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Common random fixed point results with application
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Abstract
In this paper, we prove a common random fixed point theorem for two pair of weakly compatible mappings
in separable Banach spaces. A corollary of the theorem is obtained and an example is given to verify this
corollary. An application is given to obtain the existence and unique solution of system of random nonlinear
integral equations.
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1. Introduction
Fixed point theory has the diverse applications in different

branches of mathematics, statistic, engineering, economics
and many other science. Random fixed point theory is very
important as a stochastic generalizations of classical fixed
point theory and play an important role in the theory of ran-
dom integral and random differential equations. It can be
applied also in various areas for instance variational inequali-
ties, approximation theory etc. In 1950’s, the Prague school of
probabilistic started the study of random fixed point theorems.
Random fixed point theorems for random contraction map-
pings on separable complete metric spaces were first proved
by Hanš [7] and Špaček [25].

In 1976 Bharucha-Reid [6] attracted the attention of sev-
eral mathematicians and gave wings to this theory. Itoh [8]
extend the results of Špaček and Hanš in multi-valued con-
tractive mappings and obtained random fixed point theorems
with an application to random differential equations in Banach
spaces. Mukherjee [11] gave a random version of Schauder’s
fixed point theorem on an atomic probability measure space.
While Bharucha-Reid [5] generalized Mukherjee’s result on a
general probability measure space.

On the other hand, some authors [12], [17]-[22] applied a
random fixed point theorem to prove the existence of a solu-
tion in a sparable Banach space of a random nonlinear integral
equation. Sehgal and Waters [24] had obtained several ran-
dom fixed point theorems including a random analogue of the
classical results due to Rothe [20]. Common random fixed
points and random coincidence points of a pair of compatible
random operators and fixed point theorems for contractive ran-
dom operators in Polish spaces are obtained by Papageorgiou
[13], [14] and Beg [2], [3]. Subsequently Saluja and Tripathi
[23] obtained the stochastic version of the result of Mehta et
al. [16].

In this paper, we establish a common random fixed point
theorem for pairs of weakly compatible mappings in separable
Banach spaces. A corollary of our theorem is given and we
use it to obtain the existence solution of a random nonlinear
integral equations. Our results extend some others form from
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current existence literature.

2. Preliminaries
Let (X ,∑) be a separable Banach space where ∑ is a σ−algebra
of Borel subsets of X and let (Ω,∑,µ) denote a complete prob-
ability measure space with measure µ and ∑ be a σ−algebra
of subsets of Ω.

Definition 2.1. A mapping x : Ω→X is said to be an X−valued
random variable, if the inverse image under the mapping x of
every Borel subset B of X belongs to ∑, that is, x−1(B) ∈ ∑

for all B ∈ ∑ .

Definition 2.2. A mapping x : Ω→ X is said to be a finitely
valued random variable, if it is constant on each of a finite
number of disjoint sets Ai ∈ ∑ and is equal to 0 on Ω−(

n⋃
i=1

Ai

)
, X is called a simple random variable if it is finitely

valued and µ{ω : ‖x(ω)‖> 0}< ∞.

Definition 2.3. A mapping x : Ω→ X is said to be weak
random variable, if the function x∗(x(ω)) is a real valued
random variables for each x∗ ∈ X∗, the space X∗ denoting the
dual space of X .

Remark 2.4. If X is a separable Banach space then the
σ−algebra generated by the class of all spherical neighour-
hoods of X is equal to the σ−algebra of Borel subsets of
X . Hence every strong and also weak random variable is
measurable in the sense of definition 2.1.

Let Y be another Banach space. We also need to the
following definitions (see Joshi and Bose [9]).

Definition 2.5. A mapping F : Ω×X → Y is said to be a
random mapping if F(ω,x) = Y (ω) is a Y−valued random
variable for every x ∈ X .

Definition 2.6. A mapping F : Ω×X → Y is said to be a
continuous random mapping if the set of all ω ∈Ω for which
F(ω,x) is a continuous function of x has measure one.

Definition 2.7. Any X−valued random variable x(ω) which
satisfies µ{ω : F(ω,x(ω)) = x(ω)} = 1 is said to be a ran-
dom solution of the fixed point equation or a random fixed
point of F.

