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Abstract
The purpose of this paper is to establish Fisher fixed point theorem for two single mappings in the setting of
partially ordered generalized metric spaces.
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1. Introduction and preliminaries

The concept of standard metric space is a fundamental
tool in topology, functional analysis and nonlinear analysis. In
recent years, several generalizations of standard metric space
have appeared (see [4]). In 1993, Czerwik [2] introduced the
concept of a b-metric spaces. Since then, several works have
dealt with fixed point theory in such spaces. In 2000, Hitzler
and Seda [7] introduced the notion of dislocated metric spaces
in which self-distance of a point need not be equal to zero.
Such spaces play a very important role in topology and logical
programming. For fixed point theory in dislocated metric
spaces, see [8] and references therein. In this work, we present
a new generalized metric spaces introduced by Jleli and Samet
in [5] and that recovers a large class of topological spaces
including standard metric spaces, b-metric spaces, dislocated
metric spaces and modular spaces [9, 10].
On the other hand, after the paper [3], several generalizations
of Fisher theorem have appeared. Among them, we find
the results established by Chaira and Marhani [1] for two

mappings on metric spaces by using a function α defined
from [0,+∞[ into [0,1[ and satisfies limsup

t→r+
α(t)< 1, for all

r ≥ 0. In the same spirit, we establish an extension of Fisher
theorem in the setting of partial ordered generalized metric
spaces and we illustrate our result by an example.

Definition 1.1. [5]. Let X be a nonempty set and
D : X ×X → [0,+∞] be a function. For every x ∈ X, let us
define the set

C(D ,X ,x) = {{xn} ⊂ X : lim
n→+∞

D(xn,x) = 0}.

We say that D is a generalized metric on X if it satisfies the
following conditions:

(D1) For every (x,y) ∈ X×X, we have:

D(x,y) = 0⇒ x = y;

(D2) For every (x,y) ∈ X×X, we have:

D(x,y) = D(y,x);

(D3) There exists C > 0 such that if (x,y) ∈ X2 and
{xn} ∈D(xn,y), then D(x,y)≤C limsup

n→+∞

D(xn,y).

In this case, the pair (X ,D) is said to be a generalized metric
space.
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Definition 1.2. [5] Let (X ,D) be a generalized metric space.
Let {xn} be a sequence in X. We say that {xn} is D−convergent
in X if there exists an element x ∈ X such that

lim
n→+∞

D(xn,x) = 0,

i.e,
{xn} ∈C(D ,X ,x).

Remark 1.3. Let (X ,D) be a generalized metric space. Let
x ∈ X. From the condition (D3), If C(D ,X ,x) 6= /0, then
D(x,x) = 0.

Definition 1.4. [5] Let (X ,D) be a generalized metric space.
Let {xn} be a sequence in X. We say that {xn} is a D−Cauchy
sequence if

lim
n,m→+∞

D(xn+m,xn) = 0.

Definition 1.5. [5] Let (X ,D) be a generalized metric space.
X is said to be D−complete if every D−Cauchy sequence in
X is D−convergent to some element in X.

Definition 1.6. A partial order ”�” in a nonempty set X is a
binary relation which satisfy the three conditions:

(i) x� x for all x ∈ X;

(ii) x� y and y� z implies x� z for all x,y,z ∈ X;

(iii) x� y and y� x implies x = y for all x,y ∈ X.

In this case, the pair (X ,�) is said to be a partially ordered
space.

Definition 1.7. The partially ordered generalized metric space
(X ,�,D) is said to be D−regular if the following condition
holds:“For every nondecreasing sequence {xn} ⊂ X, if {xn}
D−converges to x then xn � x for all n ∈ N”.

Let X a nonempty set and f be a self-mapping on X . We
denote by F( f ) the fixed point set of f , i.e.,

F( f ) := {x ∈ X : f x = x}.

2. Main results
Now let us consider two generalised metric spaces (X ,D) and
(Y,∆) and endow X with a partial order ” � ”. Let C be the
positive real appeared in the condition (iii) in the definition
of D. Consider a nondecreasing function α : [0,+∞[→ [0,1[
such that

• limsup
t→r+

α(t)< 1, for all r > 0.

• limsup
t→0+

α(t)< inf{1, 1
C}.

