Malaya Journal of Matematik		
	겄 an international journal of mathematical sciences with	
	computer applications...	Maters

On the total product cordial labeling on the cartesian product of $P_{m} \times C_{n}$, $C_{m} \times C_{n}$ and the generalized Petersen graph $P(m, n)$

Ariel C. Pedrano ${ }^{a, *}$ and Ricky F. Rulete ${ }^{b}$
${ }^{a, b}$ Department of Mathematics and Statistics, College of Arts and Sciences, University of Southeastern Philippines, Davao City, Philippines.

Abstract

A total product cordial labeling of a graph G is a function $f: V \rightarrow\{0,1\}$. For each $x y$, assign the label $f(x) f(y), f$ is called total product cordial labeling of G if it satisfies the condition that $\mid v_{f}(0)+e_{f}(0)-$ $v_{f}(1)-e_{f}(1) \mid \leq 1$ where $v_{f}(i)$ and $e_{f}(i)$ denote the set of vertices and edges which are labeled with $i=0,1$, respectively. A graph with a total product cordial labeling defined on it is called total product cordial.

In this paper, we determined the total product cordial labeling of the cartesian product of $P_{m} \times C_{n}, C_{m} \times C_{n}$ and the generalized Petersen graph $P(m, n)$.

Keywords: Graph Labeling, Total Product Cordial Labeling.

1 Introduction

All graphs considered are finite, simple and undirected. The graph has vertex set $V=V(G)$ and edge set $E=E(G)$ and we let $e=|E|$ and $v=|V|$. A general reference for graph theoretic notions is in [5].

The classic paper of β-valuations by Rosa in 1967 [3] laid the foundations for several graph labeling methods. For a simple graph of order $|V|$ and size $|E|$, Ibrahim Cahit [1] introduced a weaker version of β valuation or graceful labeling in 1987 and called it cordial labeling. The following notions of product cordial labeling was introduced in 2004 [3].

For a simple graph $G=(V, E)$ and a function $f: V \rightarrow\{0,1\}$, assign the label $f(x) f(y)$ for each edge $x y$. This function f is called a product cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(i)$ and $e_{f}(i)$ denote the number of vertices and edges labeled with $i=0,1$. Motivated by this definition, M. Sundaram, R. Ponraj and S. Somasundaram introduce a new type of graph labeling known as total product cordial labeling and investigate the total product cordial behavior of some standard graphs.

A function f is called a total product cordial labeling of G if it satisfies the condition that $\mid v_{f}(0)+e_{f}(0)-$ $v_{f}(1)-e_{f}(1) \mid \leq 1$. A graph with a total product cordial labeling defined on it is called total product cordial.

2 Preliminaries

Definition 2.1. Let $G=(V, E)$ be a simple graph and $f: V \rightarrow\{0,1\}$ be a map. For each edge $x y$, assign the label $f(x) f(y), f$ is called a total product cordial labeling of G if it satisfies the condition that $\mid v_{f}(0)+e_{f}(0)-v_{f}(1)-$ $e_{f}(1) \mid \leq 1$ where $v_{f}(i)$ and $e_{f}(i)$ denote the set of vertices and edges which are labeled with $i=0,1$ respectively. A graph with a total product cordial labeling defined on it is called total product cordial.

[^0]Definition 2.2. A Cartesian product, denoted by $G \times H$, of two graphs G and H, is the graph with vertex $V(G \times H)=$ $V(G) \times V(H)$ and the edge set $E(G \times H)$ satisfying the following conditions $\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E(G \times H)$ if and only if either $u_{1}=v_{1}$ and $u_{2} v_{2} \in E(H)$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E(G)$.

Definition 2.3. The generalized Petersen graph $P(m, n), m \geq 3$ and $1 \leq n \leq\left\lfloor\frac{m-1}{2}\right\rfloor$, consists of an outer m-cycle $u_{0} u_{1} \ldots u_{m-1}$, a set of m spokes $u_{i} v_{i}, 0 \leq i \leq m-1$, and m inner edges $v_{i} v_{i+m}$ with indices taken modulo m.