Definition 2.8. Random operators T,S : Ω×X → X (where
X be a separable Banach space) are weakly compatible if
T (ω,S(ω,ξ (ω))) = S(ω,T (ω,ξ (ω))) provided that
T (ω,ξ (ω)) = S(ω,ξ (ω)) for every ω ∈Ω.

3. Existence of unique random fixed
points for weakly compatible mappings

In this section, we prove the existence of a common ran-
dom fixed point under four random weakly compatible map-
pings in a separable Banach space.

Condition (A): The random mappings S,T,P and Q: Ω×
X→ X where X is a separable Banach space are said to satisfy
Condition (A) if

d(S(ω,x(ω)),T (ω,y(ω)))

≤ α(ω)d(P(ω,x(ω)),Q(ω,y(ω)))

+β (ω)

(
d(P(ω,x(ω)),S(ω,x(ω)))

+d(Q(ω,y(ω)),T (ω,y(ω)))

)
+γ(ω)

(
d(P(ω,x(ω)),T (ω,y(ω)))
+d(Q(ω,y(ω)),S(ω,x(ω)))

)
,(3.1)

for all x,y∈X , α(ω)+2β (ω)+2γ(ω)< 1 and ω ∈Ω, where
β (ω),γ(ω)≥ 0 and α(ω)> 0.

Theorem 3.1. Let X be a separable Banach space and (Ω,∑,µ)
be a complete probability measure space. Assume that S,T,P
and Q be random operators such that for ω ∈ Ω, S(ω, .),
T (ω, .), P(ω, .), Q(ω, .) : Ω×X → X satisfying condition
(A) and

(i) S(ω,X)⊆ Q(ω,X) and T (ω,X)⊆ P(ω,X),

(ii) the pairs {S,P} and {T,Q} are random weakly com-
patible mappings.
Then the four random mappings have a unique common ran-
dom fixed point in X.

Proof. Let the function x◦(ω),x1(ω) : Ω → X be an arbi-
trary measurable mappings, we choose y1(ω),y2(ω) : Ω→
X measurable mappings such that y1(ω) = S(ω,x◦(ω)) =
Q(ω,x1(ω)) and y2(ω) = T (ω,x1(ω)) = P(ω,x2(ω)).
In general we construct a sequence of measurable mappings
yn(ω),xn(ω) : Ω→ X defined by

y2n+1(ω) = S(ω,x2n(ω)) = Q(ω,x2n+1(ω)) and
y2n+2(ω) = T (ω,x2n+1(ω)) = P(ω,x2n+2(ω)).

(3.2)

Then from (3.1) and (3.2), we get

d(y2n+1(ω),y2n+2(ω))

= d(S(ω,x2n(ω)),T (ω,x2n+1(ω)))

≤ α(ω)d(P(ω,x2n(ω)),Q(ω,x2n+1(ω)))

+β (ω)[d(P(ω,x2n(ω)),S(ω,x2n(ω)))

+d(Q(ω,x2n+1(ω)),T (ω,x2n+1(ω)))]

+γ(ω)[d(P(ω,x2n(ω)),T (ω,x2n+1(ω)))

+d(Q(ω,x2n+1(ω)),S(ω,x2n(ω)))]

= α(ω)d(y2n(ω),y2n+1(ω))

+β (ω)[d(y2n(ω),y2n+1(ω))+d(y2n+1(ω),y2n+2(ω))]

+γ(ω)[d(y2n(ω),y2n+2(ω))+d(y2n+1(ω),y2n+1(ω))]

≤ α(ω)d(y2n(ω),y2n+1(ω))

+β (ω)[d(y2n(ω),y2n+1(ω))+d(y2n+1(ω),y2n+2(ω))]

+γ(ω)[d(y2n(ω),y2n+1(ω))+d(y2n+1(ω),y2n+2(ω))]

= (α(ω)+β (ω)+ γ(ω))d(y2n(ω),y2n+1(ω))

+(β (ω)+ γ(ω))d(y2n+1(ω),y2n+2(ω)).
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Therefore,

d(y2n+1(ω),y2n+2(ω))

≤
(

α(ω)+β (ω)+ γ(ω)

1−β (ω)− γ(ω)

)
d(y2n(ω),y2n+1(ω))

= ρd(y2n(ω),y2n+1(ω)),

where ρ = α(ω)+β (ω)+γ(ω)
1−β (ω)−γ(ω) .

By the assumption α(ω)+2β (ω)+2γ(ω)< 1, we have

α(ω)+β (ω)+ γ(ω)< 1−β (ω)− γ(ω).

