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Extremal trees with respect to the first and second
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Abstract

Let G be a graph with edge set E(G). The first and second reformulated Zagreb indices of G are defined as
EM1(G) = ∑e∈E(G) deg(e)2 and EM2(G) = ∑e∼ f deg(e)deg( f ),respectively, where deg(e) denotes the degree
of the edge e, and e ∼ f means that the edges e and f are incident. In this paper, the extremal trees with
respect to the first and second reformulated Zagreb indices are presented.
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1 Basic Definitions

Throughout this paper we consider undirected finite graphs without loops and multiple edges. The vertex
and edge sets of a G will be denoted by V(G) and E(G), respectively. For a vertex v in G, the degree of v,
deg(v), is the number of edges incident to v and N[v, G] is the set of all vertices adjacent to v. A vertex with
degree one is called a pendent and ∆ = ∆(G) denotes the maximum degree of G. The number of vertices of
degree i and the number of edges of G connecting a vertex of degree i with a vertex of degree j are denoted
by ni = ni(G) and mi,j(G), respectively. One can easily see that ∑

∆(G)
i=1 ni = |V(G)|.

Suppose V(G) = {v1, . . . , vn} and dk = deg(vk), 1 ≤ k ≤ n. The sequence D(G) = (d1, d2, . . . , dn) is called
the degree sequence of G and for simplicity of our argument, we usually write D(G) = (xa1

1 , xa2
2 , ..., xat

t ), when

D(G) = (

a1 times︷ ︸︸ ︷
x1, ..., x1,

a2 times︷ ︸︸ ︷
x2, ..., x2, ...,

at times︷ ︸︸ ︷
xt, ..., xt),

x1 > x2 > ... > xt and a1, ..., at are positive integers with a1 + a2 + ... + at = n.
Suppose W ⊂ V(G) and L ⊆ E(G). The notations G \W and G \ L stand for the subgraphs of G obtained

by deleting the vertices of W and the subgraph obtained by deleting the edges of L, respectively. If W = {v}
or L = {xy}, then the subgraphs G \W and G \ L will be written as G− v and G− xy for short, respectively.
Moreover, for any two nonadjacent vertices x and y of G, let G + xy be the graph obtained from G by adding
an edge xy.

A tree is a connected acyclic graph. It is well-known that any tree with at least two vertices has at least two
pendent vertices. The set of all n−vertex trees will be denoted by τ(n). We denote the n−vertex path, cycle
and the star graphs with Pn, Cn and Sn, respectively.

2 Preliminaries

The well-known Zagreb indices are among the oldest and most important degree-based molecular
structure-descriptors. The first and second Zagreb indices are defined as the sum of squares of the degrees of
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Figure 1: The Graphs G, P, Q, G1 and G2 in Transformation A.

the vertices and the sum of product of the degrees of adjacent vertices, respectively. These graph invariant
was introduced many years ago by Gutman and Trinajesti/c [3]. We refer to [2, 9], for the history of these
graph invariants and their role in QSAR and QSPR studies.

Milićević et al. [8], was introduced the first and second reformulated Zagreb indices of a graph G as edge
counterpart of the first and second Zagreb indices, respectively. They are defined as
EM1(G) = ∑e∈E(G) deg(e)2 and EM2(G) = ∑e∼ f deg(e)deg( f ), where deg(e) denotes the degree of the edge e,
and e ∼ f means that the edges e and f are incident. In a recent paper, Milovanović et al. [7] obtained some
relationship between Zagreb and reformulated Zagreb indices.

Zhou and Trinajestić [11], obtained sharp bounds for the reformed Zagreb indices. Ilić and Zhou [4]
gave upper and lower bounds for the first reformulated Zagreb index and lower bounds for the second
reformulated Zagreb index. They proved that if G is an n−vertex unicyclic graph then EMi(G) ≥ EMi(Cn),
i = 1, 2, with equality if and only if G ∼= Cn. Suppose S?

n denotes the n−vertex unicyclic graph obtained
by adding an edge to an n−vertex star, connecting two pendent vertices. They also proved that if G is an
n−vertex unicyclic graph then EMi(G) ≤ EMi(S?

n), i = 1, 2, with equality if and only if G ∼= S′n.
Ji et al. [6] provided a shorter proof for results given by Ilić and Zhou and characterized the extremal

properties of the first reformulated Zagreb index in the class of trees and bicyclic graphs by introducing some
graph operations which increase or decrease this invariant. In [5], the authors applied a similar method as
those given in [6] to find sharp bound for the first reformulated Zagreb index among all tricyclic graphs.