Theorem 2.4. [4] C_{n} is total product cordial if $n \neq 4$.
Remark 2.5. [4] The cycle C_{4} is not total product cordial.

3 Total Product Cordial Graphs

This section presents some results of total product cordial labeling on some graphs.
Theorem 3.6. The graph $P_{m} \times C_{n}$ is total product cordial graph for all m and n except when $m=1$ and $n=4$.
Proof. Let $V\left(P_{m} \times C_{n}\right)=\left\{v_{(i, j)} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$. The order and size of the graph $P_{m} \times C_{n}$ are $m n$ and $2 m n-n$, respectively. Consider the following cases:
Case 1: m and n are even.
Subcase 1: m is even and $n=4$
Define the function $f: V\left(P_{m} \times C_{4}\right) \rightarrow\{0,1\}$ by:

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & 1 \leq i \leq m, j=4 \quad \text { or } \\ & i \text { is even, } j=3 \\ 1, & \text { otherwise }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{3 m}{2}$ and $v_{f}(1)=\frac{5 m}{2}$. On the other hand, the edges of $P_{m} \times C_{4}$ with labels zero are the following:

$$
\begin{aligned}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & 1 \leq i \leq m-1, j=3,4 \\
& 1 \leq i \leq m, j=3 \text { or } \\
& 1 \leq i \leq m, i \text { is even }, j=2 \\
f\left(v_{(i, 1)} v_{(i, 4)}\right) & =0, \\
& 1 \leq i \leq m .
\end{aligned}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{9 m-4}{2}$ and $e_{f}(1)=\frac{7 m-4}{2}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=|6 m-2-(6 m-2)|=0$. Thus, the graph $P_{m} \times C_{4}$ is total product cordial.
Subase 2: m and n are even, $(n>4)$
Define the function $f: V\left(P_{m} \times C_{n}\right) \rightarrow\{0,1\}$ by:

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & 1 \leq i \leq m \frac{n}{2}+2 \leq j \leq n \quad \text { or } \\ & i \text { is even, } j=\frac{n}{2}+1 \\ 1, & \text { otherwise }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{m n-m}{2}$ and $v_{f}(1)=\frac{m n+m}{2}$. On the other hand, the edges of $P_{m} \times C_{n}$ with labels zero are the following:

$$
\begin{aligned}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & 1 \leq i \leq m-1, \frac{n}{2}+1 \leq j \leq n \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & 1 \leq i \leq m, \frac{n}{2}+1 \leq j \leq n-1 \quad \text { or } \\
& i \text { is even }, j=\frac{n}{2} \\
f\left(v_{(i, 1)} v_{(i, n)}\right)=0, & 1 \leq i \leq m
\end{aligned}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{2 m n-n+m}{2}$ and $e_{f}(1)=\frac{2 m n-n-m}{2}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{3 m n-n}{2}-\frac{3 m n-n}{2}\right|=0$. Thus, the graph $P_{m} \times C_{n}$ is total product cordial if m and n is even, $n>4$.
Case 2: m is even, $(m \geq 2)$ and n is odd, $(n \geq 3)$.
Define the function $f: V\left(P_{m} \times C_{n}\right) \rightarrow\{0,1\}$ by:

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & 1 \leq i \leq m, \frac{n+3}{2} \leq j \leq n-1 \quad \text { or } \\ i \text { is even, } j=\frac{n+1}{2} \quad \text { or } \\ & 1 \leq i \leq \frac{m}{2}, j=n \\ 1, & \text { otherwise. }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{m n-m}{2}$ and $v_{f}(1)=\frac{m n+m}{2}$. On the other hand, the edges of $P_{m} \times C_{n}$ with labels zero are the following:

$$
\begin{array}{ll}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & 1 \leq i \leq m-1, \frac{n+1}{2} \leq j \leq n-1 \quad \text { or } \\
& 1 \leq i \leq \frac{m}{2}, j=n \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & 1 \leq i \leq m, \frac{n+1}{2} \leq j \leq n-1 \text { or } \\
& i \text { is even, } 1 \leq i \leq m, j=\frac{n-1}{2} \\
f\left(v_{(i, 1)} v_{(i, n)}\right)=0, & \frac{m}{2}+1 \leq i \leq m .
\end{array}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{2 m n-n+m+1}{2}$ and $e_{f}(1)=\frac{2 m n-n-m-1}{2}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{3 m n-n+1}{2}-\frac{3 m n-n-1}{2}\right|=1$. Thus, the graph $P_{m} \times C_{n}$ is total product cordial if m is even, $m \geq 2$ and n is odd, $n \geq 3$.
Case 3: m and n are odd, $(n \geq 3)$.
Subcase 1: If $m=1$ and n is odd, $(n \geq 3)$, the the graph $P_{1} \times C_{n} \cong C_{n}$, which is total product cordial by Theorem 2.4
Subcase 2: If $m=3$ and $n \geq 3$, define the function $f: V\left(P_{3} \times C_{n}\right) \rightarrow\{0,1\}$ by

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & i=1, j=1 \quad \text { or } \\ i=1, j=n \quad \text { or } \\ & i=2,2 \leq j \leq n-1 \\ 1, & \text { otherwise } .\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=n$ and $v_{f}(1)=2 n$. On the other hand, the edges of $P_{3} \times C_{n}$ with labels zero are the following:

$$
\begin{array}{ll}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & i=1,1 \leq j \leq n \text { or } \\
& i=2,2 \leq j \leq n-1 \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & i=1, j=1 \text { or } \\
& i=1, j=n-1 \text { or } \\
& i=2,1 \leq j \leq n-1 \\
f\left(v_{(i, 1)} v_{(i, n)}\right)=0, & i=1 .
\end{array}
$$

In view of the above labeling, we have $e_{f}(0)=3 n$ and $e_{f}(1)=2 n$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=|4 n-4 n|=0$. Thus, the graph $P_{3} \times C_{n}$ is total product cordial for $n \geq 3$.
Subcase 3: If m and n are odd, $(m, n \geq 5)$, define the function $f: V\left(P_{m} \times C_{n}\right) \rightarrow\{0,1\}$ by

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & 2 \leq i \leq \frac{m+1}{2}, 1 \leq j \leq n \\ 1, & \text { otherwise. }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{m n-n}{2}$ and $v_{f}(1)=\frac{m n+n}{2}$. On the other hand, the edges of $P_{m} \times C_{n}$ with labels zero are the following:

$$
\begin{aligned}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & 1 \leq i \leq \frac{m+1}{2}, 1 \leq j \leq n \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & 2 \leq i \leq \frac{m+1}{2}, 1 \leq j \leq n-1 \\
f\left(v_{(i, 1)} v_{(i, n)}\right) & =0,
\end{aligned} \quad 2 \leq i \leq \frac{m+1}{2} .
$$

In view of the above labeling, we have $e_{f}(0)=m n$ and $e_{f}(1)=m n-n$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{3 m n-n}{2}-\frac{3 m n-n}{2}\right|=0$. Thus the graph $P_{m} \times C_{n}$ is total product cordial if m and n is odd, $m, n \geq 5$.
Case 4: m is odd, $(m \geq 5)$ and n is even.
Define the function $f: V\left(P_{m} \times C_{n}\right) \rightarrow\{0,1\}$ by:

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & i=\frac{m+1}{2}, 1 \leq j \leq n \quad \text { or } \\ & \frac{m+5}{2} \leq i \leq m, 1 \leq j \leq n \\ 1, & \text { otherwise }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{m n-n}{2}$ and $v_{f}(1)=\frac{m n+n}{2}$. On the other hand, the edges of $P_{m} \times C_{n}$ with labels zero are the following:

$$
\begin{aligned}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & \frac{m-1}{2} \leq i \leq m-1,1 \leq j \leq n \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & i=\frac{m+1}{2}, 1 \leq j \leq n-1 \text { or } \\
& \frac{m+5}{2} \leq i \leq m, 1 \leq j \leq n-1 \\
f\left(v_{(i, 1)} v_{(i, n)}\right)=0, & i=\frac{m+1}{2} \text { or } \\
& \frac{m+5}{2} \leq i \leq m .
\end{aligned}
$$

In view of the above labeling, we have $e_{f}(0)=m n$ and $e_{f}(1)=m n-n$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{3 m n-n}{2}-\frac{3 m n-n}{2}\right|=0$. Thus, the graph $P_{m} \times C_{n}$ is total product cordial if m is odd and n is even, $n \geq 4$.