Hence 0≤ α(ω)+β (ω)+γ(ω)
1−β (ω)−γ(ω) = ρ (say) < 1 and

d(y2n(ω),y2n+1(ω))≤ ρd(y2n−1(ω),y2n(ω)).

We have that

d(y2n+1(ω),y2n+2(ω))≤ ρ
2d(y2n−1(ω),y2n(ω)).

On continuing this process, we have

d(y2n+1(ω),y2n+2(ω))≤ ρ
2nd(y0(ω),y1(ω)).

Also, for every positive integer p, we get

d(yn(ω),yn+p(ω))

≤ d(yn(ω),yn+1(ω))+d(yn+1(ω),yn+2(ω))

+....+d(yn+p−1(ω),yn+p(ω))

≤ (ρn +ρ
n+1 + ...+ρ

n+p−1)d(y1(ω),y◦(ω))

= ρ
n (1+ρ +ρ

2 + ......+ρ
p−1)d(y◦(ω),y1(ω))

≤ ρn

1−ρ
d(y◦(ω),y1(ω)) for ω ∈Ω.

As n→∞ then d(yn(ω),yn+p(ω))→ 0, it follows that {yn(ω)}
is a Cauchy sequence. Since (X ,d) is complete, then there
exists z(ω)∈ X such that yn(ω)→ z(ω) as n→∞. Then from
(3.2) we get

lim
n→∞

S(ω,x2n(ω)) = lim
n→∞

Q(ω,x2n+1(ω)) = z(ω),

lim
n→∞

T (ω,x2n+1(ω)) = lim
n→∞

P(ω,x2n+2(ω)) = z(ω).

Therefore,

lim
n→∞

S(ω,x2n(ω)) = lim
n→∞

Q(ω,x2n+1(ω))

= lim
n→∞

T (ω,x2n+1(ω))

= lim
n→∞

P(ω,x2n+2(ω))

= z(ω). (3.3)

Since T (ω,X) ⊆ P(ω,X), then there exists u(ω) ∈ X such
that

z(ω) = P(ω,u(ω)). (3.4)

From (3.1), we obtain

d(S(ω,u(ω)),z(ω))

≤ d(S(ω,u(ω)),T (ω,x2n+1(ω)))

+d(T (ω,x2n+1(ω)),z(ω))

≤ α(ω)d(P(ω,u(ω)),Q(ω,x2n+1(ω)))

+β (ω)[d(P(ω,u(ω)),S(ω,u(ω)))

+d(Q(ω,x2n+1(ω)),T (ω,x2n+1(ω)))]

+γ(ω)[d(P(ω,u(ω)),T (ω,x2n+1(ω)))

+d(Q(ω,x2n+1(ω)),S(ω,u(ω)))]

+d(T (ω,x2n+1(ω)),z(ω)).

Taking the limit as n→ ∞ in above inequality, using (3.3) and
(3.4), we get

d(z(ω),S(ω,u(ω)))≤ [β (ω)+γ(ω)]d(z(ω),S(ω,u(ω))).

Thus [1−β (ω)− γ(ω)]d(z(ω),S(ω,u(ω))) ≤ 0, since 1−
β (ω)− γ(ω)> 0, therefore d(z(ω),S(ω,u(ω))) = 0, so
z(ω) = S(ω,u(ω)). From (3.4), we have

z(ω) = P(ω,u(ω)) = S(ω,u(ω)). (3.5)

Hence u(ω) is a random coincidence point of P and S.
Since the pair (P,S) is random weakly compatible, i.e.
P(ω,S(ω,u(ω))) = S(ω,P(ω,u(ω))) this implies that

P(ω,z(ω)) = S(ω,z(ω)). (3.6)

Again since S(ω,X) ⊆ Q(ω,X), then there exists v(ω) ∈ X
such that

z(ω) = Q(ω,v(ω)). (3.7)

From (3.1), (3.5) and (3.7), we have

d(z(ω),T (ω,v(ω))) = d(S(ω,u(ω)),T (ω,v(ω)))

≤ α(ω)d(P(ω,u(ω)),Q(ω,v(ω)))

+β (ω)[d(P(ω,u(ω)),S(ω,u(ω)))

+d(Q(ω,v(ω)),T (ω,v(ω)))]