Su et al. [10], obtained the maximum and minimum of the first reformulated Zagreb index of graphs with
connectivity at most k and characterized the corresponding extremal graphs. We encourage the interested
readers to consult papers [1, 12] and references therein for more information on Zagreb and reformulated
Zagreb indices of simple graphs.

3 Some Graph Transformations

In this section some graph operations are introduced which decreases the first and the second reformulated
Zagreb index of graphs.

Transformation A. Suppose G is a graph with a given vertex w such that deg(w) ≥ 1. We also assume that
P := v1v2...vl and Q := u1u2...uk are two paths with l and k vertices, respectively. Define G1 to be the graph
obtained from G, P and Q by attaching vertices v1w, wu1, and G2 = G1 − v1w + ukv1. The above referred
graphs have been illustrated in Figure 1.

Lemma 3.1. Let G1 and G2 be two graphs as shown in Figure 1. Then EM1(G2) < EM1(G1) and EM2(G2) <

EM2(G1).

Proof. Suppose deg(w) = x, N[w, G] = {l1, . . . lx} and deg(li) = di, for i = 1, . . . , x. If k, l ≥ 2 and x ≥ 1, then

EM1(G1)− EM1(G2) = 2(x + 2)2 +
x

∑
i=1

(di + x)2

− ((x + 1)2 + 8 +
x

∑
i=1

(di + x− 1)2) > (x + 2)2 − 8 > 0.

If k = l = 1, or (k = 1 & l ≥ 2), then a simple calculation shows the validity of EM1(G2) < EM1(G1), as
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Figure 2: The Graphs G, G0, Pk, G1 and G2 in Transformation B.

desired. Suppose that k, l ≥ 3. Then,

EM2(G1)− EM2(G2) > 2(x + 2) + (x + 2)2 +
x

∑
i=1

(x + 2)(x + di) + 2− (4 + 4 + 4)

> 0.

If k, l ∈ {1, 2}, or (k = 1 & l ≥ 3) or (k = 2 & l ≥ 3), then a simple calculation shows the validity of
EM2(G2) < EM2(G1), proving the lemma.

Transformation B. Suppose G and G0 are two graphs with given vertices {v1, v2} ⊆ V(G) and w ∈ V(G0)

such that dG(v1) = 1, dG(v2) ≥ 2, dG0(w) ≥ 1, and v1v2 ∈ E(G). We also assume that Pk := u1u2 . . . uk is a
path with k ≥ 1 vertices. Construct G1 as the graph obtained from G, G0 and Pk by adding the edges v1u1,
v2w, and G2 = G1 − {v1u1, v2w}+ {v2uk, u1w}. The above referred graphs have been illustrated in Figure 2.

Lemma 3.2. Let G1 and G2 be two graphs as shown in Figure 2. Then EM1(G2) < EM1(G1) and EM2(G2) <

EM2(G1).

Proof. Suppose deg(v2) = x, N[v2, G] = {l1 := v1, . . . lx} and deg(li) = di, for i = 2, . . . , x. In addition,
suppose deg(w) = h, N[w, G0] = {r1, . . . rh} and deg(ri) = bi, for i = 1, . . . , h. If x ≥ 2 and h ≥ 1, then

EM1(G1)− EM1(G2) = 1 + (x + 1)2 + (x + h)2 − (x2 + (x + 1)2 + (h + 1)2)

= 2h(x− 1) > 0,

as desired. Suppose k ≥ 2. Then,

EM2(G1)− EM2(G2) = 2 + 2(x + 1) + (x + 1)(x + h) +
x

∑
i=2

(x + 1)(di + x− 1)

+
x

∑
i=2

(x + h)(di + x− 1) +
h

∑
i=1

(x + h)(bi + h− 1)

−
(

x(x + 1) + 2(x + 1) + 2(h + 1) +
x

∑
i=2

x(di + x− 1)

+
x

∑
i=2

(x + 1)(di + x− 1) +
h

∑
i=1

(h + 1)(bi + h− 1)
)

> 2 + (x + 1)(x + h)− x(x + 1)− 2(h + 1) = h(x− 1) > 0.

If k = 1, then a simple calculation shows the validity of EM2(G2) < EM2(G1), proving the lemma.

Transformation C. Suppose G, G0 and G′ are three graphs with given vertices w ∈ V(G0), {v1, v2} ⊆ V(G)

and y ∈ V(G′) such that dG0(w) ≥ 2, dG(v1) ≥ 2, dG(v2) = 1 and dG′(y) ≥ 2. In addition, we assume that
Pk := u1u2 . . . uk is a path with k ≥ 1 vertices. Define G1 to be the graph obtained from G, G0, G′ and Pk
by adding the edges wv1, v2u1, uky and G2 = G1 − {wv1, v2u1, uky} + {wu1, ukv1, v2y}. The above referred
graphs have been illustrated in Figure 3.