On the other hand, if $m=1$ and $n=4$, the graph $P_{1} \times C_{4} \cong C_{4}$, which is not total product cordial by Remark 2.5 Hence, considering all the cases above, we can say, that the graph $P_{m} \times C_{n}$ is total product cordial except if $m=1$ and $n=4$.

Theorem 3.7. The graph $C_{m} \times C_{n}$ is total product cordial graph for all $m, n \geq 3$.
Proof. Let $V\left(C_{m} \times C_{n}\right)=\left\{v_{(i, j)} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$. The order and size of the graph $C_{m} \times C_{n}$ are $m n$ and $2 m n$, respectively. To prove the theorem, let us consider the following cases:

Case 1: m is even, n is even.
Subcase 1: If m is even and n is even, $(n>4)$, we will label the vertices of $C_{m} \times C_{n}$ using the function defined on Theorem 3.6. Case 2. Accordingly, the number of vertices and edges labeled with 0 and 1 are, $\frac{m n-m}{2}$ and $\frac{m n+m}{2}$, respectively. The additional edge of $C_{m} \times C_{n}$ whose label is 0 is $f\left(v_{(i, j)} v_{(m, j)}\right)=0, \quad \frac{n}{2}+1 \leq j \leq n$. Thus, the number of edges labeled with 0 and 1 would be $e_{f}(0)=\frac{2 m n+m}{2}$ and $e_{f}(1)=\frac{2 m n-m}{2}$.

Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(0)-e_{f}(0)\right|=\left|\frac{3 m n}{2}-\frac{3 m n}{2}\right|=0$. Thus, the graph $C_{m} \times C_{n}$ is total product cordial if m and n is even $n>4$.
Subcase 2: If m is even and $n=4$, we will label the vertices of $C_{m} \times C_{4}$ using the function defined on Theorem 3.6. Case 1. Accordingly, the number of vertices labeled with 0 and 1 are, $\frac{3 m}{2}$ and $\frac{5 m}{2}$, respectively. The
additional edge of $C_{m} \times C_{4}$ whose label is 0 is $f\left(v_{(1, j)} v_{(m, j)}\right)=0, \quad j=3,4$. Thus, the number of edges labeled with 0 and 1 would be $e_{f}(0)=\frac{9 m}{2}$ and $e_{f}(1)=\frac{7 m}{2}$.

Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(0)-e_{f}(0)\right|=|6 m-6 m|=0$. Thus, the graph $C_{m} \times C_{n}$ is total product cordial if m and n is even $n=4$.
Case 2: m is even, $(m \geq 4)$ and n is odd, $(n \geq 3)$.
Subcase 1: If m is even, $m \geq 4$ and $n=3$, define the function $f: V\left(C_{m} \times C_{3}\right) \rightarrow\{0,1\}$ by

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & i \text { is even, } j=1,3 \\ 1, & \text { otherwise }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=m$ and $v_{f}(1)=2 m$. On the other hand, the edges of $C_{m} \times C_{3}$ with labels zero are the following:

$$
\begin{aligned}
f\left(v_{(i, j)} v_{(i+1, j)}\right) & =0, & & 1 \leq i \leq m-1, j=1,3 \\
f\left(v_{(i, j)} v_{(i, j+1)}\right) & =0, & & i \text { is even }, j=1,2 \\
f\left(v_{(i, 1)} v_{(i, 3)}\right) & =0, & & i \text { is even } \\
f\left(v_{(1, j)} v_{(m, j)}\right) & =0, & & j=2 .
\end{aligned}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{7 m}{2}$ and $e_{f}(1)=\frac{5 m}{2}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{9 m}{2}-\frac{9 m}{2}\right|=0$. Thus, the graph $C_{m} \times C_{3}$ is total product cordial if m is even, $m \geq 4$.
Subcase 2: If m is even, $m \geq 4$ and n is odd, $n \geq 5$, define the function $f: V\left(C_{m} \times C_{n}\right) \rightarrow\{0,1\}$ by