+γ(ω)[d(P(ω,u(ω)),T (ω,v(ω)))

+d(Q(ω,v(ω)),S(ω,u(ω)))]

= (β (ω)+ γ(ω))d(z(ω),T (ω,v(ω))).

this implies that d(z(ω),T (v(ω)))≤ 0, which is a contradic-
tion, so d(z(ω),T (ω,v(ω))) = 0 and z(ω) = T (ω,v(ω)).
From (3.7), we get

z(ω) = Q(ω,v(ω)) = T (ω,v(ω)). (3.8)

Hence v(ω) is a random coincidence point of T and Q. Since
T and Q are random weakly compatible, i.e.
T (ω,Q(ω,v(ω))) = Q(ω,T (ω,v(ω))), this leads to

T (ω,z(ω)) = Q(ω,z(ω)). (3.9)
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Now we show that z(ω) is a random fixed point of S, we have
from (3.1) that

d(S(ω,z(ω)),z(ω)) = d(S(ω,z(ω)),T (ω,v(ω)))

≤ α(ω)d(P(ω,z(ω)),Q(ω,v(ω)))

+β (ω)[d(P(ω,z(ω)),S(ω,z(ω)))

+d(Q(ω,v(ω)),T (ω,v(ω)))]

+γ(ω)[d(P(ω,z(ω)),T (ω,v(ω)))

+d(Q(ω,v(ω)),S(ω,z(ω)))].

Using (3.6) and (3.8), we get

d(S(ω,z(ω)),z(ω)) ≤ α(ω)d(S(ω,z(ω)),z(ω))

+2γ(ω)d(S(ω,z(ω)),z(ω))

= (α(ω)+2γ(ω))d(S(ω,z(ω)),z(ω)),

again 1−α(ω)−2γ(ω)> 0, it follows that
d(S(ω,z(ω)),z(ω)) = 0, i.e. S(ω,z(ω)) = z(ω).
According to (3.6), we obtain that

P(ω,z(ω)) = S(ω,z(ω)) = z(ω). (3.10)

By a similar way and using (3.10), we can prove that for all
ω ∈Ω,

T (ω,z(ω)) = Q(ω,z(ω)) = z(ω). (3.11)

The equations (3.10) and (3.11) shows that z(ω) is a common
random fixed point of T, S, P and Q.

For uniqueness, let q(ω) 6= z(ω) be another common ran-
dom fixed point of the four mappings, then from (3.1), one
can write

d(z(ω),q(ω)) = d(S(ω,z(ω)),T (ω,q(ω)))

≤ α(ω)d(P(ω,z(ω)),Q(ω,q(ω)))

+β (ω)[d(P(ω,z(ω)),S(z(ω)))

+d(Q(ω,q(ω)),T (ω,q(ω)))]

+γ(ω)[d(P(ω,z(ω)),T (ω,q(ω)))

+d(Q(ω,q(ω)),S(ω,z(ω)))]

= (α(ω)+2γ(ω))d(z(ω),q(ω)),

a contradiction. Hence q(ω) = z(ω) and so z(ω) is a unique
common random fixed point of T, S, P and Q.

If we take β (ω) = γ(ω) = 0 in above theorem we obtain
the following corollary:

Corollary 3.2. Let X be a separable Banach space and (Ω,∑,µ)
be a complete probability measure space. Assume that S,T,P
and Q be four random operators such that for
ω ∈ Ω, S(ω, .),T (ω, .),P(ω, .),Q(ω, .) : Ω×X → X satisfy-
ing the following conditions:

(i) S(ω,X)⊆ Q(ω,X) and T (ω,X)⊆ P(ω,X),
(ii) the pairs {S,P} and {T,Q} are random weakly com-

patible,

(iii)

d(S(ω,x(ω),T (ω,y(ω)))

≤ α(ω)d(P(ω,x(ω)),Q(ω,y(ω))),

for all x(ω),y(ω) ∈ X , 0 < α(ω)< 1 and ω ∈Ω.
Then S,T,P and Q have a unique common random fixed point
in X.

The following example verify all the requirements of
Corollary 3.2.