Theorem 2.1. Let T : X→Y and S : Y → X be two mappings.
If the following conditions are satisfied:

(i) For all (x,y) ∈ X×Y such that x and Sy are compara-
ble,we have:

D(Sy,ST x)≤ α(∆(y,T x))max{D(x,Sy),
∆(y,T x),D(x,ST x)}

∆(T x,T Sy)≤ α(D(x,Sy))max{D(x,Sy),
∆(y,T x),∆(y,T Sy)}

(2.1)

(ii) X is D−complete and D−regular;

(iv) There exists an element x0 ∈ X such that

x0� ST x0� (ST )2x0� ...� (ST )nx0� (ST )n+1x0� ...

and
δ (S,T,x0,D ,∆)< ∞

where

δ (S,T,x0,D ,∆) = sup{D((ST )ix0,(ST ) jx0),

∆(T (ST )ix0,T (ST ) jx0) : i, j ∈ N},

then {(ST )nx0} D−converges to some x∗ ∈ X. If one set
T x∗ = y∗ and suppose that ∆(y∗,T x0)< ∞, then Sy∗ = x∗ and
so x∗ ∈ F(ST ) and y∗ ∈ F(T S). Moreover, D(x∗,x∗) = 0 and
∆(y∗,y∗) = 0

Proof. We divide the proof into four steps:

Step.1. Consider the two sequences {xn} ⊂ X and
{yn} ⊂ Y defined by

yn = T xn and xn+1 = Syn for all n ∈ N.

For all n ∈ N we have xn � xn+1, then if we take x = xn and
y = yn, the inequalities (2.1) become

D(xn+1,xn+1) = D(Syn,ST xn)

≤ α(∆(yn,T xn))max{D(xn,Syn),∆(yn,T xn),

D(xn,ST xn)}

and

∆(yn,yn+1) = ∆(T xn,T Syn)

≤ α(D(xn,Syn))max{D(xn,Syn),∆(yn,T xn),

∆(yn,T Syn)}.

Thus
D(xn+1,xn+1)≤ α(∆(yn,yn))max{D(xn,xn+1),

∆(yn,yn)}
∆(yn,yn+1)≤ α(D(xn,xn+1))max{D(xn,xn+1),

∆(yn,yn)}

(2.2)

Again, if we put in (2.1) x = xn+1 and y = yn, we obtain
D(xn+1,xn+2)≤ α(∆(yn,yn+1))×

max{D(xn+1,xn+1),∆(yn,yn+1)}
∆(yn+1,yn+1)≤ α(D(xn+1,xn+1))×

max{D(xn+1,xn+1),∆(yn,yn+1)}

(2.3)

648



An extension of Fisher fixed point theorem in partially ordered generalized metric spaces — 649/652

Let us set

Mn = max{α(D(xn,xn+1)),α(∆(yn,yn))}.

From (2.2) and (2.3) and since 0≤ α(t)< 1 for all t ≥ 0,
we get

D(xn+1,xn+2)≤max{D(xn+1,xn+1),∆(yn,yn+1)}
≤max{α(∆(yn,yn))max{D(xn,xn+1),∆(yn,yn)},
α(D(xn,xn+1))max{D(xn,xn+1),∆(yn,yn)}}.

Then

D(xn+1,xn+2)≤Mn max{D(xn,xn+1),∆(yn,yn)} (2.4)

By the same argument

∆(yn+1,yn+1)≤max{D(xn+1,xn+1),∆(yn,yn+1)}
≤max{α(∆(yn,yn))max{D(xn,xn+1),∆(yn,yn)},

α(D(xn,xn+1))max{D(xn,xn+1),∆(yn,yn)}}.

Then

∆(yn+1,yn+1)≤Mn max{D(xn,xn+1),∆(yn,yn)} (2.5)

From (2.4) and (2.5) we obtain

max{D(xn+1,xn+2),∆(yn+1,yn+1)}
≤Mn max{D(xn,xn+1),∆(yn,yn)}.

Let Un =max{D(xn,xn+1),∆(yn,yn)}. Then for all n∈N, we
have

Un+1 ≤Mn Un ≤Un.

As the nonnegative sequence {Un} is decreasing, it converges
to some real r ≥ 0. Hence {D(xn,xn+1)} and {∆(yn,yn)}
are bounded. So, there exist a strictly increasing mapping
ϕ : N→ N and two nonnegative reals r1 and r2 such that
{D(xϕ(n),xϕ(n)+1)} converges to r1 and {∆(yϕ(n),yϕ(n))} con-
verges to r2.
Since limsup

t→ri

α(t)< 1 for i ∈ {1,2}, there exist k ∈ [0,1[ and

N ∈ N such that for all n ≥ N we have Mϕ(n) ≤ k and thus
Uϕ(n)+1 ≤ k Uϕ(n), which implies that r = 0. Therefore,

lim
n→+∞

D(xn,xn+1) = lim
n→+∞

∆(yn,yn) = 0

and from (2.2) we obtain

lim
n→+∞

D(xn,xn) = lim
n→+∞

∆(yn,yn+1) = 0.

