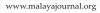
Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...



On ${\mathbb S}$ fuzzy soft sub hemi rings of a hemi ring

N. Anitha^{*a*} and M. Latha^{*b*,*}

^a Department of Mathematics, Periyar University PG Extension centre, Dharmapuri-636 701, Tamil Nadu, India.
^b Department of Mathematics, Karpagam University, KAHE, Coimbatore-641021, Tamil Nadu, India.

Abstract

In this expose, on endeavors equipped on the way to achieve comprehension of the arithmetical character of S-fuzzy soft sub hemi rings of a hemi ring.

Keywords: Fuzzy soft set, S fuzzy soft sub hemi ring, anti-S-fuzzy soft sub hemi ring, and pseudo Fuzzy soft co-set.

2010 MSC: 94D05, 05C25.

©2012 MJM. All rights reserved.

1 Introduction

A small amount of researchers done their works in near rings and a few kinds of semi rings contain conventional part. Semi rings emerge in a natural approach in a few applications in the theory of automata and formal languages. Soft set premise as a novel mathematical device means and deals with uncertainty which seems to be gratis from the intrinsic difficulties disturbing the obtainable works. The introduction of fuzzy sets as a result of Zadeh. L.A [16], a few scholars developed fuzzy concepts lying on the impression of the concept of fuzzy sets. Dubois.D and Prade. H [8], were urbanized the concept of fuzzy Sets and Systems: Theory and Applications. Aktas. H, CaSman.N [3] were developed by Soft sets and soft groups. In this article, S-Fuzzy soft sub hemi ring of a hemi ring is initiated in addition to the theorems in the company of various example.

2 Preliminaries

Definition 2.1. Let \mathbb{R} be a hemi ring. A Fuzzy soft sub set (H, C) of \mathbb{R} is supposed to be a \mathbb{S} -Fuzzy soft sub hemi ring (SFSHR) of \mathbb{R} if it satisfies the subsequent circumstances:

(i) $\mu_{(H,C)}(a,b) \ge \mathbb{S}\{\mu_{(H,C)}(a),\mu_{(H,C)}(b)\},\$

(ii) $\mu_{(H,C)}(ab) \ge \mathbb{S}\{\mu_{(H,C)}(a), \mu_{(H,C)}(b)\}$, in favor of each and every one a and b in \mathbb{R} .

Definition 2.2. Let $(\mathbb{R}, +, \cdot)$ be a hemi ring. A S-Fuzzy soft sub hemi ring (H, C) of \mathbb{R} is said to be an Fuzzy soft normal sub hemi ring (SFSNSHR) of \mathbb{R} if it satisfies the subsequent conditions:

 $(i)\mu_{(H,C)}(ab) = \mu_{(H,C)}(ba)$ on behalf of all a and b in \mathbb{R} .

*Corresponding author. *E-mail address:* anithaarenu@gmail.com (Anitha). **Definition 2.3.** Let \mathbb{R} and \mathbb{R}^1 be some two hemi rings. Assent to f is a mapping from \mathbb{R} to \mathbb{R}^1 be any function and let B be a \mathbb{S} -Fuzzy soft sub hemi ring in \mathbb{R} , V be an \mathbb{S} -Fuzzy soft sub hemi ring in $f(\mathbb{R}) = \mathbb{R}^1$, defined by $\mu_{V(b)} = \sup_{(a) \in f^{-1}(b)} (\mu_{(H,C)})(a)$ intended for every a within \mathbb{R} as well as b in \mathbb{R}^1 . After that B is called a pre image of V under f and it is denoted by $f^{-1}(V)$.

Definition 2.4. Let (H, C) be an S-Fuzzy soft sub hemi ring of a hemi ring $(\mathbb{R}, +, \cdot)$ and a in \mathbb{R} . Then the pseudo S-Fuzzy soft coset $(x(H, B))^p$ obviously $((x\mu_{(H,C)})^p)(a) = p(x)\mu_{(H,C)}(a)$, for every x in \mathbb{R} and for some p in P.

3 A few proofs associated by way of S-fuzzy soft sub hemi rings of a hemi ring

Theorem 3.1. If (H, C) is an S-Fuzzy soft sub hemi ring of a hemi ring $(\mathbb{R}, +, \cdot)$, then (H, C) is an S-Fuzzy soft sub hemi ring of \mathbb{R} .

