Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

www.malayajournal.org

On Some Decompositions of Continuity via δ -Local Function

in Ideal Topological Spaces

E. Hatir *

N. E. University, A. K. Education Faculty, Meram-Konya Turkey.

Abstract

We introduce the notions of $\delta^* - pre - continuity$, $\delta^* - B_t - continuity$, and $\delta^* - \beta - continuity$, $\delta^* - B_\beta - continuity$ and to obtain some decompositions of continuity via $\delta - local$ function in ideal topological spaces.

Keywords: $\delta - pre$ -open set, $\delta - \beta$ -open set, β -open set, $\beta - I$ -open set, $\delta - \alpha^*$ -open set, $\delta^* - \alpha$ -open set, decomposition of continuity.

2010 MSC: 54C08, 54C10.

©2012 MJM. All rights reserved.

1 Introduction and Preliminaries

Ideals in topological spaces have been considered since 1930. This topic has won its importance by Vaidyanathaswamy [13]. Janković and Hamlett investigated further properties of ideal topological space [7]. Recently, in [3] Hatir et al. have introduced and studied δ -local function in ideal topological space. In this paper, we have obtained decompositions of continuity using δ - local functions in ideal topological spaces.

Throughout this paper, spaces (X, τ) and (Y, τ) (or simply *X* and *Y*), always mean topological spaces on which no separation axiom is assumed. For a subset *A* of a topological space (X, τ) , Cl(A) and Int(A) will denote the closure and interior of *A* in (X, τ) , respectively.

A subset *A* of a topological space (X, τ) is said to be regular open (resp. regular closed) [12] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). *A* is called $\delta - open$ [12] if for each $x \in A$, there exists a regular open set *G* such that $x \in G \subset A$. The complement of a $\delta - open$ set is called $\delta - closed$. A point $x \in X$ is called a $\delta - cluster$ point of *A* if $Int(Cl(U)) \cap A \neq \phi$ for each open set *V* containing *x*. The set of all $\delta - cluster$ points of *A* is called the $\delta - closure$ of *A* and is denoted by $\delta Cl(A)$. The $\delta - interior$ of *A* is the union of all regular open sets of *X* contained in *A* and it is denoted by $\delta Int(A)$. *A* is $\delta - open$ if $\delta Int(A) = A$. $\delta - open$ sets forms a topology τ^{δ} . τ^{δ} is the same as the collection of all $\delta - open$ sets of (X, τ) and is denoted by $\delta O(X)$.

An ideal on a topological space (X, τ) is a nonempty collection of subsets of X which is satisfies $(i) A \in I$ and $B \subset A$ implies $B \in I$, $(ii) A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \rightarrow P(X)$ called a local function [7, 8] of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$, simply write A^* instead of $A^*(I, \tau)$. For every ideal topological space, there exists a topology $\tau^*(I)$ or briefly τ^* , finer than τ , generated by $\beta(I, \tau) = \{U - W : U \in \tau \text{ and } W \in I\}$, but in general $\beta(I, \tau)$ is not always a topology [7]. Also $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$. If $A \in \tau^*$, $Int^*(A) = A$ and $Int^*(A)$ will denote the τ^* interior of A. If I is an ideal on X then (X, τ, I) is called an ideal topological space.

Recently, Hatir et al. [3] introduced $\delta - local$ function in ideal topological spaces in the following manner. Let (X, τ, I) be an ideal topological space and A be a subset of X. Then $A^{\delta_*}(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \delta O(X, x)\}$ is called the $\delta - local$ function of I on X with respect to I and τ . We denote simply A^{δ_*} for $A^{\delta_*}(I, \tau)$. Furthermore, $Cl^{\delta_*}(A) = A \cup A^{\delta_*}$ defines a Kuratowski closure operator for $\tau^{\delta_*}(I)$. We will denote τ^{δ_*} the topology generated by Cl^{δ_*} , that is, $\tau^{\delta_*} = \{U \subset X : Cl^{\delta_*}(X - U) = X - U\}$. Therefore, the topology τ^{δ_*} finer than τ^{δ} and also the topology τ^* finer than τ^{δ_*} .