Example 3.3. Let (Ω,Σ) be a measurable space and M =
Ω = [0,1] ⊂ R with the usual metric d and let ∑ be the
sigma algebra of Lebesgue’s measurable subset of Ω. De-
fine T,Q,S,P : Ω×M→M for all ω ∈Ω, by

S(ω,x) =


x(ω)

2 if x(ω) ∈Ω−{ω}

x(ω) if x(ω) = ω

,

Q(ω,x) =

 1 if x(ω) ∈Ω−{ω}

x(ω) if x(ω) = ω

,

T (ω,x) =

 0 if x(ω) ∈Ω−{ω}

x(ω) if x(ω) = ω

,

P(ω,x) =


x(ω)

4 if x(ω) ∈Ω−{ω}

x(ω) if x(ω) = ω

.

Let x(ω) = ω be a measurable mapping, then it’s obvious
that S(ω,x)⊆Q(ω,x), T (ω,x)⊆ P(ω,x) and for all ω ∈Ω,
S(ω,x(ω)) = P(ω,x(ω)) = ω ,
S(ω,P(ω,x(ω))) = P(ω,S(ω,x(ω))) = ω, this implies that
P and S are random weakly compatible mappings, similarly T
and Q too. To justify the condition (iii) of corollary, by taking
x(ω) ∈Ω−{ω} and y(ω) = ω, we have

x(ω)

2
= d(S(x(ω)),T (y(ω)))

≤ α(ω)d(P(x(ω)),Q(y(ω))) = α(ω)(
3x(ω)

4
),

hence x(ω)
2 ≤

3x(ω)
4 α(ω), hence α(ω) = 2

3 ∈ (0,1), therefore
all axioms of Corollary 3.2 are satisfied and ω is a unique
common random fixed point of S,T,P and Q.

4. Application
In this section, we apply Corollary 3.2 to prove the exis-

tence of a solution of a random nonlinear integral equations
as the form:

x(t;ω) = f1(t;ω)− f2(t;ω)

+δ (ω)
∫ t

a
m(t,s;ω)gi(s,x(s;ω))dµ(s)

+λ (ω)
∫

M
k(t,s;ω)h j(s,x(s;ω))dµ(s),

(4.1)
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where,
(i) M is a locally compact metric space with metric d on
M×M, µ is a complete σ−finite measure defined on the
collection of Borel subsets of M,
(ii) ω ∈ Ω, where ω is a supporting set of the probability
measure space (Ω,∑,µ),
(iii) x(t;ω) is an unknown vector-valued random variable for
each t ∈M,
(iv) f1(t;ω) and f2(t;ω) are stochastic free terms defined for
t ∈M such that f1(t;ω)≥ f2(t;ω) and are known,
(v) k(t,s;ω) and m(t,s;ω) are real or complex stochastic
kernels defined for t,s ∈M and measurable both in t on M,
(vi) gi(s,x) and h j(s,x) such that i, j = 1,2 and i 6= j are real or
complex vector-valued functions of x,s ∈M and measurable
both in s on M,
(vii) δ (ω) and λ (ω) are real or complex measurable numbers
for ω ∈Ω.

The system of integral equations (4.1) in stochastic ver-
sion are a similar to Voltera-Hammerstien integral equations
(see [15]) in deterministic with M = [a,∞) and µ(s) = s.
Further we assume that M is the union of a decreasing se-
quence of countable family of compact sets {Cn} having the
properties that C1 ⊂C2 ⊂ ... and that for any other compact
set M there is a Ci which contains it (see [1]).
We will follows the steps of Lee and Padjett (see [10]) with
necessary modifications as required for the more general set-
tings.

Definition 4.1. We define the space C(M,L2(Ω,∑,µ)) to be
the space of all continuous functions from M into L2(Ω,∑,µ)
with the topology of uniform convergence on compacta i.e. for
each fixed t ∈M, x(t;ω) is a vector valued random variable
such that

‖x(t;ω)‖2
L2(Ω,∑,µ) =

∫
Ω

|x(t;ω)|2 dµ(ω)< ∞. (4.2)

It may be noted that C(M,L2(Ω,∑,µ)) is locally convex
space (see [4]) whose topologies defined by a countable family
of seminorms given by

‖x(t;ω)‖n = sup
t∈Cn

‖x(t;ω)‖L2(Ω,β ,µ) ,n = 1,2, .. (4.3)

Moreover C(M,L2(Ω,∑,µ)) is complete relative to this topol-
ogy since L2(Ω,∑,µ) is complete.
According to (4.2) and (4.3), we consider the following condi-
tions:
(C1)