 $\begin{array}{l} \textit{Proof.} \ \text{Allow} \ (H,C) \ \text{be an } \mathbb{S}\text{-fuzzy soft sub hemi ring of a hemi ring } \mathbb{R}. \ \text{Think about} \ (H,C) = \left\{ \left\langle a,\mu_{(H,C)},(a) \right\rangle \right\}, \text{despite } a \ \text{in } \mathbb{R}, \text{ we obtain } (H,C) = (H,D) = \left\{ \left\langle a,\mu_{(H,D)},(a) \right\rangle \right\}, \text{ somewhere } \mu_{(H,D)}(a) = \mu_{(H,C)}(a), \text{ visibly}, \mu_{(H,D)}(a+b) \geq \mathbb{S}\{\mu_{(H,D)}(a),\mu_{(H,D)}(b)\}, \text{ in spite of } a \ \text{as well as } b \ \text{in } \mathbb{R} \ \text{in addition to } \mu_{(H,D)}(ab) \geq \mathbb{S}\{\mu_{(H,D)}(a),\mu_{(H,D)}(b)\}, \text{ for all that } a \ \text{moreover } b \ \text{in } \mathbb{R}. \ \text{While } B \ \text{is an } \mathbb{S}\text{-fuzzy soft sub hemi ring of } \mathbb{R}, \text{ we encompass } \mu_{(H,C)}(a+b) \geq \mathbb{S}\{\mu_{(H,C)}(a),\mu_{(H,C)}(b)\}, \text{ for all that } a \ \text{in addition to } b \ \text{in } \mathbb{R}. \ \text{Also } \mu_{(H,C)}(ab) \geq \mathbb{S}\{\mu_{(H,C)}(a),\mu_{(H,C)}(b)\}, \text{ every } a \ \text{along with } b \ \text{in } \mathbb{R}. \ \text{For this reason } (H,D) = (H,C) \ \text{is an } \mathbb{S}\text{-fuzzy soft sub hemi ring of } a \ \text{hemi ring } \mathbb{R}. \ \Box$

Theorem 3.2. If (H, C) is an S-fuzzy soft sub hemi ring of a hemi ring $(\mathbb{R}, +, \cdot)$, then (H, C) is an S-fuzzy soft sub hemi ring of \mathbb{R} .

Proof. Conset to (H, C) be an S-fuzzy soft sub hemi ring of a hemi ring \mathbb{R} . With the purpose of $(H, C) = \left\{ \langle a, \mu_{(H,C)}(a) \rangle \right\}$, in favor of every one a in \mathbb{R} . Let $(H, C) = (H, D) = \left\{ \langle a, \mu_{(H,D)}(a) \rangle \right\}$, designed for the entire a along with b in \mathbb{R} . In view of the fact that (H, B) is an S-fuzzy soft sub hemi ring of \mathbb{R} , which implies to facilitate $1 - \mu_{(H,D)}(ab) \leq \mathbb{S}\{(1 - \mu_{(H,D)}(a)), (1 - \mu_{(H,D)}(b))\}$, which implies so as to $\mu_{(H,D)}(ab) \geq 1 - \mathbb{S}\{(1 - \mu_{(H,D)}(a)), (1 - \mu_{(H,D)}(b))\} = \mathbb{S}\{\mu_{(H,D)}(a), \mu_{(H,D)}(b)\}$. As a result, $\mu_{(H,D)}(ab) \geq \mathbb{S}\{\mu_{(H,D)}(a), \mu_{(H,D)}(b)\}$, intended for every one of a furthermore b in \mathbb{R} . Consequently (H, D) = (H, C) is an S-fuzzy soft sub hemi ring of a hemi ring \mathbb{R} .

Theorem 3.3. Accede to $(\mathbb{R}, +, \cdot)$ survice a hemi ring and (H, C) be present a non unfilled subset of \mathbb{R} . Then (H, C) is a sub hemi ring of \mathbb{R} merely if $(H, D) = \langle \chi_{(H,C)}, \overline{\chi}_{(H,C)} \rangle$ is a \mathbb{S} -fuzzy soft sub hemi ring of \mathbb{R} , where $\chi_{(H,C)}$ is the characteristic function.

Proof. Allow $(\mathbb{R}, +, \cdot)$ be a hemi ring in addition to (H, C) be a unbalance subset of \mathbb{R} . Primary agree to (H, C) be a sub hemi ring of \mathbb{R} . Obtain *a* with *b* in \mathbb{R} .