Lemma 1.1. [3] Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then 1) If $A \subset B$, then $Cl^{\delta_*}(A) \subset Cl^{\delta_*}(B)$ 2) $Cl^{\delta_*}(A \cap B) \subset Cl^{\delta_*}(A) \cap Cl^{\delta_*}(B)$ 3) If $U \in \tau^{\delta}$, then $U \cap Cl^{\delta_*}(A) \subset Cl^{\delta_*}(U \cap A)$ 4) $Cl^{\delta_*}(\cup_i(A_i)) = \cup_i(Cl^{\delta_*}(A_i))$ 5) If $I \subset J$, then $Cl^{J\delta_*}(A) \subset Cl^{I\delta_*}(A)$, (J is ideal)

First we shall recall some definitions used in the sequel.

Definition 1.1. A subset A of an ideal topological space (X, τ, I) is said to be

1) $\alpha - I - open [4]$ if $A \subset Int(Cl^*(Int(A)))$, 2) pre - I - open [2] if $A \subset Int(Cl^*(A))$, 3) $\beta - I - open [4]$ if $A \subset Cl(Int(Cl^*(A)))$, 4) $\delta^* - \alpha - open [6]$ if $A \subset Int(Cl^{\delta_*}(Int^*(A)))$, 5) $\delta - \alpha^* - open [6]$ if $A \subset Int(\delta Cl(Int^*(A)))$.

Definition 1.2. A subset A of a topological space (X, τ) is said to be

1) $\alpha - open [10]$ if $A \subset Int(Cl(Int(A)))$, 2) pre - open [9] if $A \subset Int(Cl(A))$, 3) $\beta - open [1]$ if $A \subset Cl(Int(Cl(A)))$, 4) $\delta - pre - open [11]$ if $A \subset Int(\delta Cl(A))$, 5) $\delta - \beta - open [5]$ if $A \subset Cl(Int(\delta Cl(A)))$.

Definition 1.3. Let $f : (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function. If for each $V \in \sigma$, $f^{-1}(V)$ is a $\alpha - I$ – open (resp. pre -I – open, $\beta - I$ – open, $\delta^* - \alpha$ – open, $\delta - \alpha^*$ – open), then f is said to be $\alpha - I$ – continuous [4] (resp. pre -I – continuous [2], $\beta - I$ – continuous [4], $\delta^* - \alpha$ – continuous [6], $\delta - \alpha^*$ – continuous [6]).

Definition 1.4. Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a function. If for each $V \in \sigma$, $f^{-1}(V)$ is an α – open (resp. pre – open, β – open, δ – β – open), then f is said to be α – continuous [10] (resp. pre – continuous [9], β – continuous [1], δ – pre – continuous [11], δ – β – continuous [5]).

2 $\delta^* - pre - open$ set and $\delta^* - \beta - open$ set

We give the following generalized open sets to obtain new decompositions of continuity.

Definition 2.5. A subset A of an ideal topological space (X, τ, I) is said to be 1) $\delta^* - pre - open \text{ if } A \subset Int(Cl^{\delta_*}(A)),$ 2) $\delta^* - \beta - open \text{ if } A \subset Cl(Int(Cl^{\delta_*}(A))).$

Proposition 2.1. 1) Every $\alpha - I - open$ set is $\delta^* - \alpha - open$,

2) Every δ* - α - open set is δ - α* - open,
 3) Every δ - α* - open set is δ - pre - open,
 4) Every δ* - α - open set is δ* - pre - open,

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$

5) Every $\delta^* - pre - open$ set is $\delta - pre - open$,

6) Every δ* - pre - open set is δ* - β - open,
7. Every δ* - β - open set is δ - β - open.

Proof. Straightforward from the definitions of the topologies τ^* , τ^{δ} and τ^{δ_*} and [6].

Remark 2.1. None of them in the proposition 1 is reversible as shown by examples below. Also α – open set and $\delta^* - \alpha$ – open [6], pre – open set and $\delta^* - pre$ – open, β – open set and $\delta^* - \beta$ – open are independent notions.