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & 1 \leq i \leq m, \frac{n+5}{2} \leq j \leq n-1 \quad \text { or } \\ & i \text { is even, } j=\frac{n+1}{2} \quad \text { or } \\ & i=1,3,4, \ldots, m, j=\frac{n+3}{2} \quad \text { or } \\ & 1 \leq i \leq \frac{m}{2}, j=n \\ 1, & \text { otherwise. }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{m n-m-2}{2}$ and $v_{f}(1)=\frac{m n+m+2}{2}$. On the other hand, the edges of $C_{m} \times C_{n}$ with labels zero are the following:

$$
\begin{array}{ll}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & 1 \leq i \leq m-1, \frac{n+1}{2} \leq j \leq n-1 \quad \text { or } \\
& 1 \leq i \leq \frac{m}{2}, j=n \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & 1 \leq i \leq m, \frac{n+1}{2} \leq j \leq n-1 \quad \text { or } \\
& i \text { is even }, 1 \leq i \leq m, j=\frac{n-1}{2} \\
f\left(v_{(i, 1)} v_{(i, n)}\right)=0, & 1 \leq i \leq \frac{m}{2} \\
f\left(v_{(1, j)} v_{(m, j)}\right)=0, & \frac{n+1}{2} \leq j \leq n .
\end{array}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{2 m n+m+2}{2}$ and $e_{f}(1)=\frac{2 m n-m-2}{2}$.
Hence, $\left|v_{0}+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{3 m}{2}-\frac{3 m}{2}\right|=0$. Thus, the graph $C_{m} \times C_{n}$ is total product cordial if m is even, $m \geq 4$ and n is odd, $n \geq 5$.
Case 3: m is odd, $(m \geq 3)$ and n is even, $(n \geq 4)$.
Subcase 1: If $m=3$ and $n \geq 4$, then the graph $C_{3} \times C_{n} \cong C_{m} \times C_{3}$, which is total product cordial by Theorem 3.7. Case 2, Subcase 1.

Subcase 2: If $m \geq 5$ and $n \geq 4$, define the function $f: V\left(C_{m} \times C_{n}\right) \rightarrow\{0,1\}$ by

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & i=\frac{m+1}{2}, j \text { is even or } \\ & i=\frac{m+3}{2}, j=1,3,4, \ldots, n \quad \text { or } \\ \frac{m+5}{2} \leq i \leq m-1,1 \leq j \leq n \quad \text { or } \\ i=m, 1 \leq j \leq \frac{n}{2} \\ 1, & \text { otherwise. }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{m n-n-2}{2}$ and $v_{f}(1)=\frac{m n+n+2}{2}$. On the other hand, the edges of $C_{m} \times C_{n}$ with labels zero are the following:

$$
\begin{aligned}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & \frac{m+1}{2} \leq i \leq m-1,1 \leq j \leq n \quad \text { or } \\
& i=\frac{m-1}{2}, j \text { is even } \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & \frac{m+1}{2} \leq i \leq m-1,1 \leq j \leq n-1 \quad \text { or } \\
& i=m, 1 \leq j \leq \frac{n}{2} \\
f\left(v_{(i, 1)} v_{(i, n)}\right)=0, & \frac{m+1}{2} \leq i \leq m \\
f\left(v_{(1, j)} v_{(m, j)}\right)=0, & \frac{n}{2}+1 \leq j \leq n .
\end{aligned}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{2 m n+n+2}{2}$ and $e_{f}(1)=\frac{2 m n-n-2}{2}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{3 m n}{2}-\frac{3 m n}{2}\right|=0$. Thus, the graph $C_{m} \times C_{n}$ is total product cordial if m is odd, $m \geq 5$ and n is even, $n \geq 4$.
Case 4: m and n is odd, $m, n \geq 3$
Define the function $f: V\left(C_{m} \times C_{n}\right) \rightarrow\{0,1\}$ by:

$$
f\left(v_{(i, j)}\right)= \begin{cases}0, & i=\frac{m+1}{2}, j \text { is odd or } \\ & \frac{m+3}{2} \leq i \leq m-1,1 \leq j \leq n \quad \text { or } \\ & i=m, 1 \leq j \leq \frac{n-1}{2} \\ 1, & \text { otherwise. }\end{cases}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{m n-n}{2}$ and $v_{f}(1)=\frac{m n+n}{2}$. On the other hand, the edges of $C_{m} \times C_{n}$ with labels zero are the following:

$$
\begin{array}{ll}
f\left(v_{(i, j)} v_{(i+1, j)}\right)=0, & i=\frac{m-1}{2}, j \text { is odd or } \\
& \frac{m+1}{2} \leq i \leq m-1,1 \leq j \leq n \\
f\left(v_{(i, j)} v_{(i, j+1)}\right)=0, & \frac{m+1}{2} \leq i \leq m-1,1 \leq j \leq n-1 \quad \text { or } \\
& i=m, 1 \leq j \leq \frac{n-1}{2} \\
f\left(v_{(i, 1)} v_{(i, n)}\right)=0, & \frac{m+1}{2} \leq i \leq m \\
f\left(v_{(1, j)} v_{(m, j)}\right)=0, & \frac{n+1}{2} \leq j \leq n .
\end{array}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{2 m n+n+1}{2}$ and $e_{f}(1)=\frac{2 m n-n-1}{2}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{3 m n+1}{2}-\frac{3 m n-1}{2}\right|=1$. Thus, the graph $C_{m} \times C_{n}$ is total product cordial if m and n is odd, $m, n \geq 3$.

Considering the cases above, we can say, that the graph $C_{m} \times C_{n}$ is total product cordial for all $m, n \geq 3$.
Theorem 3.8. The generalized Petersen graph $P(m, n)$ is total product cordial graph for all $m \geq 3$.

Proof. Let $V(P(m, n))=\left\{v_{1}, v_{2}, \ldots, v_{2 m}\right\}$ where $v_{i}, 1 \leq i \leq m$ are vertices of the outer cycle and $v_{i}, m+1 \leq$ $i \leq 2 m$ are the vertices of the inner cycle. The order and size of the generalized Petersen graph $P(m, n)$ are $2 m$ and $3 m$, respectively. To prove the theorem, let us consider the following cases:
Case 1: m is odd.
Define the function $f: V(P(m, n)) \rightarrow\{0,1\}$ by:

$$
\begin{aligned}
f\left(v_{i}\right)=1, & i=m+1, m+2, \ldots, 2 m \\
f\left(v_{2 i}\right)= & 0, \quad i=1,2, \ldots, \frac{m-1}{2} \\
f\left(v_{2 i-1}\right) & = \begin{cases}0, & \frac{m+3}{4} \leq i \leq \frac{m+1}{2}, m \equiv 1 \quad(\bmod 4) \quad \text { or } \\
\frac{m+5}{4} \leq i \leq \frac{m+1}{2}, m \equiv 3 \quad(\bmod 4) \\
1, & i=1,2,3, \ldots, \frac{m-1}{4}, m \equiv 1 \quad(\bmod 4) \quad \text { or } \\
& i=1,2,3, \ldots, \frac{m+1}{4}, m \equiv 3 \quad(\bmod 4) .\end{cases}
\end{aligned}
$$