Case (i): Condition *a* furthermore *b* in (H, C) afterward a + b, ab inside (H, C), given that (H, C) is a sub hemi ring of \mathbb{R} , $\chi_{(H,C)}(a) = \chi_{(H,C)}(b) = \chi_{(H,C)}(a + b) = \chi_{(H,C)}(ab) = 1$ with $\chi_{(H,C)}(a) = \chi_{(H,C)}(b) = \chi_{(H,C)}(a + b) = \chi_{(H,C)}(ab) = 0$. As a result, $\chi_{(H,C)}(a + b) \geq \mathbb{S}\{(a), \mu_{(H,C)}\chi(b)\}$, meant for every one of *a* also *b* within $\mathbb{R}, \chi_{(H,C)}(ab) \geq \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(b)\}$, behalf of all *a* along with *b* inside \mathbb{R} . Subsequently, $\chi_{(H,C)}(a + b) \leq \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(b)\}$, in

favor of every part of *a* in addition to *b* into \mathbb{R} , $\chi_{(H,C)}(ab) \leq {\chi_{(H,C)}(a), \chi_{(H,C)}(b)}$, intended for each and every one *a* as well as *b* within \mathbb{R} .

Case (ii) Either *a* or *b* in (H, C), then a + b, ab may or may not be in (H, C), $\chi_{(H,C)}(a) = 1$, $\chi_{(H,C)}(b) = 0$ (or) $\chi_{(H,C)}(a) = 0$, $\chi_{(H,C)}(b) = 1$), $\chi_{(H,C)}(a + b) = 1$, $\chi_{(H,C)}(ab) = 1$ (or 0) and $\chi_{(H,C)}(a) = 0$, $\chi_{(H,C)}(a)(b) = 1$ (or) $\chi_{(H,C)}(a) = 1$, $\chi_{(H,C)}(b) = 0$) $\chi_{(H,C)}(a + b) = \chi_{(H,C)}(ab) = 0$ (or 1). Obviously $\chi_{(H,C)}(a + b) \ge \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(b)\}$, for all that *a* along with *b* in \mathbb{R} , $\chi_{(H,C)}(ab) \ge \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(b)\}$, intended for every *a* and *b* in \mathbb{R} , and $\chi_{(H,C)}(a + b) \le \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(b)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(bb)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(bb)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(bb)\}$, for all *a* and *b* in $\mathbb{R}\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(bb)\}$, for all *a* and *b* in \mathbb{R} .

Case (iii) If *a* and *b* somewhere else (H, C), at that time a+b, ab may well otherwise may not in (H, C), $\chi_{(H,C)}(a) = \chi_{(H,C)}(b) = 0$, $\chi_{(H,C)}(a+b) = \chi_{(H,C)}(ab) = 1$ or 0 and $\chi_{(H,C)}(a) = \chi_{(H,C)}(b) = 1$, $\chi_{(H,C)}(a+b) = \chi_{(H,C)}(ab) = 0$ or 1. Evidently $\chi_{(H,C)}(a+b) \ge \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(b)\}$, for all *a* and *b* in \mathbb{R} and $\chi_{(H,C)}(ab) \ge \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(a), \chi_{(H,C)}(b)\}$, for all *a* and *b* in \mathbb{R} and $\chi_{(H,C)}(b)$, for all *a* and *b* in \mathbb{R} . Subsequently in above conditions we comprise *B* is a fuzzy soft sub hemi ring of (H, C) hemi ring \mathbb{R} . On the contrary, Accede to *a* and *b* in (H, C), In view of the fact that (H, C) is non blank subset of \mathbb{R} , thus $\chi_{(H,C)}(a) = \chi_{(H,C)}(b) = 1$, $\chi_{(H,C)}(a) = \chi_{(H,C)}(b) = 0$. While $B = \langle \chi_{(H,C)}, \overline{\chi}_{(H,C)} \rangle$ is a fuzzy soft sub hemi ring of \mathbb{R} , we have $\chi_{(H,C)}(a+b) \ge \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(b)\} = \mathbb{S}\{1,1\} = 1, \chi_{(H,C)}(ab) \ge \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(a), \chi_{(H,C)}(b)\} = \mathbb{S}\{1,1\} = 1$. For that reason $\chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(a+b) \le \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(ab) \le \mathbb{S}\{\chi_{(H,C)}(a), \chi_{(H,C)}(a+b) = \chi_{(H,C)}(a+b) = \mathbb{S}\{\chi_{(H,C)}(ab) = 0$. Therefore $\chi_{(H,C)}(a+b) = \chi_{(H,C)}(a+b) = \mathbb{S}\{\chi_{(H,C)}(ab) = 0$. Thus a+b as well as ab in (H, C), as a result (H, C) is a sub hemi ring of \mathbb{R} .