Example 2.1. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b, d\}, \{a, c\}, \{a, b, d\}\}$ and $I = \{\phi, \{a\}\}$. Then $\tau^* = \{\phi, X, \{a\}, \{c\}, \{b, d\}, \{a, c\}, \{a, b, d\}, \{b, c, d\}\}$ and $\tau^{\delta} = \{\phi, X, \{b, d\}, \{a, c\}\}$. Take $A = \{b, c, d\}$. Therefore, A is a $\delta^* - pre - open$ set and $\delta^* - \beta - open$ set, but neither pre - open nor $\beta - open$ and not pre -I - open set.

Example 2.2. Let $X = \{a, b, c, d, e\}$, $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ and $I = \{\phi, \{a\}\}$. Then $\tau^{\delta} = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$. Take $A = \{a, c, d\}$. Therefore, since $Int(Cl^{\delta_*}(A)) = \{a, c\}$ and Int(Cl(A)) = X, A is pre – open set and α – open set, δ – pre – open set and also $\delta^* - \beta$ – open set, but neither δ^* – pre – open nor $\delta^* - \alpha$ – open.

Example 2.3. Let $X = \{a, b, c, d, e\}, \tau = \{\phi, X, \{a\}, \{c, e\}, \{a, c, e\}, \{a, b\}, \{a, b, c, e\}\}$ and $I = \{\phi, \{e\}\}$. Then $\tau^{\delta} = \{\phi, X, \{c, e\}, \{a, b\}, \{a, b, c, e\}\}$. Take $A = \{a, e\}$. Therefore, A is β – open set and also $\delta - \beta$ – open set, but not $\delta^* - \beta$ – open since $\{a, e\} \notin Cl(Int(Cl^{\delta_*}(A))) = \{a, b, d\}$.

Proposition 2.2. The arbitrary union of δ^* – pre – open sets ($\delta^* - \beta$ – open sets) are δ^* – pre – open set ($\delta^* - \beta$ – open set).

Proof. Let A_i be $\delta^* - pre - open$ sets for every *i*. Then, $A_i \subset Int(Cl^{\delta_*}(A_i))$ for every *i*. Hence, $\cup_i A_i \subset \cup_i (Int(Cl^{\delta_*}(A_i))) \subset Int(Cl^{\delta_*}(\cup_i A_i))$ by Lemma 1.1(4). Consequently, $\cup_i A_i$ is $\delta^* - pre - open$ set. For $\delta^* - \beta - open$ set, the proof is similar.

Remark 2.2. The intersection of two $\delta^* - pre - open$ sets ($\delta^* - \beta - open$ sets) need not be a $\delta^* - pre - open$ set ($\delta^* - \beta - open$ set) as in the following example.

Example 2.4. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{a, c\}, \{a, d\}, \{a, c, d\}\}$ and $I = \{\phi, \{b\}\}$. Then $\tau^{\delta} = \{\phi, X\}$ and $\tau^* = \tau$. Take $A = \{b, c\}$ and $B = \{a, b\}$ are $\delta^* - pre - open$ set and $\delta^* - \beta - open$ set, but $A \cap B = \{b\}$ is neither $\delta^* - pre - open$ set nor $\delta^* - \beta - open$ set since $Cl(Int(Cl^{\delta_*}(\{b\}))) = \phi$.

Corollary 2.1. [3] Let (X, τ, I) be an ideal topological space and $A \subset X$. 1) If $A \subset A^{\delta_*}$, then $\delta Cl(A) = Cl^{\delta_*}(A)$ 2) If $I = \{\phi\}$, then $\delta Cl(A) = Cl^{\delta_*}(A)$.

Proposition 2.3. Let (X, τ, I) be an ideal topological space and $A \subset X$. If $A \subset A^{\delta_*}$ (If $I = \{\phi\}$), then

1) $\delta - pre - open \text{ set and } \delta^* - pre - open \text{ set are equivalent}$

2) $\delta - \beta$ – open set and $\delta^* - \beta$ – open set are equivalent.

Proof. By Corollary 2.1, if $A \subset X$, then it $\delta Cl(A) = Cl^{\delta_*}(A)$. Thus we get the result.

Proposition 2.4. Let (X, τ, I) be an ideal topological space and $A, B \subset X$. Then the following statements hold: 1) If $A \in \tau^{\delta}$ and B is $\delta^* - pre - open$ set, then $A \cap B$ is $\delta^* - pre - open$ set, 2) If $A \in \tau^{\delta}$ and B is $\delta^* - \beta - open$ set, then $A \cap B$ is $\delta^* - \beta - open$ set.