For m is odd, $m \equiv 1(\bmod 4)$, the number of vertices labeled with 0 and 1 would be $v_{f}(0)=\frac{3 m+1}{4}$ and $v_{f}(1)=\frac{5 m-1}{4}$. On the other hand, the edges of the generalized Petersen graph $P(m, n)$ with labels zero are the following:

$$
\begin{aligned}
f\left(v_{2 i-1} v_{2 i}\right) & =0, \quad i=1,2, \ldots, \frac{m-1}{4}, m \equiv 1 \quad(\bmod 4) \quad \text { or } \\
& \frac{m+3}{4} \leq i \leq \frac{m-1}{2}, m \equiv 1 \quad(\bmod 4) \\
f\left(v_{2 i} v_{2 i+1}\right) & =0, \quad i=1,2, \ldots, \frac{m-1}{2} \\
f\left(v_{m} v_{1}\right) & =0 \\
f\left(v_{2 i} v_{2 i+m+1}\right) & =0, \quad i=1,2, \ldots, \frac{m-1}{2} \\
f\left(v_{2 i-1} v_{2 i+m}\right) & =0, \quad \frac{m+3}{4} \leq i \leq \frac{m-1}{2}, m \equiv 1 \quad(\bmod 4) \\
f\left(v_{m} v_{m+1}\right) & =0 .
\end{aligned}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{7 m+1}{4}$ and $e_{f}(1)=\frac{5 m-1}{4}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{5 m+1}{2}-\frac{5 m-1}{2}\right|=1$. Thus, the generalized Petersen graph $P(m, n)$ is total product cordial if m is odd, $m \equiv 1(\bmod 4)$.

Similarly, the generalized Petersen graph $P(m, n)$ is total product cordial if m is odd and $m \equiv 3(\bmod 4)$. In view of the vertex labeling defined above, we have $v_{f}(0)=\frac{3 m-1}{4}$ and $v_{f}(1)=\frac{5 m+1}{4}$. On the other hand, the edge labels of the generalized petersen graph $P(m, n)$ are the following;

$$
\begin{aligned}
f\left(v_{2 i-1} v_{2 i}\right) & =0, \\
& \frac{m=1,2, \ldots, \frac{m+1}{4}, m \equiv 3 \quad(\bmod 4) \quad \text { or }}{4} \leq i \leq \frac{m-1}{2}, m \equiv 3 \quad(\bmod 4) \\
f\left(v_{m} v_{1}\right) & =0 \\
f\left(v_{2 i} v_{2 i+1}\right) & =0, \quad i=1,2, \ldots, \frac{m-1}{2} \\
f\left(v_{2 i} v_{2 i+m+1}\right) & =0, \quad i=1,2, \ldots, \frac{m-1}{2} \\
f\left(v_{2 i-1} v_{2 i+m}\right) & =0, \\
f\left(v_{m} v_{m+1}\right) & =0 .
\end{aligned}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{7 m-1}{4}$ and $e_{f}(1)=\frac{5 m+1}{4}$.
Hence, we have $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{5 m-1}{2}-\frac{5 m+1}{2}\right|=1$. Thus, the generalized Petersen graph $P(m, n)$ is total product cordial if m is odd, $m \equiv 3(\bmod 4)$.

Case 2: m is even
Subcase 1: If $m=4 k, k \in \mathbb{Z}^{+}$, define the function $f: V(P(m, n)) \rightarrow\{0,1\}$ by

$$
\begin{gathered}
f\left(v_{i}\right)=1 \quad i=m+1, m+2, \ldots, 2 m \\
f\left(v_{2 i-1}\right)= \begin{cases}0, & \frac{m+4}{4} \leq i \leq \frac{m}{2} \\
1, & i=1,2,3, \ldots, \frac{m}{4}\end{cases} \\
f\left(v_{2 i}\right)=0 \quad i=1,2, \ldots, \frac{m}{2}
\end{gathered}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{3 m}{4}$ and $v_{f}(1)=\frac{5 m}{4}$. On the other hand, the edges of the generalized Petersen graph $P(m, n)$ with labels zero are the following:

$$
\begin{aligned}
f\left(v_{2 i-1} v_{2 i}\right) & =0, & & 1 \leq i \leq \frac{m}{2} \\
f\left(v_{m} v_{1}\right) & =0 & & \\
f\left(v_{2 i} v_{2 i+1}\right) & =0, & & i=1,2, \ldots, \frac{m-2}{2} \\
f\left(v_{2 i} v_{2 i+m+1}\right) & =0, & & i=1,2, \ldots, \frac{m}{2}-1 \\
f\left(v_{2 i-1} v_{2 i+m}\right) & =0, & & \frac{m+4}{4} \leq i \leq \frac{m}{2} \\
f\left(v_{m} v_{m+1}\right) & =0 . & &
\end{aligned}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{7 m}{4}$ and $e_{f}(1)=\frac{5 m}{4}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{5 m}{2}-\frac{5 m}{2}\right|=0$. Thus, the generalized Petersen graph $P(m, n)$ is total product cordial if $m=4 k, k \in \mathbb{Z}^{+}$.
Subcase 2: If $m=4 k+2, k \in \mathbb{Z}^{+}$, define the function $f: V(P(m, n)) \rightarrow\{0,1\}$ by:

$$
\begin{gathered}
f\left(v_{i}\right)= \begin{cases}0, & i=m+1 \quad \text { or } \\
& \frac{m+6}{2} \leq i \leq m \\
1, & m+2 \leq i \leq 2 m\end{cases} \\
f\left(v_{2 i}\right)=0, \quad i=1,2, \ldots, \frac{m+2}{4} \\
f\left(v_{2 i-1}\right)=1, \quad i=1,2, \ldots, \frac{m+6}{4} .
\end{gathered}
$$

In view of the above labeling, we have $v_{f}(0)=\frac{3 m-2}{4}$ and $v_{f}(1)=\frac{5 m+2}{4}$. On the other hand, the edges of the generalized Petersen graph $P(m, n)$ with labels zero are the following:

$$
\begin{array}{rlrl}
f\left(v_{i} v_{i+1}\right) & =0, & & \frac{m+6}{2} \leq i \leq m-1 \\
f\left(v_{2 i-1} v_{2 i}\right) & =0, & & 1 \leq i \leq \frac{m+6}{4} \\
f\left(v_{m} v_{1}\right) & =0 & \\
f\left(v_{2 i} v_{2 i+1}\right) & =0, & & i=1,2, \ldots, \frac{m+2}{4} \\
f\left(v_{2 i} v_{2 i+m+1}\right) & =0, & i=1,2, \ldots, \frac{m+2}{4} \\
f\left(v_{m} v_{m+1}\right) & =0 & & \\
f\left(v_{i} v_{i+m+1}\right) & =0, & \frac{m+6}{2} \leq i \leq m-1
\end{array}
$$

In view of the above labeling, we have $e_{f}(0)=\frac{7 m+2}{4}$ and $e_{f}(1)=\frac{5 m-2}{4}$.
Hence, $\left|v_{f}(0)+e_{f}(0)-v_{f}(1)-e_{f}(1)\right|=\left|\frac{5 m}{2}-\frac{5 m}{2}\right|=0$. Thus, the generalized Petersen graph $P(m, n)$ is total product cordial if $m=4 k+2, k \in \mathbb{Z}^{+}$.

Considering the cases above, we can say, that the generalized Petersen Graph $P(m, n)$ is total product cordial for all $m \geq 3$.

References

[1] Cahit, I., "Cordial graphs: A weaker version of graceful and harmonious Graphs", Ars Combinatoria, 23 (1987), 201-207.
[2] Gallian, J. A., "A dynamic survey on graph labeling",The Electronic Journal of Combinatorics, Sixteenth Edition, (2013).
[3] Sundaram, M., Ponraj, P. and Somasundaram, S., "Product cordial labeling of graphs", Bulletin of Pure and Applied Sciences, 23E (1) (2004), 155-162.
[4] Sundaram, M., Ponraj, P. and Somasundaram, S., "Total Product Cordial Labeling of Graphs", Bulletin of Pure and Applied Sciences, 23E (1) (2005), 199-203.
[5] West, D. B., An Introduction to Graph Theory, Prentice Hall, (1996).

Received: January 19, 2017; Accepted: June 03, 2017

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail address: arielcpedrano@yahoo.com.ph (A. Pedrano), r.rulete@usep.edu.ph (R. Rulete).