Step.2. Let us show that {xn} is a D−Cauchy sequence.
For this, let us fix i and j in N. From (2.1), if we take
x = (ST )n−1+ jx0 and y = T (ST )n−1+ix0, we obtain

D((ST )n+ix0,(ST )n+ jx0)≤ α(∆(yn−1+i,yn−1+ j))×
max{D((ST )n−1+ jx0,(ST )n+ix0),

∆(T (ST )n−1+ix0,T (ST )n−1+ jx0),

D((ST )n−1+ jx0,(ST )n+ jx0)},

then

D((ST )n+ix0,(ST )n+ jx0)

≤ α(∆(yn−1+i,yn−1+ j))δ (S,T,(ST )n−1x0,D ,∆)
(2.6)

and if we take x = (ST )n+ jx0 and y = T (ST )n−1+ix0, we ob-
tain

∆(T (ST )n+ jx0,T (ST )n+ix0)≤ α(D(xn+ j,xn+i))×
max{D((ST )n+ jx0,(ST )n+ix0),

∆(T (ST )n−1+ix0,T (ST )n+ jx0),

∆(T (ST )n−1+ix0,T (ST )n+ix0)}.

Then

∆(T (ST )n+ jx0,T (ST )n+ix0)

≤ α(D(xn+ j,xn+i))δ (S,T,(ST )n−1x0,D ,∆) (2.7)

From (2.6) and (2.7) we have

δ (S,T,(ST )nx0,D ,∆)≤ βnδ (S,T,(ST )n−1x0,D ,∆),

where

βn = sup{α(D(xn+ j,xn+i)),α(∆(yn−1+i,yn−1+ j)) : i, j ∈
N}< 1, for all n≥ 1.

Then {δ (S,T,(ST )nx0,D,∆)} is decreasing and bounded be-
low. So, it converges to some real l ≥ 0.

Again from (2.6) and (2.7), we have for all n≥ 2

D(xn+ j,xn+i)≤ δ (S,T,(ST )n−1x0,D ,∆)

≤ δ (S,T,x0,D ,∆)

and

∆(xn−1+ j,xn−1+i)≤ δ (S,T,(ST )n−1x0,D ,∆)

≤ δ (S,T,x0,D ,∆).

Since α is nondecreasing, then βn≤α(δ (S,T,x0,D,∆)). Thus

δ (S,T,(ST )nx0,D ,∆)

≤ α(δ (S,T,x0,D ,∆))δ (S,T,(ST )n−1x0,D ,∆),

which implies that

l = lim
n→+∞

δ (S,T,(ST )nx0,D ,∆) = 0.

And since for all n,m ∈ N,

D(xn,xn+m) = D((ST )nx0,(ST )n+mx0)

≤ δ (S,T,(ST )nx0,D ,∆),

then lim
n→+∞

D(xn,xn+m) = 0. Which implies that the sequence

{xn} is D−Cauchy. As X is D−complete, there exists x∗ ∈ X
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such that lim
n→+∞

D(xn,x∗) = 0.

Step.3. let us put y∗ = T x∗. Since X is D−regular and {xn} is
nondecreasing and D−convergent to x∗, then for each n ∈ N
we have Syn−1 = xn ≤ x∗. In (2.1), if we take x = x∗ and
y = yn−1 we obtain

∆(y∗,yn) = ∆(T x∗,T Syn−1)

≤ α(D(x∗,xn))max{D(x∗,xn),∆(y∗,yn−1),∆(yn−1,yn)}.

Since limsup
t→0+

α(t)< 1, there exist k1 ∈ [0,1[ and N1 ∈N such

that for all n≥ N1, we have

∆(y∗,yn)≤ k1 max{D(x∗,xn),∆(y∗,yn−1),∆(yn−1,yn)}

If we suppose that {∆(y∗,yn)} does not converges to 0 , then
since

lim
n→+∞

D(x∗,xn) = lim
n→+∞

∆(yn−1,yn) = 0,

there exists N2 ∈ N such that for all n≥ N2

D(x∗,xn)≤ ∆(y∗,yn−1) et ∆(yn−1,yn)≤ ∆(y∗,yn−1)

Hence for all n≥max{N1,N2}= N′ we have

∆(y∗,yn)≤ k1 ∆(y∗,yn−1)≤ kn−N′
1 ∆(y∗,yN′).