∫
M sups∈M |m(t,s;ω)|dµ(s) = N1(ω)<+∞,

(C2)
∫

M sups∈M |k(t,s;ω)|dµ(s) = N2(ω)<+∞,
(C3) gi(s,x(s;ω)) ∈ L2(Ω,∑,µ) for all x(s;ω) ∈ L2(Ω,∑,µ)
and there exists K1(ω) such that for all s ∈M and
x(s;ω),y(s;ω) ∈ L2(Ω,∑,µ),

|g1(s,x(s;ω))−g2(s,y(s;ω))| ≤K1(ω) |x(s;ω)− y(s;ω)| ,

(C4) hi(s,x(s;ω)) ∈ L2(Ω,∑,µ) for all x(s;ω) ∈ L2(Ω,∑,µ)
and there exists K2(ω) such that for all s ∈M and

x(s;ω),y(s;ω) ∈ L2(Ω,∑,µ),

|h1(s,x(s;ω))−h2(s,y(s;ω))| ≤K2(ω) |x(s;ω)− y(s;ω)| .

Now, we formulate the theorem concerning the existence
of a random solution of the nonlinear integral equations (4.1)
as follows:

Theorem 4.2. In addition to the axioms (C1)− (C4), we con-
sider the stochastic integral equations (4.1) subject to the
following assumptions:
(A1) for all i, j = 1,2 and i 6= j,

λ (ω)
∫

M
k(t,s;ω)hi

 s,
δ (ω)

∫ s
a m(s,τ;ω)g j(τ,x(τ;ω))dτ

+ f1(s;ω)− f2(s;ω)

dµ(s)= 0;

(A2) for some x(t;ω) ∈ L2(Ω,∑,µ),

δ (ω)
∫ t

a
m(t,s;ω)gi(s,x(s;ω))dµ(s)

= x(t;ω)

− f1(t;ω)+ f2(t;ω)−λ (ω)
∫

M
k(t,s;ω)hi(s,x(s;ω))dµ(s)

= Γi(t;ω) ∈ L2(Ω,∑,µ);

(A3) If for some Γi(t;ω)∈ L2(Ω,∑,µ), there exists Θi(t;ω)∈
L2(Ω,∑,µ) such that

δ (ω)
∫ t

a
m(t,s;ω)gi (s,x(s;ω)−Γi(s;ω))dµ(s)− f2(t;ω)

= f1(t;ω)

+λ (ω)
∫

M
k(t,s;ω)hi(s,x(s;ω)−Γi(s;ω)− f2(t;ω))dµ(s)

= Θi(t;ω), i = 1,2.

Then the random nonlinear integral equations (4.1) has a
unique solution in L2(Ω,∑,µ) provided that
|λ (ω)|K2(ω)N2(ω)< 1 and |δ (ω)|K1(ω)N1(ω)

1−|λ (ω)|K2(ω)N2(ω) = α(ω)< 1.

Proof. We define the random operators as follows:
(Sx)(t;ω) = δ (ω)

∫ t
a m(t,s;ω)g1(s,x(s;ω))dµ(s)− f2(t;ω),

(T x)(t;ω) = δ (ω)
∫ t

a m(t,s;ω)g2(s,x(s;ω))dµ(s)− f2(t;ω),
(Ex)(t;ω) = f1(t;ω)+λ (ω)

∫
M k(t,s;ω)h1(s,x(s;ω))dµ(s),

(Dx)(t;ω) = f1(t;ω)+λ (ω)
∫

M k(t,s;ω)h2(s,x(s;ω))dµ(s),
(Px)(t;ω) = ((I−E)x)(t;ω), (Qx)(t;ω) = ((I−D)x)(t;ω).

(4.4)

Where f1(t;ω) and f2(t;ω) ∈ L2(Ω,∑,µ) are known and I is
the identity random mapping on C(M,L2(Ω,∑,µ)) defined
by I(ω,x) = x(ω).

