α−ψMeir-Keeler contractive mappings. Fixed Point Theory Appl.
2013, Article ID 94 (2013).

[18] Khamsi, MA, Hussain, N: KKM mappings in metric type spaces. Nonlinear Anal. 73(9), 3123-3129 (2010).

[19] Khan, AK, Domlo, AA, Hussain, N: Coincidences of Lipschitz type hybrid maps and invariant
approximation. Numer Funct Anal Optim. 28(9-10), 11651177 (2007). doi:10.1080/01630560701563859

[20] Lakshmikantham, V, iri, Lj: Coupled fixed point theorems for nonlinear contractions in partially ordered
metric space. Nonlinear Anal. 70, 43414349 (2009). doi:10.1016/j.na.2008.09.020

[21] Mustafa, Z, Sims, B: A new approach to generalized metric spaces. Nonlinear Convex Anal. 7(2), 289297
(2006)

[22] Mustafa, Z, Sims, B: Fixed point theorems for contractive mapping in complete G-metric spaces. Fixed
Point Theory Appl 10 (2009). Article ID 917175 2009

[23] Rosa, V, L, Vetro, P: Common fixed points for α − ψ − ϕ−contractions in generalized metric spaces,
Nonlinear Analysis: Modelling and Control, 2014, Vol. 19, No. 1, 43–54.

[24] Samet, B, Vetro, C, Vetro, P: Fixed point theorems for α− ψcontractive type mappings. Nonlinear Anal.
75, 2154-2165 (2012).

[25] Singh,S.P., Meade, B. A.: On common fixed point theorems, Bull. Austral. Math. Soc., 16 (1977), 49-53.

[26] Singh, SL, Prasad,B: Some coincidence theorems and stability of iterative procedures. Comput. Math.
Appl. 55, 2512-2520 (2008).

Received: January 10, 2016; Accepted: August 21, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/


	Introduction
	Main Results