Therefore lim
n→+∞

∆(y∗,yn) = 0, a contradiction.

As limsup
t→0+

α(t)< inf{1, 1
C}, there exist k2 ∈ [0, inf{1, 1

C}[

and N3 ∈ N such that for all n≥ N3 we have

α(∆(yn−1,y∗))≤ k2.

Since lim
n→+∞

D(x∗,xn) = 0, then, using (D3), there exists C > 0

such that

D(x∗,Sy∗)≤C limsup
n

D(xn,Sy∗).

Then

D(x∗,Sy∗)≤C limsup
n

D(Syn−1,ST x∗)

≤C limsup
n→+∞

α(∆(yn−1,y∗))×

max{D(x∗,xn),∆(yn−1,y∗),D(x∗,Sy∗)}
≤Ck2 limsup

n
max{D(x∗,xn),∆(yn−1,y∗),D(x∗,Sy∗)}

≤Ck2D(x∗,Sy∗).

Thus Sy∗ = x∗ and consequently ST x∗ = x∗ and T Sy∗ = y∗.
Step.4. Using Remark 1.3, since {xn} ∈C(D ,X ,x∗) 6= /0, then
D(x∗,x∗) = 0 and since {yn} ∈C(∆,Y,y∗), then

∆(y∗,y∗) = 0.

The following proposition asserts the uniqueness of the pair
(x∗,y∗) in the above theorem.

Proposition 2.2. If there exists an other pair (x,y) satisfying
the results of the above theorem such that

D(x∗,x)< ∞ and ∆(y∗,y)< ∞

then (x,y) = (x∗,y∗).

Proof. According to the system (2.1) we have{
D(x∗,x)≤ α(∆(y∗,y)) max{D(x,x∗),∆(y∗,y)}
∆(y,y∗)≤ α(D(x,x∗)) max{D(x,x∗),∆(y∗,y)}

Then, {
D(x∗,x)≤ α(∆(y∗,y)) ∆(y∗,y)
∆(y,y∗)≤ α(D(x,x∗)) D(x,x∗)

If we suppose that x 6= x∗, then D(x∗,x) 6= 0 and according to
the above system we have

D(x∗,x)< D(x∗,x),

which is a contradiction.

If we suppose that y 6= y∗, then ∆(y∗,y) 6= 0 and we have

∆(y∗,y)< ∆(y∗,y),

which is also a contradiction. Then (x,y) = (x∗,y∗).

Remark 2.3. The standard metric is a generalized metric
with C = 1. So, in the case where D = d and ∆ = δ are two
standard metrics and α is a constant function, we obtain the
following result proved by Fisher [3] in 1981.

Corollary 2.4. Let (X ,d) and (Y,δ ) two metric spaces such
that (X ,d) is complete. Let T : X → Y and S : Y → X two
mappings such that, for all (x,y) ∈ X×Y ,{

d(Sy,ST x)≤ cmax{d(x,Sy),δ (y,T x),d(x,ST x)}
δ (T x,T Sy)≤ cmax{d(x,Sy),δ (y,T x),δ (y,T Sy)},

where c ∈ [0,1[. Then there exists a unique pair (x∗,y∗) ∈
X×Y such that T x∗ = y∗ and Sy∗ = x∗. And then ST x∗ = x∗

and T Sy∗ = y∗.

Example 2.5. Consider the two spaces X = [0,1] and
Y = [0,2] ordered by ” � ” the reverse of the usual order.
Consider the two mappings T : X → Y and S : Y → X defined
as follows:

T x = x+1, for all x ∈ X and Sy=0, for all y ∈ Y .

Consider the two mappings D : X × X → [0,+∞] and ∆ :
Y ×Y → [0,+∞] defined as follows:{

D(x,y) = xy+ γ(x+ y), i f xy 6= 0;
D(x,y) = β (x+ y), i f xy = 0.

where γ,β ∈]1,+∞[ such that γ < β and

∆(x,y)=


|x−y|

xy , i f x,y ∈]0,2];
+∞, i f (x,y) ∈ ({0}×]0,2])∪ (]0,2]×{0});
0, i f x = y = 0.
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1. Let us show that (Y,∆) is a generalized metric space.
It’s easy to show that ∆ verifies the two first conditions (∆1)
and (∆2). Now, let (x,y) ∈ Y 2 and {xn} ∈ C(∆,Y,x), i.e,
lim

n→+∞
∆(xn,x) = 0.