Lemma 3.3. Let G1 and G2 be two graphs as shown in Figure 3. Then EM1(G2) < EM1(G1).
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Figure 3: The Graphs G0, G,G′, Pk, G1 and G2 in Transformation C.

Tf ∈ F(n) Th ∈ H(n) Tr ∈ R(n)

Figure 4: The trees in F(n), H(n) and R(n).

Proof. Suppose that dG0(w) = x, dG(v1) = k and k, x ≥ 2. Then,

EM1(G1)− EM1(G2) = (x + k)2 + 4− ((x + 1)2 + (k + 1)2)

= 2kx + 2− (2(x + k)) > 0,

proving the lemma.

4 Main Results

The aim of this section is to apply Transformations A-C to obtain an ordering of trees with respect to the first
and second reformulated Zagreb indices. For simplicity of our argument, we first introduce a notation. Set

F(n) = {T ∈ (41, 2n−5, 14)| m1,2(T) = 1, m1,4(T) = 3, m2,4(T) = 1 and m2,2(T) = n− 6},

where n ≥ 7 is a positive integer. It is easy to see that for each T ∈ F(n),

EM1(T) = 4n + 20 , EM2(T) = 4n + 45. (4.1)

Theorem 4.1. Let T′ be a tree with ∆(T′) ≥ 4. If T′ /∈ F(n), then for each T ∈ F(n), we have EM1(T) < EM1(T′)
and EM2(T) < EM2(T′).

Proof. We first assume that T′ ∈ (41, 2n−5, 14). Since T′ 6∈ F(n), m1,2(T) 6= 1, m1,4(T) 6= 3, m2,4(T) 6= 1 or
m2,2(T) 6= n − 6. We now apply a repeated application of Transformation B to obtain a tree Q ∈ F(n). By
Lemma 3.2, EM1(T) = EM1(Q) < EM1(T′) and EM2(T) = EM2(Q) < EM2(T′), as desired.

Next suppose T′ 6∈ (41, 2n−5, 14). Then by a repeated application of Transformation A, we obtain a tree G ∈
(41, 2n−5, 14). If G ∈ F(n), then by Lemma 3.1, EM1(T) = EM1(G) < EM1(T′) and EM2(T) = EM2(G) <

EM2(T′). In other cases, we obtain the result by replacing T′ with G in the first case.

Suppose n ≥ 10 and define H(n) = {T ∈ (33, 2n−8, 15)|m1,2(T) = 0, m1,3(T) = 5, m2,3(T) = 4, m3,3(T) =
0 and m2,2(T) = n− 10}. It is easy to see that for each T ∈ H(n),

EM1(T) = 4n + 16. (4.2)

Theorem 4.2. Let T′ be a tree with n ≥ 10 vertices and ∆(T′) = 3 such that n3(T′) ≥ 3. If T′ 6∈ H(n), then for each
T ∈ H(n), EM1(T) < EM1(T′).

Proof. Suppose T′ ∈ (33, 2n−8, 15). Since T′ 6∈ H(n), m1,2(T) 6= 0, m1,3(T) 6= 5, m2,3(T) 6= 4, m3,3(T) 6= 0
or m2,2(T) 6= n− 10. Again a repeated application of Transformations B and C, will result a tree Q ∈ H(n).
Now by Lemmas 3.2 and 3.3, EM1(T) = EM1(Q) < EM1(T′). Suppose n3(T′) ≥ 4. Since n3(T′) ≥ 4, by a
repeated application of Transformation A we obtain a tree G ∈ (33, 2n−8, 15). If G ∈ H(n), then by Lemma
3.1, EM1(T) = EM1(G) < EM1(T′). In other cases, we obtain the result by replacing T′ with G in the first
case.
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Table 1: The Trees with ∆ ≤ 3 and n3 ≤ 2.