Proof. 1) Let $A \in \tau^{\delta}$ and *B* is $\delta^* - pre - open$ set. Then,

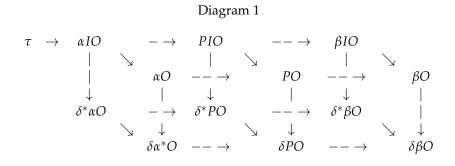
$$A \cap B \subset \delta Int(A) \cap Int(Cl^{\delta_*}(B)) = \delta Int(\delta Int(A)) \cap Int(Cl^{\delta_*}(B))$$
$$\subset Int(\delta Int(A) \cap Int(Cl^{\delta_*}(B))) = Int(\delta Int(A) \cap Cl^{\delta_*}(B))$$
$$\subset Int(Cl^{\delta_*}(A \cap B))$$
(by Lemma 1.1.)

The proof of (2) are same with the proof of (1).

Proposition 2.5. Let I and J be any two ideals on a topological space (X, τ) with $I \subset J$. If a subset A of X is $\delta^* - pre - (J)open$ set $(\delta^* - \beta - (J)open$ set), then it is $\delta^* - pre - (I)open$ set $(\delta^* - \beta - (I)open$ set).

Proof. Follows from directly Lemma 1.1(5).

The above discussions are summarized in the following diagram.



By αIO ,(resp. *PIO*, βIO , αO , *PO*, βO , $\delta^* \alpha O$, $\delta^* PO$, $\delta^* \beta O$, $\delta \alpha^* O$, δPO , $\delta \beta O$) in diagram, we denote the family of all $\alpha - I - open$ sets (resp. *pre* - I - open, $\beta - I - open$, $\alpha - open$, *pre* - open, $\beta - open$, $\delta^* - \alpha - open$, $\delta^* - pre - open$, $\delta^* - \beta - open$, $\delta - \alpha^* - open$, $\delta - pre - open$, $\delta - \beta - open$) of a space (X, τ) and (X, τ, I).

Definition 2.6. A subset A of an ideal topological space (X, τ, I) is called

1) $A \delta^* - t - set \text{ if } Int(A) = Int(Cl^{\delta_*}(A)),$ 2) $A \delta^* - \beta - set \text{ if } Int(A) = Cl(Int(Cl^{\delta_*}(A))),$ 3) $A \delta - \alpha^* - set [6] \text{ if } Int(A) = Int(\delta Cl(Int^*(A))),$ 4) $A \delta^* - \alpha - set [6] \text{ if } Int(A) = Int(Cl^{\delta_*}(Int^*(A))).$

Proposition 2.6. Let A be a subset of an ideal topological space (X, τ, I) . The following properties hold:

Every δ* - t - set is δ* - α - set,
 Every δ* - β - set is δ* - t - set,
 Every δ - α* - set is δ* - α - set [6].

Proof. Straightforward from the definitions of the topologies τ^{δ} and τ^{δ_*} and [6].

Remark 2.3. None of them in Proposition 2.5 is reversible as shown by examples below. Also the notions of $\delta^* - t - set$ and $\delta - \alpha^* - set$ are independent notions [6].

Example 2.5. Let $X = \{a, b, c, d, e\}, \tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ and $I = \{\phi, \{c\}\}$. Then $\tau^{\delta} = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\tau^* = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}, \{a, b, d, e\}\}$. Take $A = \{b, c\}$. Therefore A is $\delta^* - \alpha$ - set and $\delta - \alpha^*$ - set, but not $\delta^* - \beta$ - set and not $\delta^* - t$ - set since $Cl(Int(Cl^{\delta_*}(\{b, c\}))) = X \neq Int(\{b, c\}))$ and $\{c\} = Int(\{b, c\}) = Int(Cl^{\delta_*}(Int^*(\{b, c\}))) = Int(\delta Cl(Int^*(\{b, c\}))) = \{c\}$.

In this example if we take $A = \{c, d\}$, we obtain that A is $\delta^* - t$ – set, but not $\delta^* - \beta$ – set since $Int(\{c, d\}) \neq Cl(Int(Cl^{\delta_*}(\{c, d\}))) = \{c, d, e\}$ and $Int(\{c, d\}) = Int(Cl^{\delta_*}(\{c, d\})) = \{c\}$.