If x = y, then ∆(x,y) = 0 = limsup
n→+∞

∆(xn,y). So, let us assume

that x 6= y and distinguish three cases.
Case1. If x 6= 0, then, by considering the set K = {n ∈ N :
xn 6= 0}, we have

∆(xn,x) =

{
|xn−x|

xxn
, i f n ∈ K;

+∞, i f n /∈ K.

If we suppose that N\K is infinite, there exists a subsequence
{xλ (n)} such that ∆(xλ (n),x) = +∞, for all n ∈ N, a contra-
diction. Hence N\K is finite. Then there exists N ∈ N such
that xn 6= 0 for all n≥ N.
If y = 0, we have ∆(x,y) = +∞ = limsup

n→+∞

∆(xn,y). Now, as-

sume that y 6= 0. Thus for all n≥ N

∆(x,y) = |1
x
− 1

y
| ≤ |1

x
− 1

xn
|+ | 1

xn
− 1

y
|

≤ ∆(xn,x)+∆(xn,y).

By passing to the limit superior, we get ∆(x,y)≤ limsup
n→+∞

∆(xn,y).

Case2. If x = 0, then K is finite. If not, then there exists a
subsequence {xµ(n)} such that ∆(xµ(n),x) = +∞, a contradic-
tion. Hence there exists N′ ∈N such that xn = 0 for all n≥N′.
Therefore, ∆(x,y) = +∞ = limsup

n→+∞

∆(xn,y).

In both cases, ∆(x,y)≤ limsup
n→+∞

∆(xn,y). Which shows that ∆

is a generalized metric.
2. Let us show that (X ,D) is a D−complete generalized
metric space.
(D1): Let x,y ∈ X. If D(x,y) = 0, then x = y = 0.
(D2): for all x,y ∈ X, D(x,y) = D(y,x).
Let us prove that D satisfies (D3). We can see easily the
following equivalence:

C(D ,X ,x) 6= /0⇔ x = 0.

Let us consider C = β

γ
. Let y ∈ X and {xn} ⊂C(D ,X ,0) we

have

D(0,y) = βy =Cγy≤CD(xn,y), for each n ∈ N.

Then D(0,y)≤C limsup
n→+∞

D(xn,y), which proves (D3).

Now, let {xn} is a D−Cauchy sequence in X. From the in-
equalities

D(xn,xm)≥ xn ≥ 0,

we get lim
n→+∞

xn = 0. Hence lim
n→+∞

D(xn,0) = 0, which proves

that (X ,D) is D−complete.
3. The D−regularity of X is evident.

4. Let show that S and T verify the system (1)
Consider the mapping α : [0,+∞[→ [0,1[ defined by

α(x) =
1

x+β
.

One can see that limsup
t→r+

α(t)< 1, for all r > 0 and

limsup
t→0+

α(t) =
1
β

<
γ

β
=

1
C

= inf{1, 1
C
}.

For all x ∈ X and y ∈ Y , we have

x
x+1

≤ α(βx)×βx.

Since x
x+1 = ∆(T x,T Sy) and βx = D(x,Sy), then

∆(T x,T Sy)≤ α(D(x,Sy))D(x,Sy)

≤ α(D(x,Sy))max{D(x,Sy),

∆(y,T x),∆(y,T Sy)}.

And since D(Sy,ST x) = 0, we obtain the system (1).
5. If we take x0 = 1, we have for all (i, j) ∈ N2

D((ST )ix0,(ST ) jx0)=

 D(0,0) = 0, i f i 6= 0 and j 6= 0;
D(1,1) = 1+2γ, i f i = j = 0;
D(1,0) = β , i f i = 0 and j 6= 0.

and

∆(T (ST )ix0,T (ST ) jx0)=


∆(1,1) = 0, i f i 6= 0 and j 6= 0;
∆(2,2) = 0, i f i = j = 0;
∆(2,1) = 1

2 , i f i = 0 and j 6= 0.

Hence δ (S,T,x0,D ,∆)< ∞.
6. Since (ST )nx0 = 0 for all n ∈ N, then

x0 � ST x0 � (ST )2x0 � ...� (ST )nx0 � (ST )n+1x0 � ...

7. the sequence {(ST )nx0}D−converges to 0, T0=1 and
S1=0. then 0 ∈ F(ST ) and 1 ∈ F(T S).
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