Notation m3,3 m2,3 m1,2 m1,3 m2,2 EM1

A1 0 0 2 0 n-3 4n-10
A2 0 1 1 2 n-5 4n-2
A3 0 2 2 1 n-6 4n
A4 0 3 3 0 n-7 4n+2
A5 0 2 0 4 n-7 4n+6
A6 0 3 1 3 n-8 4n+8
A7 0 4 2 2 n-9 4n+10
A8 1 1 1 3 n-7 4n+10
A9 0 5 3 1 n-10 4n+12
A10 1 2 2 2 n-8 4n+12
A11 0 6 4 0 n-11 4n+14
A12 1 3 3 1 n-9 4n+14
A13 1 4 4 0 n-10 4n+16

Suppose n ≥ 8 and define:
R(n) = {T ∈ (32, 2n−6, 14)| m1,2(T) = 0, m1,3(T) = 4, m2,3(T) = 2, m3,3(T) = 0 and m2,2(T) = n− 7}.
It is easy to see that for each T ∈ R(n),

EM2(T) = 4n + 12. (4.3)

Theorem 4.3. Let T′ be a tree with n ≥ 8 vertices and ∆(T′) = 3 such that n3(T′) ≥ 2. If T′ 6∈ R(n), then for each
T ∈ R(n), EM2(T) < EM2(T′).

Proof. Suppose T′ ∈ (32, 2n−6, 14). Since T′ 6∈ R(n), m1,2(T) 6= 0, m1,3(T) 6= 4, m2,3(T) 6= 2, m3,3(T) 6= 0
or m2,2(T) 6= n − 7. Again a repeated application of Transformation B, will result a tree Q ∈ R(n). Now
by Lemma 3.2, EM2(T) = EM2(Q) < EM2(T′). Suppose n3(T′) ≥ 3. Since n3(T′) ≥ 3, by a repeated
application of Transformation A we obtain a tree G ∈ (32, 2n−6, 14). If G ∈ R(n), then by Lemma 3.1,
EM1(T) = EM1(G) < EM1(T′). In other case, we obtain the result by replacing T′ with G in the first case.

Theorem 4.4. If n ≥ 11, T1 ∈ A1, T2 ∈ A2, T3 ∈ A3, T4 ∈ A4, T5 ∈ A5, T6 ∈ A6, T7 ∈ A7, T8 ∈ A8, T9 ∈ A9,
T10 ∈ A10, T11 ∈ A11, T12 ∈ A12, T13 ∈ A13, T14 ∈ H(n) and T ∈ τ(n)�{T1, T2, ..., T14}, then EM1(T1) <

EM1(T2) < EM1(T3) < EM1(T4) < EM1(T5) < EM1(T6) < EM1(T7) = EM1(T8) < EM1(T9) = EM1(T10) <

EM1(T11) = EM1(T12) < EM1(T13) = EM1(T14) < EM1(T).

Proof. From Table 1 and Equation 4.2, we have EM1(T1) < EM1(T2) < EM1(T3) < EM1(T4) < EM1(T5) <

EM1(T6) < EM1(T7) = EM1(T8) < EM1(T9) = EM1(T10) < EM1(T11) = EM1(T12) < EM1(T13) = EM1(T14). If
∆(T) = 3 and n3(T) ≥ 3 then the proof is completed by applying Theorem 4.2. If ∆(T) ≥ 4, then Theorem 4.1
and Equation 4.1, gives the result. Otherwise, T ∈ {T1, T2, ..., T14}.

Theorem 4.5. Suppose that T is a tree with n(≥ 10) vertices, except T′1, T′2, . . . , T′8, illustrated in Figure 6. Then we
have EM2(T′1) < EM2(T′2) < EM2(T′3) < EM2(T′4) < EM2(T′5) < EM2(T′6) < EM2(T′7) < EM2(T′8) < EM2(T).

Proof. Let T′ ∈ F(n) and n ≥ 10. We consider the following cases:
Case 1. ∆(T) = 3. If n3(T) ≥ 2, then Theorem 4.3 shows that EM2(T′8) < M2(T). Now suppose that

n3(T) = 1. Clearly, T′2, T′3, . . . , T′7 are all trees with n3(T) = 1. It is easy to see that EM2(T′2) = 4n, EM2(T′3) =
4n + 4, EM2(T′4) = 4n + 5, EM2(T′5) = 4n + 9, EM2(T′6) = 4n + 10 and EM2(T′7) = 4n + 11.

Case 2. ∆(T) ≥ 4. Then by Theorem 4.1, EM2(T′) < M2(T). Since EM2(T′8) = 4n + 12 < 4n + 45 =

EM2(T′), EM2(T′8) < EM2(T).
Case 3. ∆(T) = 2. Then T ∼= Pn and M2(T) = 4n− 12.
This completes the proof.
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Figure 5: The Trees in Theorem 4.4.
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Figure 6: The Trees in Theorem 4.5.
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index, Appl. Math. Comput., 273 (2016), 16–20.

[8] A. Milićević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8 (2004), 393–399.
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