Firstly, we shall prove that S,T,E,D,P and Q are random
operators on C(M,L2(Ω,∑,µ)). Indeed, we get

|(Sx)(t;ω)|

≤ |δ (ω)|
∫ t

a
|m(t,s;ω)g1(s,x(s;ω))|dµ(s)+ | f2(t;ω)|

≤ |δ (ω)|sup
s∈Ω

|m(t,s;ω)|
∫ t

a
|g1(s,x(s;ω))|dµ(s)+ | f2(t;ω)| .
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Applying conditions (C1) and (C3), we get

∫
M
|(Sx)(t;ω)|dµ(s)

≤ |δ (ω)|
∫

M
sup
s∈S
|k(t,s;ω)|dµ(s)

∫ t

a
|g1(s,x(s;ω))|dµ(s)

+
∫

M
| f2(t;ω)|dµ(s)

= |δ (ω)|N1(ω)
∫ t

a
|g1(s,x(s;ω))|dµ(s)

+
∫

M
| f2(t;ω)|dµ(s)

< +∞,

hence (Sx)(t;ω) ∈ L2(Ω,∑,µ).
Similarly by same conditions, we have (T x)(t;ω)∈L2(Ω,∑,µ).
For mappings E, we apply the conditions (C2) and (C4) in the
following manner:

∫
M
|(Ex)(t;ω)|dµ(s)

≤ |λ (ω)|
∫

M
sup
s∈S
|k(t,s;ω)|dµ(s)

∫
M
|g1(s,x(s;ω))|dµ(s)

+
∫

M
| f1(t;ω)|dµ(s)

= |λ (ω)|N2(ω)
∫

M
|g1(s,x(s;ω))|dµ(s)

+
∫

M
| f1(t;ω)|dµ(s)

< +∞,

as f1(t;ω) ∈ L2(Ω,∑,µ) and so (Ex)(t;ω) ∈ L2(Ω,∑,µ).
Similarly (Dx)(t;ω) is also a self operator on L2(Ω,∑,µ).
It’s clearly also (Px)(t;ω) and (Qx)(t;ω) are self operators
on L2(Ω,∑,µ) and that S,T,E,D,P and Q are random contin-
uous in mean square by Lebesgue’s dominated convergence
theorem.
So (Sx)(t;ω),(T x)(t;ω),(Ex)(t;ω),
(Dx)(t;ω),(Px)(t;ω),(Qx)(t;ω) ∈C(M,L2(Ω,∑,µ)).

Secondly, we justify the contractive condition (iii) of
Corollary 3.2. By using (C2) and (C3), we obtain for all
x(t;ω),y(t;ω) ∈ L2(Ω,∑,µ) that

‖S(ω,x)−T (ω,y)‖

=
∫

M
|(Sx)(t;ω)− (Ty)(t;ω)|dµ(s)

=
∫

M

∣∣∣∣δ (ω)
∫ t

a
m(t,s;ω)g1(s,x(s;ω))dµ(s)

−δ (ω)
∫ t

a
m(t,s;ω)g2(s,y(s;ω))dµ(s)

∣∣∣∣dµ(s)

=
∫

M

∣∣∣∣δ (ω)
∫ t

a
m(t,s;ω)[g1(s,x(s;ω))

−g2(s,y(s;ω))]dµ(s)|dµ(s)

≤
∫

M
|δ (ω)|sup

s∈S
|m(t,s;ω)|dµ(s)×∫

S
|g1(s,x(s;ω))−g2(s,y(s;ω))|dµ(s)

= |δ (ω)|K1(ω)N1(ω)
∫

M
|x(s;ω)− y(s;ω)|dµ(s)

= |δ (ω)|K1(ω)N1(ω)‖x(s;ω)− y(s;ω)‖ .

from which, we find

‖S(ω,x)−T (ω,y)‖≤ |δ (ω)|K1(ω)N1(ω)‖x(s;ω)− y(s;ω)‖ .
(4.5)

Similarly, by (C2) and (C4), we have

‖E(ω,x)−D(ω,y)‖≤ |λ (ω)|K2(ω)N2(ω)‖x(s;ω)− y(s;ω)‖ .
(4.6)

Hence, we have

‖P(ω,x)−Q(ω,y)‖
= ‖((I−E)x)(s;ω)− ((I−D)y)(s;ω)‖
= ‖[x(s;ω)− y(s;ω)]− [(Ex)(s;ω)− (Dy)(s;ω)]‖
≥ ‖x(s;ω)− y(s;ω)‖−‖E(ω,x)−D(ω,y)‖
≥ ‖x(s;ω)− y(s;ω)‖− |λ (ω)|K2(ω)N2(ω)‖x(s;ω)− y(s;ω)‖
= (1−|λ (ω)|K2(ω)N2(ω))‖x(s;ω)− y(s;ω)‖ ,

this gives,

‖x(s;ω)− y(s;ω)‖≤ 1
1−|λ (ω)|K2(ω)N2(ω)

‖P(ω,x)−Q(ω,y)‖ .