Example 2.6. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{d\}, \{b, d\}, \{a, d\}, \{a, b, d\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. Then $\tau^{\delta} = \{\phi, X, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $\tau^* = \wp(X)$. *if we take* $A = \{b, c\}$, *then* A *is* $\delta^* - t$ *- set and* $\delta^* - \alpha$ *- set, but not* $\delta - \alpha^*$ *- set since* $Int(\{b, c\}) = Int(Cl^{\delta_*}(\{b, c\})) = \phi$ and $Int(\{b, c\}) = \phi \neq Int(\delta Cl(Int^*(\{b, c\}))) = \{b, d\}$.

Definition 2.7. Let (X, τ, I) be an ideal topological space. A subset A in X is said to be a $\delta^* - B_t$ – set (resp. $\delta^* - B_\beta$ – set, $\delta^* - B_\alpha$ – set [6], $\delta - B\alpha^*$ – set [6]) if there is a $U \in \tau$ and a $\delta^* - t$ – set (resp. $\delta^* - \beta$ – set, $\delta - \alpha^*$ – set, $\delta^* - \alpha$ – set) V in X such that $A = U \cap V$.

Proposition 2.7. For a subset A of a space (X, τ, I) , the following properties hold:

- 1) Every $\delta^* t set$ is $\delta^* B_t set$,
- 2) Every $\delta^* \beta$ set is $\delta^* B_\beta$ set,
- 3) Every $\delta \alpha^* set \text{ is } \delta B\alpha^* set [6]$,
- 4) Every $\delta^* \alpha$ set is $\delta^* B_{\alpha}$ set [6],
- 5) Every open set is $\delta^* B_t set$ (resp. $\delta^* B_\beta set$, $\delta B\alpha^* set$, $\delta^* B_\alpha set$).

Proof. Since $A = A \cap X$ and $X \in \tau$, we get 1-4, also if $A \in \tau$, we get 5.

Remark 2.4. None of them in Proposition 2.6 is reversible as shown by example below and [6].

Example 2.7. Let $X = \{a, b, c, d, e\}$, $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ and $I = \{\phi, \{c\}\}$ and $\tau^{\delta} = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$. If we take $A = \{a\}$, then A is $\delta^* - B_t - set$ ($\delta^* - B_\beta - set$), but not $\delta^* - t - set$ ($\delta^* - \beta - set$) since $\{a\} \in \tau$ and $\{a\} = \{a\} \cap X$ also $Int(Cl^{\delta_*}(\{a\})) = \{a, b\} \neq Int(\{a\})$. In this example, $\{c, d\}$ is $\delta^* - B_t - set$ and $\delta^* - B_\beta - set$, but $\{c, d\} \notin \tau$.

By Proposition 2.5, we have the following diagram

Diagram 2

$$\begin{array}{cccc} \delta^{*}-B_{\beta}-set & \Longrightarrow & \delta^{*}-B_{t}-set & \Longrightarrow & \delta^{*}-B_{\alpha}-set \\ & & \uparrow \\ \delta-B\alpha^{*}-set \end{array}$$

Theorem 2.1. Let A be a subset of an ideal topological space (X, τ, I) . Then the following statements are equivalent: 1) A is open,

A is δ* - pre - open and δ* - B_t - set,
 A is δ* - β - open and δ* - B_β - set,
 A is δ* - α - open and δ* - B_α - set [6],
 A is δ - α* - open and δ - Bα* - set [6].

Proof. (1) \Longrightarrow (2). This is obvious from diagrams 1-2 and Proposition 2.6 (5).