Theorem 3.4. Let (H, C) be an S-fuzzy soft sub hemi ring of a hemi ring H and f is an isomorphism from a hemi ring \mathbb{R} onto H. Then $(H, C) \circ f$ is an S-fuzzy soft sub hemi ring of \mathbb{R} .

Proof. Consent to *a* and *b* in \mathbb{R} as well as (H, C) be an fuzzy soft sub hemi ring of a hemi ring *H*. Subsequently, it is encompassed, $(\mu_{(H,C)} \circ f)(a + b) = \mu_{(H,C)}f(a + b) = \mu_{(H,C)}\{f(a) + f(b)\}$, as *f* is an isomorphism $\geq \mathbb{S}\{\mu_{(H,C)}f(a), \mu_{(H,C)}f(b)\}, = \mathbb{S}\{(\mu_{(H,C)} \circ f)(a), (\mu_{(H,C)} \circ f)(b)\}$, which implies so to $(\mu_{(H,C)} \circ f)(a + b) \geq \mathbb{S}\{(\mu_{(H,C)} \circ f)(a), (\mu_{(H,C)} \circ f)(b)\}$. And $(\mu_{(H,C)} \circ f)(ab) = \mu_{(H,C)}(f(ab)) = \mu_{(H,C)}(f(a)f(b))$, as *f* is an isomorphism $\geq \mathbb{S}\{\mu_{(H,C)}f(a), \mu_{(H,C)}f(b)\} = \mathbb{S}\{(\mu_{(H,C)} \circ f)(a), (\mu_{(H,C)} \circ f)(b)\}$, which implies that $(\mu_{(H,C)} \circ f)(ab) \geq \mathbb{S}\{(\mu_{(H,C)} \circ f)(a), (\mu_{(H,C)} \circ f)$

Theorem 3.5. Let (H, C) be an S-fuzzy soft sub hemi ring of a heim ring h and f is an anti-isomorphism from a hemi ring r onto h. Then $(H, C) \circ f$ is a S-fuzzy soft sub hemi ring of \mathbb{R} .

Proof. Accede to *a* and *b* in \mathbb{R} in addition to (H, C) be an S-fuzzy soft sub hemi ring of a hemi ring *H*. Afterward we have $(\mu_{(H,C)} \circ f)(a + b) = \mu_{(H,C)}(f(a + b)) = \mu_{(H,C)}(f(b) + f(a))$, as *f* is an anti-isomorphism $\geq \min\{\mu_{(H,C)}f(a), \mu_{(H,C)}f(b)\} = \mathbb{S}\{(\mu_{(H,C)} \circ f)(a), (\mu_{(H,C)} \circ f)(b)\}$, which implies to facilitate $(\mu_{(H,C)} \circ f)(a + b) \geq \mathbb{S}\{(\mu_{(H,C)} \circ f)(a), (\mu_{(H,C)} \circ f)(b)\}$. In addition to, $(\mu_{(H,C)} \circ f)(ab) = \mu_{(H,C)} \circ f(ab) = \mu_{(H,C)} \circ (f(b)f(a))$, as *f* is an anti-isomorphism $\geq \mathbb{S}\{\mu_{(H,C)}(a), \mu_{(H,C)}f(b)\} = \mathbb{S}\{(\mu_{(H,C)} \circ f)(a), (\mu_{(H,C)} \circ f)(ab)\} = \mathbb{S}\{(\mu_{(H,C)} \circ f)(a), (\mu_{(H,C)} \circ f)(ab)\}$. Thus $(G, B) \circ f$ is an S-fuzzy soft sub hemi ring of the hemi ring \mathbb{R} .

Theorem 3.6. Let (H, C) be an S-fuzzy soft sub hemi ring of a hemi ring $(R, +, \cdot)$, then the pseudo fuzzy soft co-set $(x(H, C))^p$ is an S-fuzzy soft hemi ring of a hemi ring \mathbb{R} , for every x in \mathbb{R} .