(4.7)

Applying (4.7) in (4.5), we can write

‖S(ω,x)−T (ω,y)‖ ≤ |δ (ω)|K1(ω)N1(ω)

1−|λ (ω)|K2(ω)N2(ω)
‖P(ω,x)−Q(ω,y)‖

= α(ω)‖P(ω,x)−Q(ω,y)‖ .

Therefore the contractive condition (iii) of Corollary 3.2 is
verified.

Next, we prove that S ⊆ Q on C(M,L2(Ω,∑,µ)). Let
x(s;ω) ∈ L2(Ω,∑,µ) be arbitrary and using assumption (A1)
of the theorem, we find

Q((Sx)(t;ω)+ f1(t;ω)) = (I−D)[(Sx)(t;ω)+ f1(t;ω)]

= (Sx)(t;ω)+ f1(t;ω)−D((Sx)(t;ω)+ f1(t;ω))

= (Sx)(t;ω)+ f1(t;ω)

−
(

f1(t;ω)+λ (ω)
∫

M k(t,s;ω)h2(s,(Sx)(t;ω)
+ f1(t;ω))dµ(s)

)
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= (Sx)(t;ω)−λ (ω)
∫

M
k(t,s;ω)×

h2

(
s,δ (ω)

∫ s
a m(s,τ;ω)g1(τ,x(τ;ω))dτ

− f2(t;ω)+ f1(t;ω)

)
dµ(s)

= (Sx)(t;ω),

hence, S⊆ Q. Similarly T ⊆ P.
Finally, we prove that the pairs {S,P} and {T,Q} are

random weakly compatible, for this we have

‖(SPx)(t;ω)− (PSx)(t;ω)‖
= ‖S((I−E)x)(t;ω)− (I−E)(Sx)(t;ω)‖
= ‖S(x)(t;ω)− (SE)x(t;ω)−S(x)(t;ω)+(ES)x(t;ω)‖
= ‖(ES)x(t;ω)− (SE)x(t;ω)‖ . (4.8)

whenever (Sx)(t;ω) = (Px)(t;ω), we can easily write

‖(SPx)(t;ω)− (PSx)(t;ω)‖

=

∥∥∥∥∥∥SE

 f1(t;ω)− f2(t;ω)
+δ (ω)

∫ t
a m(t,s;ω)g1(s,x(s;ω))dµ(s)

+λ (ω)
∫

M k(t,s;ω)h1(s,x(s;ω))dµ(s)


−(ES)

 f1(t;ω)− f2(t;ω)
+δ (ω)

∫ t
a m(t,s;ω)g1(s,x(s;ω))dµ(s)

+λ (ω)
∫

M k(t,s;ω)h1(s,x(s;ω))dµ(s)

∥∥∥∥∥∥
=

∥∥∥∥S
(

f1(t;ω)+λ (ω)
∫

M k(t,s;ω)h1(s,x(s;ω)
−Γ1(s;ω))dµ(s)

)
−E
(

δ (ω)
∫ t

a m(t,s;ω)g1(s,x(s;ω)
−Γ1(s;ω))dµ(s)− f2(t;ω)

)∥∥∥∥
=

∥∥∥∥∥∥∥∥
− f2(t;ω)+δ (ω)

∫ t
a m(t,s;ω)×

g1

(
s, f1(s;ω)+λ (ω)

∫
M k(s,τ;ω)×

h1(τ,x(τ;ω)−Γ1(τ;ω))dτ

)
dµ(s)

− f1(t;ω)−λ (ω)
∫

M k(t,s;ω)×

h1

(
s,δ (ω)

∫ s
a m(s,τ;ω)×

g1(τ,x(τ;ω)− f2(τ;ω)−Γ1(τ;ω))dτ

)
dµ(s)

∥∥∥∥∥∥∥∥
= ‖Θi(t;ω)−Θi(t;ω)‖= 0.

This shows that the pair {S,P} is random weakly compatible,
similarly the pair {T,Q} too.

Thus all requirements of Corollary 3.2 are satisfied. Then
there exists a unique random fixed point u(ω) of the four
random mappings, which is a unique random solution of the
system (4.1).
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