(2) \Longrightarrow (1). Since *A* is a $\delta^* - B_t - set$, we have $A = U \cap V$, where *U* is an open set and $Int(V) = Int(Cl^{\delta_*}(V))$. By the hypothesis, *A* is also $\delta^* - pre - open$, and we have

$$A \subset Int(Cl^{\delta_*}(A)) = Int(Cl^{\delta_*}(U \cap V)) \subset Int(Cl^{\delta_*}(U) \cap Cl^{\delta_*}(V))$$
$$= Int(Cl^{\delta_*}(U)) \cap Int(Cl^{\delta_*}(V)) = Int(Cl^{\delta_*}(U)) \cap Int(V)$$

Hence

$$A = U \cap V = (U \cap V) \cap U \subset (Int(Cl^{\delta_*}(U)) \cap Int(V)) \cap U$$
$$= (Int(Cl^{\delta_*}(U)) \cap U) \cap Int(V) = U \cap Int(V).$$

Notice $A = U \cap V \supset U \cap Int(V)$. Therefore, we obtain $A = U \cap Int(V)$. (1) \iff (3). The proof is same with (1) \iff (2).

3 Decompositions of continuity

Definition 3.8. Let $f : (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function. If for each $V \in \sigma$, $f^{-1}(V)$ is a $\delta^* - pre - open$ set $(\delta^* - \beta - open$ set), then f is said to be $\delta^* - pre - continuous$ $(\delta^* - \beta - continuous)$.

Definition 3.9. Let $f : (X, \tau, I) \longrightarrow (Y, \sigma)$ be a function. If for each $V \in \sigma$, $f^{-1}(V)$ is a $\delta^* - B_t$ – set (resp. $\delta^* - B_{\beta} - set$, $\delta^* - B_{\alpha} - set$, $\delta - B\alpha^* - set$), then f is said to be $\delta^* - B_t$ – continuous (resp. $\delta^* - B_{\beta}$ – continuous, $\delta^* - B_{\alpha}$ – continuous [6], $\delta - B\alpha^*$ – continuous [6]).

By Diagrams 1-2, we have the following proposition.

Proposition 3.8. 1) $A \delta^* - B_\beta$ – continuous function is $\delta^* - B_t$ – continuous,

2) $A \delta^* - B_t$ - continuous function is $\delta^* - B_{\alpha}$ - continuous,

3) $A \delta - B\alpha^* - continuous$ function is $\delta^* - B_\alpha - continuous$,

4) A $\delta^* - \alpha$ - continuous function is $\delta^* - pre$ - continuous,

5) A δ^* – pre – continuous function is δ^* – β – continuous,

6) A $\delta^* - \alpha$ - continuous function is $\delta - \alpha^*$ - continuous,

7) $A \delta - \alpha^* - continuous function is \delta - pre - continuous,$

8) A δ^* – pre – continuous function is δ – pre – continuous.

By Theorem 2.1, we have the following main theorem.

Theorem 3.2. For a function $f : (X, \tau, I) \longrightarrow (Y, \sigma)$, the following properties are equivalent:

1) f is continuous,

2) *f* is $\delta^* - pre - continuous and <math>\delta^* - B_t - continuous$,

3) *f* is $\delta^* - \beta$ – continuous and $\delta^* - B_\beta$ – continuous.

Remark 3.5. 1) $\delta^* - pre - continuous and <math>\delta^* - B_t - continuous$ are independent of each other, 2) $\delta^* - \beta - continuous$ and $\delta^* - B_\beta - continuous$ are independent of each other.

Example 3.8. Let $X = Y = \{a, b, c, d, e\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}, I = \{\phi, \{a\}\} and then$ $<math>\tau^{\delta} = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and also $\tau_2 = \{\phi, Y, \{a, b\}\}$. Define a function $f : (X, \tau_1, I) \longrightarrow (Y, \tau_2)$ as follows: f(a) = f(c) = a, f(b) = c, f(d) = b, f(e) = d. Then f is $\delta^* - B_t$ - continuous, but not $\delta^* - pre$ - continuous since $f^{-1}(\{a, b\}) = \{a, c, d\}$ and $\{a, c\} = Int\{a, c, d\} = Int(Cl^{\delta_*}(\{a, c, d\})) = \{a, c\}, thus\{a, c, d\}$ is $\delta^* - B_t - set$, but not $\delta^* - pre - open$.