Proof. Consent to (H, C) be an S-fuzzy soft sub hemi ring of a hemi ring \mathbb{R} . In favor of each a and b in \mathbb{R} , we have

$$\begin{aligned} ((x\mu_{(H,C)})^p)(a+b) &= p(x)\mu_{(H,C)}(a+b) \ge p(x)\mathbb{S}\{(\mu_{(H,C)}(a),(\mu_{(H,C)}(b)\}\\ &= \mathbb{S}\{p(x)(\mu_{(H,C)}(a),(\mu_{(H,C)}(b)\}\\ &= \mathbb{S}\{((x\mu_{(H,C)})^p)(a),((x\mu_{(H,C)})^p)(b)\}. \end{aligned}$$

As a result, $((x\mu_{(H,C)})^p)(a+b) \ge \mathbb{S}\{((x\mu_{(H,C)})^p)(a), ((x\mu_{(H,C)})^p)(b)\}$. At this istant

$$((x\mu_{(H,C)})^p)(ab) = p(x)\mu_{(H,C)}(ab) \ge p(x)\mathbb{S}\{\mu_{(H,C)}(a),\mu_{(H,C)}(b)\}$$

= $\mathbb{S}\{p(x)\mu_{(H,C)}(a),p(x)\mu_{(H,C)}(b)\}$
= $\mathbb{S}\{((x\mu_{(H,C)})^p)(a),((x\mu_{(H,C)})^p)(b)\}.$

Consequently, $((x\mu_{(H,C)})^p)(ab) \ge \mathbb{S}\{((x\mu_{(H,C)})^p)(a), ((x\mu_{(H,C)})^p)(b)\}$. From now $(x(H,C))^p$ is an \mathbb{S} -fuzzy soft sub hemi ring of a hemi ring \mathbb{R} .

4 Conclusion

In the current work, a novel concept of S-fuzzy soft sub hemi ring of a hemi ring which are defined with some properties and related theorems are studied.

References

- [1] M. T. Abu Osman, On some product of fuzzy subgroups, *Fuzzy Sets and Systems*, 24(1987) 79–86.
- [2] B. Ahmad and A. Kharal, On fuzzy soft sets, Advances in Fuzzy Systems, 2009, 1-6,
- [3] H. Aktas and N. CaSman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735.
- [4] M. I. Ali, F. Feng, X. Liu, Min and W. K. Shabir, On some new operations in soft Set Theory, *Computers and Mathematics with Applications*, 57(2009), 1547–1553.
- [5] M. I. Ali, M. Shabir and M. Naz, Algebraic structures of soft sets associated with new operations, *Computers and Mathematics with Applications*, 61(2011), 2647–2654.
- [6] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87–96.
- [7] B.S. Shieh, Infinite fuzzy relation equations with continuous *t*-norms, *Information Sciences*, 178(2008) 1961–1967.
- [8] D. Dubois and H. Prade, *Fuzzy Sets and Systems: Theory and Applications*, Academic Press, 1980.
- [9] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, *Computers and Mathematics with Applications*, 56(2008), 2621–2628.
- [10] Y. B. Jun, Soft BCK/BCI-algebra, Computers and Mathematics with Applications, 56(2008) 1408–1413.
- [11] D. Molodtsov, Soft set theory first result, *Computers and Mathematics with Applications*, 37(1999), 19-31.

- [12] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl., 45(2003), 555–562.
- [13] P. K. Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, *The J. Fuzzy Math.*, 9: 589–602 (2011).
- [14] Qiu-Mei Sun, Zi-Liong Zhang and Jing Liu, Soft sets and soft modules, *Lecture Notes in Comput. Sci.*, 50(09)(2008), 403-409.
- [15] X. Yang, D. Yu, J. Yang and C. Wu, Generalization of Soft Set Theory, From Crisp to Fuzzy Case, Proceedings of the Second International Conference of Fuzzy Information and Engineering, (ICFIE-2007), 27-Apr., pp. 345–355.
- [16] L. A. Zadeh, Fuzzy sets, Inform. And Control, 8(1965), 338–353.
- [17] H. J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer, 1991.

Received: January 22, 2017; Accepted: June 23, 2017

UNIVERSITY PRESS

Website: http://www.malayajournal.org/