Example 3.9. Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, d\}, \{a, c, d\}\}, I = \{\phi, \{b\}\} and then$ $<math>\tau^{\delta} = \{\phi, X\}, \tau^* = \tau \text{ and also } \tau_2 = \{\phi, Y, \{b\}\}.$ Define an identity function $f : (X, \tau_1, I) \longrightarrow (Y, \tau_2).$ Then f is $\delta^* - B_{\beta}$ – continuous, but not $\delta^* - \beta$ – continuous, since $f^{-1}(\{b\}) = \{b\}$ and $Int(\{b\}) = \phi = Cl(Int(Cl^{\delta_*}(\{b\}))))$, thus $\{b\}$ is $\delta^* - B_{\beta}$ – set, but not $\delta^* - \beta$ – open set.

Example 3.10. Let $X = Y = \{a, b, c, d, e\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}, I = \{\phi, \{a\}\} and then <math>\tau^{\delta} = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\tau_1^* = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}, \{a, b, d, e\}\}$. Let $\tau_2 = \{\phi, Y, \{a, b\}\}$. Define a function $f : (X, \tau_1, I) \longrightarrow (Y, \tau_2)$ as follows: f(a) = c, f(b) = a, f(c) = b, f(d) = d, f(e) = d. Then f is $\delta^* - pre - continuous$, but not $\delta^* - B_t - continuous f^{-1}(\{a, b\}) = \{b, c\}$ and $\{c\} = Int(\{b, c\}) \neq Int(Cl^{\delta_*}(\{b, c\})) = X$, thus $\{b, c\}$ is $\delta^* - pre - open$, but not $\delta^* - B_t - set$. In this example, if we take same function, Then f is $\delta^* - \beta - continuous$, but not $\delta^* - B_{\beta} - continuous$ since $f^{-1}(\{a, b\}) = \{b, c\}$ and $\{c\} = Int(\{b, c\}) \neq Cl(Int(Cl^{\delta_*}(\{b, c\}))) = X$.

Corollary 3.2. For a function $f : (X, \tau) \longrightarrow (Y, \sigma)$, the following properties are equivalent:

1) f is continuous,

2) f is δ – pre – continuous and δ – B – continuous [4].

3) f is pre – continuous and B – continuous [2].

Corollary 3.3. For a function $f : (X, \tau, I) \longrightarrow (Y, \sigma)$, the following properties are equivalent:

1) f is continuous,

2. *f* is $\alpha - I$ – continuous and C_I – continuous [4],

3. f is pre -I – continuous and B – I – continuous [2],

4. f is $\delta^* - \alpha - continuous$ and $\delta^* - B_{\alpha} - continuous$ [6],

5. *f* is $\delta - \alpha^* - continuous$ and $\delta - B\alpha^* - continuous$ [6].

References

- [1] Abd El-Monsef M. E., El-Deep S. N. and Mahmoud R. A., β open sets and β continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1)(19839, 77-90.
- [2] Dontchev, J., On pre-I-open sets and a decomposition of I continuity, Banyan Math. J., 2(1996).
- [3] Hatir E., Al-Omari A. and Jafari S., δ *local* function and its properties, *Fasciculi Mathematici*, 53(2014), 53-64.
- [4] Hatir E. and Noiri T., On decompositions of continuity via idealization, *Acta Math. Hungar.*, 96(4)(2002), 341–349
- [5] Hatir E. and Noiri T., Decompositions of continuity and complete continuity, *Acta Math. Hungar.*, 113(4)(2006), 281-287.
- [6] Hatir E., Another decomposition of continuity via δ *local* function in ideal topological spaces, *Asian J. of Mathematics and Computer Research*, 18(3), 106-112, 2017

- [7] Janković D. and Hamlett T. R., New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [8] Kuratowski K., Topology I, Warszawa, 1933.

514

- [9] Mashhour A. S., Abd El-Monsef M. E. and El-Deeb S. N., On pre-continuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [10] Nijastad O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [11] Raychaudhuri S. and Mukherjee M. N., On δ *almost* continuity and δ *preopen* sets, *Bull. Inst. Math. Acad. Sinica* 21(1993), 357-366.
- [12] Velićko N. V., H-closed topological spaces, Amer. Math. Soc. Transl., 2(78)(1968), 103-118.
- [13] Vaidyanathaswamy R., Set Topology, Chelsea Publishing Company, 1960.

Received: January 12, 2017; Accepted: May 15, 2017

UNIVERSITY PRESS

Website: http://www.malayajournal.org/